Способ парциального кипячения в мини- и микроканалах

Иллюстрации

Показать все

Изобретение относится к теплотехнике и предоставляет методы, приборы и системы, в которых имеет место частичное кипячение жидкости в миниканале или микроканале длиной, по крайней мере, 15 см. Частичное кипячение удаляет тепло из экзотермического процесса. Технический результат - устранение неравномерности распределения потока, нестабильности локального отвода тепла, а также регулирование температуры при производстве (получении) пара из конвективного кипения в ядерных реакторах. 4 н. и 14. з.п. ф-лы, 45 ил.

Реферат

Данная заявка претендует на преимущество приоритета по отношению к предварительной заявке под серийным номером 60/624860 от 3 ноября 2004 года.

В целом это изобретение связано с методами, устройствами и системами (где основой системы являются устройства, содержащие жидкость или жидкости, и в дальнейшем может характеризоваться такими параметрами как давление, температура и т.д.), в которых имеет место частичное кипение жидкости в миниканале или микроканале. Один из размеров миниканала составляет, по крайней мере, 10 мм или меньше. Один из размеров микроканала равен, по крайней мере, 2 мм или меньше, а в некоторых вариантах конструкции в пределах от 0,01 до 2 мм. Несмотря на то что мини- и микроканалы обычно имеют размеры, указанные выше, в некоторых конструкциях диаметр микроканала составляет Dh<2 мм, где Dh - гидравлический диаметр, а миниканал определяется как канал, имеющий величину Dh от 2 до 10 мм.

Теория частичного кипения

Известно, что кипение является высокоэффективным механизмом передачи тепла, который обеспечивает высокую плотность теплового потока на основе площади поверхности и объема. Существует несколько режимов кипения, включая поток с низким массовым паросодержанием потока, пузырьковое кипение, пленочное кипение, а также кипение в переходном режиме. Пузырьковое кипение в основном находит свое применение в промышленных приложениях. Кипение может происходить на поверхности теплопередачи как в потоке жидкости (кипение в потоке), так и в бассейне для жидкости (кипение в большом объеме), или в объеме жидкости (вскипание - мгновенное (взрывное) испарение). Посредством фазового перехода (превращения) жидкости, кипение в потоке может достигнуть изотермического стока теплоты во время фазового перехода. Кипение в потоке может достигнуть очень высоких коэффициентов конвективной теплопередачи и вместе с изотермической жидкостью позволяет границе (стенке) теплопередачи оставаться при квазипостоянной температуре вдоль направления потока. Такая теплопередача является желательной ситуацией для различных приложений для тепловых, ядерных и химических процессов.

Во многих химических процессах, например, в экзотермическом химическом реакторе, скорость реакции сильно зависит от локальной температуры. Оптимальная температура по всей зоне реакции часто приводит к максимальному выходу продуктов реакции, химическому превращению и желаемой избирательности. Таким образом, теплопередача при кипении используется при управлении технологическим процессом или терморегулировании различных реакций для поддержания изотермических тепловых условий, при которых экзотермическая реакция(и) выделяет тепло. По сравнению с управлением процессом кипения, система охлаждения путем однофазного химического превращения жидкости обычно не достигает сходных изотермических граничных условий для реакций без больших скоростей потока, которые необходимы для поддержания потока при постоянной температуре и увеличения конвективного теплового потока.

До настоящего времени кипение в микроканалах не использовалось для терморегулирования и контроля процессов химических реакций в микроканалах из-за различных предполагаемых или практических технических проблем, включая следующие:

1. Кипение потока в микроканалах связано с такими режимами (формами) потока, которые отличаются от тех, которые были обнаружены в обычных каналах, где пузырьки пара меньше диаметра канала, а стенка канала обычно хорошо смочена жидкостью. Гидравлический диаметр микроканалов обычно меньше характерного диаметра пузырьков пара, поэтому из-за капиллярного эффекта паровые и жидкостные пробки последовательно стекаются друг за другом к определенному участку канала (фиг.1). Методы прогнозирования и критерии проектирования для такого режима (формы) потока определены не очень хорошо.

2. Другие желаемые режимы потока, такие как аэрированный поток и кольцевой режим потока, могут быть получены только в очень узком диапазоне параметров потока или при ограниченных условиях работы, или могут вообще отсутствовать.

3. Из-за наличия паровых пробок может возникнуть локальный участок перегрева стенки и, как следствие, неоднородность температуры вследствие низкой скорости теплообмена между паром и стенкой.

4. Из-за наличия паровых пробок при кипении в микроканале может возникнуть сильный поток и колебание давления. Сразу же может возникнуть нестабильность всей системы охлаждения.

5. Кризис теплопередачи может произойти даже при слабой тепловой нагрузке ввиду большой разницы между коэффициентами теплопередачи при испарении и при конвекции однофазного пара. Это характеризуется критическим тепловым потоком (КТП), который может быть очень низким (слабым), и привести к неизотермическому теплообмену (фиг.1).

6. Распределение и разветвление потока в наборах микроканалов с двухфазным потоком затруднены, тогда как для желаемой производительности процесса обычно требуется большое количество интегрированных каналов.

Данный процесс изобретения дает возможность использовать кипение потока в микроканалах, интегрированных в единичные операции, для реализации устойчивого изотермического граничного условия для экзотермической реакции. Таким образом, есть возможность для теплового управления (контроля) процессом реакции для работы при оптимальных условиях.

Термин «равновесное массовое паросодержание Xeq», также известный как качество или X, определяется следующим образом:

где z[м] = расстояние от входа канала в направлении потока воды (м);

q'' [Вт/м2] = средний тепловой поток у стенки канала;

Р[м] = периметр канала, перпендикулярный по отношению к направлению потока;

А[м2] = площадь поперечного сечения канала, перпендикулярная по отношению к направлению потока;

G[кг/м2·с] = скорость потока массы через площадь поперечного сечения канала, перпендикулярную по отношению к потоку;

hfg[Дж/кг] = скрытая теплота парообразования.

Уравнение (1) предполагает, что:

1) Точка начала пузырькового кипения (НПК) при Xeq=0 находится точно прямо на входе канала. На практике, поток воды на входе будет слегка недогретым из-за неконденсируемого (неспособного конденсироваться) газа. По существу, местоположение Xeq=0 не будет находиться в z=0, где z представляет собой направление потока и z=L (где L - длина микроканала кипения) представляет собой конец микроканала. С другой стороны, поток воды на входе мог бы быть также перегретым (Xeq>0) в результате предварительного нагревания, чтобы поддерживать температуру воды перед ее входом в канал;

2) Перегрев стенки Tw-Tsat является довольно большим для того, чтобы начать кипение около входа в микроканал, который составляет первые 5% его длины;

3) q'' - константа вдоль края канала и вдоль направления потока.

Для того чтобы определить падение давления в канале, необходимо знать локальное массовое паросодержание конвекционного потока. Зная изменение истинного объемного паросодержания и степень сухости влажного пара вдоль длины канала, падение двухфазного давления в канале можно рассчитать с помощью модели отделенного потока Локхарта [Lockhart] и Мартинелли [Martinelli] (Lockhart R.W. and Martinelli R.C., "Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes" [Р.В.Локхарт и Р.К.Мартинелли «Предлагаемая корреляция данных для изотермического, двухфазного, двухкомпонентного потока в трубах»] Chemical Engineering Progress 45(1), стр.39-40, 1949). Это уравнение, приведенное ниже, разбивает падение давления на потери из-за трения и ускорение по членам процесса кипения,

Dh[m] = гидравлический диаметр канала;

flo[-] = коэффициент трения канала, когда полная массовая скорость потока соответствует жидкости;

f1[-] = коэффициент трения канала, когда массовая скорость потока соответствует жидкости, G(1-X);

ρv[кг/м3] = плотность паровой фазы;

ρv[кг/м3] = плотность жидкой фазы.

Для членов уравнения (2), которые не определены выше, нужен параметр Мартинелли, χ, который определяет градиенты давления для текущей в одиночку жидкости над градиентом давления текущего в одиночку пара,

где ρ - локальное статическое давление. Корреляция для α в уравнении (2) для турбулентного потока в больших трубах дается как

Значение множителя трения двухфазного потока зависит от множителя трения текущей в одиночку жидкости , коэффициентов трения и локального массового паросодержания

Умножитель трения для текущей в одиночку жидкости задается корреляцией Мартинелли-Нельсона [Martinelli-Nelson] как

С в уравнении (6) имеет члены, которые зависят от режимов газовой и жидкой фаз потока, а именно:

20: при жидкость - турбулентная, газ - турбулентный;

12: при жидкость - вязкая, газ - турбулентный;

5: при жидкость - вязкая, газ - вязкий.

Ли [Lee] (2001) предложил проводить корреляцию коэффициента С:

для микроканалов до Dh~0.8 мм.

Термин «критический тепловой поток», или КТП, представляет собой локальный тепловой поток, в котором температуру стенки невозможно поддерживать вследствие изменения механизма теплопередачи от кипения к конвекции пара.

Это приводит к образованию локализованного участка местного перегрева. На фиг.1 показана типичная кривая кипения, где тепловой поток откладывается по вертикальной оси, а разница между температурами стенки (Tw) и насыщенной жидкости (Ts) - по горизонтальной. Меньшие значения диапазона разницы температур имеют однофазная теплопередача и слабые тепловые потоки. Существует пороговая разница температур, при которой начинается пузырьковое кипение, а небольшое увеличение этой разницы может вызвать более сильные тепловые потоки, поскольку начнется пузырьковое кипение. КТП появляется в том случае, когда разница достигает точки, где скорость теплообмена меняется от пузырькового/аэрированного потока до локального кризиса теплоотдачи при высыхании, а сопротивление газовой фазы начинает доминировать (преобладать) по отношению к теплообмену. КТП может образоваться до высыхания.

Результаты КТП в виде больших гидравлических диаметров довольно хорошо описаны. КТП для насыщенных жидкостей, обычно, является функцией следующих воздействий:

1. Скорость потока: КТП идет вверх (растет), когда скорость потока увеличивается для заданных условий входного отверстия (канала) и геометрии.

2. Давление: когда давление увеличивается, начиная с давления окружающей среды, то КТП возрастает до локального максимума и постепенно уменьшается при увеличивающемся давлении.

3. Размер канала: КТП возрастает при увеличении размера канала;

4. Длина канала: более длинные каналы приводят к более низкому (слабому) КТП;

5. Сухость влажного пара: повышенная сухость пара Х приводит к уменьшению КТП.

При насыщенном кипении размер канала и сухость пара связаны со средним тепловым потоком стенки. Таким образом, более сильный тепловой поток процесса (в среднем) быстро достигает локального КТП за счет более высокой скорости парообразования и определенного количества накопленного пара.

Показатель кипения, Bо, - это тепловой поток, размерность которого не определяется потоком массы и скрытой теплотой парообразования

Показатель капилляра, Са, - это соотношение сил внутреннего трения к силам поверхностного натяжения

где: µ[кг/м·с] = вязкость жидкости;

ρ[кг/м3] = плотность жидкости;

σ[Н/м] = поверхностное натяжение жидкости.

Число Вебера представляет собой соотношение сил инерции к силам поверхностной температуры:

Оценка критического теплового потока (КТП) для кипения насыщенного потока исследуется для более крупных каналов, по сравнению с микроканалами. Одна из корреляций взята у Катто и Охно [Katto Y., and Ohno H., Int.J. Heat Mass Transfer, v.26(8), стр.1641-1648, 1984]

,

Wek -основанное на длине число Вебера, с использованием масштаба длины для длины канала.

Для q"co1<q"co2:q"co=q"col

Для q"co1>q"co2

q"со=q"co2, когда q"co2<q"со3

q"со=q"со3, когда q"co2>q"со3

Для Kk1>Kk2: Kk=Kk1

Для Kk1≤Kk2: Kk=Kk2

Для кипения насыщенного потока величина q"crit равна q"co.

Показатель SR определяется следующим образом:

где Во = показатель кипения, безразмерная величина;

Twall max = максимальная температура стенки, окружающей участок кипения, К;

Tsat = температура насыщения жидкости при заданном давлении и составе, К;

Dh = гидравлический диаметр канала, в котором происходит кипение, мм;

L = длина канала, на протяжении которой происходит кипение, мм.

Разница между температурой стенки и температурой насыщения определяется как излишняя (избыточная) температура.

Что касается матрицы выровненных микроканалов, где локальный тепловой поток меняется от канала к каналу, то затруднения, которые были рассмотрены выше, становятся еще сложнее. Возможные единичные операции, которые имели бы меняющийся профиль теплового потока над матрицей соединительных каналов, включают, но не ограничены следующими: экзотермические химические реакции, каталитические или однородные, теплоотвод из дистилляционной колонны, этап десорбции в системе абсорбции или адсорбции, процессы экзотермического смешивания и т.д. Это может произойти, если микроканалы выровнены поперек направления других каналов единичной операции. Что касается ситуации с меняющимся потоком в канале, то для поддержания конвективного кипения, может возникнуть необходимость в большем количестве потока в каналах с более мощными тепловыми потоками и в меньшем потоке для каналов с меньшими тепловыми потоками.

Известный уровень техники (информация на дату подачи заявки об известных технических решениях в данной области}

В опубликованной литературе не отражается единого мнения в отношении эксплуатационных характеристик кипения в микроканалах.

Режим кипения и механизмы теплопередачи

С одной стороны, некоторые исследователи говорят о том, что кипение в микроканалах является уникальным и обладает потенциальными преимуществами по сравнению с макромасштабными аналогами. Например, Кэндликар [Kandlikar] (2002) провел критический анализ кипения в потоке в каналах с гидравлическим диаметром менее 3 мм. На основании этого анализа, были сделаны следующие выводы:

- Во время кипения потока в микроканалах обычно имеют место три режима (формы) потока: отдельный (изолированный) пузырек, замкнутый пузырек или пробка, и кольцевой режим потока.

- При определении конечного режима кипящего потока важным фактором является влияние граничного поверхностного натяжения между фазами. Подтверждается существование маленьких зародышеобразовательных пузырьков до 10-20 микрон.

Следует отметить, что с точки зрения производительности теплообмена, изолированные пузырьки являются наиболее желательными. Чедестер [Chedester] и Гхиаасиаан [Ghiaasiaan] (2002) ссылаются на данные и предыдущий теоретический анализ, который поддерживает теорию о том, что образование пузырьков и явление выделения в микроканалах существенно отличаются от аналогичных явлений в больших каналах. При кипении с недогревом градиенты скорости и температуры возле стенок микроканалов могут быть очень большими, и те пузырьки, которые появились в результате кипения с недогревом или кипения в фазе насыщения, могут быть очень маленькими. Возникновение очень маленьких пузырьков существенно влияет на различные процессы кипения с недогревом, включая начало пузырькового кипения (НПК), начало значимой пустоты (НЗП) и отклонение от пузырькового кипения (например, пленочное кипение).

Эти же авторы (Чедестер и Гхиаасиаан, 2002) также выдвигают гипотезу о том, что начало кипения в микроканалах можно регулировать термокапиллярными силами, которые стремятся подавить образование микропузырьков на полостях стенки. Если это действительно так, то можно предположить, что теплопередача в микроканалах, которая значительно увеличивается пузырьковым кипением благодаря скрытой теплоте парообразования, будет, в действительности, выполняться хуже, чем в каналах обычного размера. В их исследованиях говорится о том, что макромасштабные модели и корреляции для теплоотдачи при кипении, по всей видимости, недооценивают при прогнозировании те тепловые потоки, которые необходимы для начала кипения в микротрубках (при этом определено, что они обладают диаметрами в диапазоне от 0.1 мм до 1 мм). Среди других факторов необходимо отметить, что их эксперименты проводились в полностью турбулентном режиме, в то время как большинство практических приложений микроканалов работает в режиме ламинарного потока.

Хейнес [Haynes] и Флетчер [Fletcher] (2003) рассматривают работу, в которой проводились экспериментальные исследования коэффициентов теплопередачи кипения потока с недогревом для выбранных хладагентов в гладких медных трубках небольшого диаметра. Были рассмотрены следующие диапазоны параметров: диаметры трубок 0.92 и 1.95 мм, тепловые потоки - от 11 до 170 кВт/м3 и общее количество потоков массы от 110 до 1840 кг/(м2·с). Более того, ограниченный набором данных диапазон чисел Рейнольдса для жидкости составляет от 450 до 12,000. В своей работе они не определили ни доказательства того, что конвекция подавляет член зародышеобразования, а также не определили доказательства того, что акты зародышеобразования усиливают конвективный член даже в ламинарных и переходных потоках. Однако ламинарные потоки, в частности, могут увеличиваться при помощи неизвестного механизма.

Проданович [Prodanovic] и др. (2002) в своих экспериментальных исследованиях отмечают, что основной моделью теплообмена во время пузырькового кипения является возбуждение пузырьков. Возбуждение рассеивается по мере того, как пузырек уходит (перемещается) от нагретой поверхности канала.

Ли [Lee] и др. (2004) проводили эксперименты с пузырьковой динамикой в одиночном трапециевидном микроканале с гидравлическим диаметром 41.3 микрон. Результаты этого исследования указывают на то, что образование пузырьков в микроканале обычно растет с постоянной скоростью от 0.13 до 7.08 микрон/мс. В некоторых случаях наблюдается чрезвычайно высокая скорость роста от 72.8 до 95.2 микрон/мс. Оказалось, что на размер того пузырька, который отрывается от стенки микроканала, влияет поверхностное натяжение и (гидродинамическое) сопротивление массового расхода (в отличие от напряжения стенки при сдвиге), кроме того, его можно должным образом скоррелировать при помощи модифицированной формы уравнения Леви [Levi]. Они также утверждают, что частота пузырьков в микроканале сравнима с частотой пузырьков в канале обычного (стандартного) размера.

Том [Thome] (2004) провел анализ последних исследований в области кипения в микроканалах. Был сделан анализ экспериментов и теории парообразования в микроканалах. Он утверждает, что основным доминирующим режимом потока, по-видимому, является режим продолговатых (вытянутых) пузырьков, который может продолжать существовать (сохраняться) до сухости пара 60-70% в микроканалах, после чего следует кольцевой поток. Также он утверждает, что регулирующий механизм теплообмена не является ни пузырьковым кипением, ни турбулентной конвекцией, а переходным (нестационарным) тонкопленочным парообразованием. Как показывают некоторые исследователи, коэффициенты теплопередачи кипения потока почти исключительно зависят от теплового потока и давления насыщения, т.е. похожи на теплопередачу при пузырьковом кипении в большом объеме и лишь незначительно зависят от скорости массы и сухости пара. Однако в ходе недавно проведенных тестов было продемонстрировано влияние скорости массы и сухости пара, что поддерживает гипотезу о том, что при кипении теплообмен регулируется снарядным режимом потока или тонкопленочным кипением.

Устойчивость потока

Устойчивость потока кипения в микроканале является вопросом, вызывающим большие опасения. Поскольку еще не существует никакой комплексной (всесторонней) теории о начале неустойчивости, она в основном изучается по флуктуациям и визуализации давления потока. Теплообмен гораздо менее эффективен для неустойчивого потока по многим причинам, включая неустойчивость в режимах потока, образование пленочного кипения, обратного потока и слабое распределение потока. Ниже приводятся цитаты из имеющейся литературы об известном уровне техники (информации об известных технических решениях) по этой теме.

Брутин [Brutin] и др. (2003) исследовали неустойчивость двухфазного потока в конвективном кипении, которое имеет место в узких прямоугольных микроканалах. Гидравлический диаметр составлял 889 микрон, а длина канала 200 мм. Эксперименты проводили при потоке массы величиной 240 кг/м2·с) и тепловых потоках в диапазоне от 3.3 до 9.6 Вт/м2. При всех этих условиях образуется паровая пробка, которая блокирует двухфазный поток и проталкивает двухфазный поток обратно к входу потока. На основании своих экспериментальных наблюдений, они устанавливают критерий для потока в устойчивом состоянии в качестве низких колебаний амплитуды флуктуации в измеренном давлении потока менее 1 кПа, и при этом характеристическая частота колебаний соотношения меньше 20 (отношение амплитуды пика к амплитуде шума).

By [Wu] и др. (2004) дают описание ряда экспериментов, которые проводились для изучения различных режимов неустойчивости кипения для воды, текущей в микроканалах при разных значениях теплового потока и потока массы. В этих экспериментах использовали восемь параллельных кремниевых микроканалов с одинаковым трапециевидным поперечным сечением, с диаметром 186 микрон и длиной 30 мм. Когда тепловой поток на стенке был увеличен с 13.5 до 22.6 Вт/см2, а средний по времени поток массы воды был уменьшен с 14.6 до 11.2 г/см2·с, то в микроканалах наблюдали три вида режимов неустойчивого кипения:

- Жидкий/двухфазный переменный поток (ЖДПП) при слабом тепловом потоке и большом потоке массы;

- Непрерывный двухфазный поток (НДП) при среднем тепловом потоке и среднем потоке массы; а также

- Жидкий/двухфазный/паровой переменный поток (ЖДППП) при высоком тепловом потоке и слабом потоке массы.

Обычно ЖДПП возникал при более низком (слабом) тепловом потоке (от 13.5 до 16.6 Вт/см2) и более высоком среднем потоке массы (от 14.6 до 12.7 г/м2·с); НДП возникал при среднем тепловом потоке (18.8 Вт/см2) и среднем потоке массы (11.9 г/см2·с), а ЖДППП возникал при более высоком (сильном) тепловом потоке (22.6 Вт/см2) и более низком (слабом) потоке массы (11.2 г/см2·с). Среди трех неустойчивых режимов кипения, амплитуды колебаний в ЖДППП были самыми большими при колебаниях давления и потока массы почти за пределами тех граничных значений, которые определены для этой фазы.

Значения L/DH

Все эксперименты с микроканалами проводятся при определенной фиксированной геометрии. Для того чтобы дать краткое описание производительности теплообмена для этих устройств, было определено, что соотношение длина-диаметр, которое обычно равно длине канала, деленной на гидравлический диаметр L/DH, является удобным показателем. В большей части литературы об известном уровне техники (информации об известных технических решениях) не приводятся четкие данные о длине каналов, использованных в их экспериментах. Ниже перечислена та литература, в которой указаны эти данные.

- Брутин и др. (2003): L/DH=100 и 250 (см. описание выше в разделе "Устойчивость потока»).

- By и др. (2004): L/DH=161 (см. описание выше в разделе "Устойчивость потока»).

- Ли и др. (2003): для исследования влияний формы канала размером несколько микрометров на развивающиеся режимы потока и тепловую производительность микросистемы использовался интегрированный (комплексный) сток теплоты из неглубоких, почти прямоугольных микроканалов. В этом устройстве использовались каналы с эквивалентным диаметром DH=24 микрон и общей длиной 19 мм, что дало соотношение L/DH=792. Был сделан вывод о том, что локальное зародышеобразование и изолированное образование пузырьков незначительны. Доминирующий режим потока представляет собой неустойчивую область перехода, которая соединяет зону пара в верхнем течении (верхового пара) с зоной жидкости в низовом течении (низовой жидкости), и среднее местоположение этой области зависит от входной мощности.

- Уорриер [Warrier] и др. (2002): в небольших прямоугольных каналах были проведены эксперименты по однофазной вынужденной конвекции, а также эксперименты по пузырьковому кипению в фазе недогрева и фазе насыщения с использованием FC-84 в качестве испытательной жидкости. Испытательные участки состояли из пяти параллельных каналов, причем каждый канал имел следующие размеры: гидравлический диаметр DH=0.75 мм и соотношение длина-диаметр = 409.8. Эти эксперименты были проведены с горизонтально ориентированными каналами, и при этом к верхней и нижней поверхностям были подведены одинаковые тепловые потоки. Те параметры, которые менялись (варьировались) во время экспериментов, включали в себя скорость потока массы, недогрев входной жидкости и тепловой поток. Для теплообмена при кипении в недогретом и насыщенном потоке были образованы новые корреляции теплообмена.

Петтерсен [Pettersen] (2004): испарение жидкого CO2 в микротрубках диаметром 0.8 мм и длиной 0.5 м (L/DH=625). Измерения теплопередачи и падения давления были проведены при меняющейся паровой фракции при температурах в диапазоне от 0 до 25°С, потоке массы 190-570 кг и тепловом потоке 5-20 кВт/м2. Результаты теплопередачи показывают значительное влияние высыхания, особенно при большом потоке массы и высокой температуре. Наблюдения за потоком отражают увеличивающийся унос при большем потоке массы и доминирование кольцевого потока (пробковый поток и тонкопленочное кипение).

Технические характеристики для улучшения кипения

И наконец, характеристики теплопередачи при кипении микроканала также можно улучшить, если использовать пористое покрытие или, как предлагается в некоторых технических методиках, пористые или рифленые конструкции на поверхностях стенок микроканала. Например, Аммерман [Ammerman] и Ю [You] (2001) предложили описание экспериментальной работы с использованием пористых покрытий на канале шириной 2 мм и общей длиной 8 см. Было проведено сравнение характеристик теплообмена для конвективного кипения с использованием канала с покрытием и канала без покрытия с такими же размерами и потоками массы. В микроканалах с покрытием наблюдалось увеличение коэффициента теплопередачи, а также более высокий (больший) допускаемый критический тепловой поток.

Хонда [Honda] и Вэй [Wei] (2004) представили работу по улучшению теплопередачи при кипении от электронных компонентов, погруженных в диэлектрические жидкости, благодаря использованию поверхностных микроструктур. Эти разработанные микроструктуры включают поверхностную шероховатость, которая получена с помощью пескоструйного напыления слоя SiO2, с последующим жидкостным травлением поверхности, химическое осаждение слоя SiO2 из паровой (газовой) фазы и т.д., похожую на щетку конструкцию (дендритический (древовидный) сток тепла), просверленные лазером проточки, проходные резонаторы, микроребра (микропластины), распыление алюминиевых частиц, покраску хлопьевидными частицами серебра или частицами алмазов, а также стержни для стока тепла с просверленными отверстиями, микроребра и микроканалы, ребра на выводах микросхем и т.д. Основные вопросы, которые были рассмотрены в ходе данных исследований, включали в себя ослабление превышения температуры зарождения (начала), улучшение теплообмена при пузырьковом кипении и увеличение критического теплового потока. Они получили следующие результаты:

- Сложная микрошероховатость, микропроходной резонатор и микропористая структура эффективно влияют на уменьшение перегрева зарождения (начала) кипения. Однако, когда поверхность канала была недогрета, микропроходной резонатор склонялся к заполнению жидкостью. Механизм уменьшения перегрева зарождения (начала) кипения за счет микроструктуры поверхности еще не очень хорошо изучен.

- Шероховатость поверхности эффективно влияет на улучшение пузырькового кипения. Однако авторы не смогли определить прямую (непосредственную) связь между параметром шероховатости поверхности ε/DH с улучшением теплообмена. Они обнаружили, что шероховатость поверхности, полученная в результате осаждения тонкой пленки SiO2 (как, например, в приложениях для микрокристаллов), эффективно влияет на увеличение критического теплового потока.

- Поверхностные полости эффективно влияют на улучшение пузырькового кипения и увеличение критического теплового потока. В ходе наблюдений был сделан вывод о том, что в диапазоне изменения диаметра устья поверхностной полости 1.6-9 микрон, полость с более высоким (большим) значением диаметра deq более эффективно влияет на образование участков зарождения пузырьков.

- Микропористые структуры являются наиболее эффективными при улучшении пузырькового кипения. Однако угол наклона кривой кипения микропористой поверхности резко уменьшается в области высокого значения теплового потока и перегрев стенок в точке критического (удельного) теплового потока (CHF) выше максимально допустимой температуры для определенных приложений микрокристалла.

- Авторы обнаружили, что ребра микро (ε=1. выводов кристалла (ИС) являются наиболее эффективными для повышения критического (удельного) теплового потока

qCHF. Кривая кипения оребренной для микрообъемов поверхности показывает резкое увеличение q при повышении ΔTsat (ΔTsat = перегреву стенки = Twall-Tsat). qCHF увеличивается монотонно с повышением ΔTsub (ΔTsub = недогрев жидкости = Tsat-Tboil). Оптимальное расстояние (интервал) между ребрами, которое дает наивысшее значение qCHF, уменьшается по мере уменьшения ΔTsub.

- Микроструктуры поверхности удерживают растущие пузырьки на поверхности в течение более длительного времени, чем гладкая поверхность. Это считается важным фактором для усовершенствованного теплообмена, получаемого с помощью поверхностных микроструктур.

- Наивысшая производительность получается при горизонтальной ориентации кристалла (чипа) с направлением вверх. Авторы дают математическое выражение, связывающее qCHF с углом наклона.

Авторы дают количественные показатели повышения значений qCHF из-за шероховатости поверхности стенок каналов в приложениях для микрокристаллов: 32.5% и 48%. Эти результаты были получены для следующих средних значений шероховатости поверхности ε:1.1б 18.7 и 309.3 нанометра, соответственно, по сравнению с шероховатостью поверхности 1.1 нанометра для базового случая. Более того, они построили кривые кипения для различных значений эквивалентного диаметра входного отверстия в пористую полость (раковину), а также для пористых и инженерных конструкций выводов кристалла (ИС) с ребрами. Улучшение теплового потока при заданной температуре перегрева стенки можно сравнить с самой гладкой поверхностью, Кристаллом S (ε=1.1 нанометра), а также с прогнозами для конвективного кипения, которое предполагает совершенно гладкую поверхность (ε=0).

Рамасвами [Ramaswamy] и др. (2002) дают описание исследований кипения с усовершенствованной поверхностью в микроканале с использованием резки полупроводниковых пластин на кристаллы. При этом для изготовления сети (схемы) взаимосвязанных микроканалов на кремниевой пластине (подложке) размером

10 мм×10 мм использовалось жидкостное травление. Итоговая структура имеет поры, которые устанавливают связь между внутренностями микроканалов и резервуаром для жидкостей. Диаметр пор варьировался в диапазоне 0.12-0.20 мм, а интервал (шаг) между порами находился в диапазоне 0.7-1.4 мм. Сбор данных проводился при поддержании давления в системе на уровне одной атмосферы и повышении перенагрева стенки до 12К.

Полученные ими результаты можно кратко сформулировать в следующем виде.

Для тех значений перенагрева стенки, которые находятся в диапазоне от низких до промежуточных (4-12°С) кипение происходило в режиме изолированных друг от друга пузырьков. С повышением перенагрева стенки начала происходить коалесценция (слияние пузырьков), которая, в конечном счете, привела к образованию больших пузырей. Явление коалесценции в некоторой степени определялось (зависело от) интервалом (шагом) между порами.

Средний диаметр отрыва пузырьков при кипении увеличивался с повышением размера поры (для одного и того же перегрева стенки). Они (авторы отчета) говорят о том, что влияние интервала между порами было очень малым. Для определенного размера поры диаметр отрыва пузырьков при кипении увеличивался с повышением перегрева стенки.

С повышением перегрева стенки частота образования пузырьков увеличивалась в самой малой степени (незначительно). При промежуточных перегревах стенки (примерно 12°С) частота показывала тенденцию к уменьшению. Более того, частота уменьшалась с повышением интервала между порами и диаметра поры.

Авторы говорят о том, что с повышением перегрева стенки увеличивалась плотность центра зародышеобразования (для всех структур). Больший интервал между порами приводил к меньшему количеству пузырьков из-за меньшего количества пор. Размер пор оказывал незначительный эффект за исключением одной структуры, где количество пузырьков увеличивалось. Они (авторы) утверждают, что плотность центра зародышеобразования является функцией объема, выпаренного внутри туннелей, и среднего диаметра отрыва пузырьков при кипении, и что с изменением размера пор взаимодействие этих двух параметров приводит к изменчивости в плотности центра зародышеобразования.

Перегрев стенки

Малый гидравлический диаметр приводит к низким числам Рейнольдса в ламинарном режиме, обычно в диапазоне 100-1000. Если необходимо получить хорошие характеристики теплообмена в приложении двухфазного микроканала, то при таких потоках с низкими числами Рейнольдса обычно необходимо пузырьковое кипение. Однако высокий уровень перегрева стенки, который часто необходим для инициирования зародышеобразования, приводит к «выбросу» или чрезмерному быстрому выпариванию, которое, в свою очередь, может привести к коалесценции (слиянию) пузырьков, снарядному режиму (двухфазного) потока, а также к различным режимам нестабильности потока. Это означает, что контроль выброса кипения предусматривает поддержание температуры перегрева стенки ΔTsat=Twall-Tsat (иногда обозначаемой как ΔTsup) на самом низком возможном значении для пузырькового кипения.

Кандликар [Kandlikar] (2004) рассматривал кипение потока в таком канале, на входе в который подается недогретая (до температуры насыщения) жидкость, а на выходе - поток парожидкостной смеси. При движении потока жидкости через микроканал происходит зародышеобразование в тех областях, которые попадают в определенный диапазо