Аподизированные асферические дифракционные линзы
Иллюстрации
Показать всеГруппа изобретений относится к офтальмологии и раскрывает асферические дифракционные линзы. Многофокусные интраокулярные линзы (ИОЛ) включают в себя оптику, имеющую переднюю поверхность и заднюю поверхность, причем, по меньшей мере, одна из поверхностей включает в себя асферический базовый профиль, на участке которого расположена совокупность дифракционных зон для создания дальнего фокуса и ближнего фокуса. Асферический базовый профиль повышает контрастность изображения в дальнем фокусе линзы относительно полученной посредством, по существу, идентичной ИОЛ, в которой соответствующий базовый профиль является сферическим. 6 н. и 19 з.п. ф-лы, 7 ил., 1 табл.
Реферат
По данной заявке испрашивается приоритет согласно 35 U.S.C. §120, совместно рассматриваемой патентной заявки США №11/000,770, поданной 1 декабря 2004 г., содержание которой в полном объеме включено сюда посредством ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к многофокусным дифракционным офтальмическим линзам, в частности аподизированным дифракционным интраокулярным линзам, которые могут обеспечивать повышенную контрастность изображения.
Периодические дифракционные структуры могут обеспечивать дифракцию света одновременно в нескольких направлениях, также обычно именуемых дифракционными порядками, в многофокусных интраокулярных линзах, два дифракционных порядка используются для обеспечения пациенту двух оптических сил, одной для дальнего зрения и другой для ближнего зрения. Такие дифракционные интраокулярные линзы обычно сконструированы так, чтобы иметь "добавочную" силу, которая обеспечивает разделение между дальним фокусом и ближним фокусом, таким образом, дифракционная интраокулярная линза может обеспечивать пациенту, в глаз которого имплантирована линза, зрение в диапазоне расстояний до объекта. Например, дифракционная ИОЛ может заменять естественный хрусталик пациента для обеспечения пациенту не только необходимой оптической силы, но также некоторого уровня псевдоаккомодации. В другом применении дифракционная ИОЛ или другая офтальмическая линза может обеспечивать для глаза пациента, страдающего пресбиопией - потерей аккомодации естественного хрусталика - псевдоаккомодационную способность.
Однако традиционные многофокусные дифракционные линзы не способны регулировать или изменять аберрации естественного глаза таким образом, чтобы линза совместно с глазом пациента обеспечивали повышенную контрастность изображения. Кроме того, конструкция аподизированных дифракционных линз для обеспечения повышенной контрастности изображения может представлять трудности в том, что такие линзы демонстрируют переменный дифракционный эффект в разных радиальных положениях на линзе.
Сущность изобретения
Настоящее изобретение в целом предусматривает многофокусные офтальмические линзы, например интраокулярные и контактные линзы, в которых используется асферические профили поверхности для повышения контрастности изображения, в частности, в дальнем фокусе линзы. Во многих вариантах осуществления изобретение предусматривает псевдоаккомодационные линзы, имеющие, по меньшей мере, одну асферическую поверхность для повышения контрастности изображения.
Согласно одному аспекту настоящее изобретение предусматривает дифракционную линзу, например псевдоаккомодационную интраокулярную линзу (ИОЛ), которая включает в себя оптику, имеющую асферическую базовую кривую, и совокупность кольцевых дифракционных зон, наложенных на участок базовой кривой, для создания дальнего фокуса и ближнего фокуса. Асферическая базовая кривая повышает контрастность изображения в дальнем фокусе оптики относительно полученной посредством, по существу, идентичной ИОЛ, в которой соответствующая базовая кривая является сферической.
Улучшение изображения, обеспечиваемое асферической базовой кривой, можно охарактеризовать функцией передачи модуляции (ФПМ), демонстрируемой ИОЛ совместно с глазом пациента, в который имплантирована ИОЛ. Например, такая ФПМ в дальнем фокусе может превышать около 0,2 (например, составлять в пределах от около 0,2 до около 0,5), будучи вычислена для модельного глаза на пространственной частоте около 50 пар линий на миллиметр (пл/мм) или превышать около 0,1 (например, составлять в пределах от около 0,1 до около 0,4) на пространственной частоте около 100 пл/мм, длине волны около 550 нм и при размере зрачка от около 4 мм до около 5 мм. Более предпочтительно, ФПМ может превышать 0,3 или 0,4. Например, ФПМ может составлять в пределах от около 0,2 до около 0,5. Например, расчетная ФПМ может превышать около 0,2 на пространственной частоте около 50 пл/мм, длине волны около 550 нм, и при размере зрачка около 4,5 мм.
Согласно еще одному аспекту асферический профиль выбирается для соблюдения баланса между повышением контрастности изображения и обеспечением полезной глубины поля. Вместо коррекции всех аберраций, линза может иметь такую конфигурацию, чтобы ИОЛ совместно с глазом пациента, в который имплантирована ИОЛ, могли демонстрировать полезную глубину поля, в частности в дальнем фокусе. Термины "глубина поля" и "глубина фокуса", которые используется здесь взаимозаменяемо, общеизвестны применительно к линзе и совершенно понятны специалистам в данной области техники. Постольку, поскольку может потребоваться количественное измерение, используемые здесь термины "глубина поля" или "глубина фокуса", можно определить посредством величины расфокусировки, связанной с оптической системой, при которой несфокусированная функция передачи модуляции (ФПМ) системы, вычисленная или измеренная при апертуре, например, размере зрачка, от около 4 мм до около 5 мм (например, размере зрачка около 4,5 мм) и в монохроматическом зеленом свете, например свете, имеющем длину волны около 550 нм, демонстрирует контрастность, по меньшей мере, около 0,3 на пространственной частоте около 50 пл/мм или контрастность около 0,2 на пространственной частоте около 100 пл/мм. Следует понимать, что глубина поля в дальнем фокусе связана с расстоянием расфокусировки, которое меньше разделения между дальним фокусом и ближним фокусом, т.е. связана с глубиной поля, когда пациент наблюдает дальний объект.
Согласно родственному аспекту дифракционные зоны могут располагаться на участке поверхности линзы, именуемом здесь зоной аподизации, окруженном периферийным участком поверхности, который, по существу, лишен дифракционных структур. Дифракционные зоны могут быть отделены друг от друга совокупностью ступенек, расположенных на границах зон, которые имеют, по существу, однородные высоты. Альтернативно, высота ступеньки может быть неоднородной. Например, высота ступеньки могут постепенно уменьшаться как функция увеличения расстояния от оптической оси линзы.
В некоторых вариантах осуществления линза включает в себя переднюю поверхность, имеющую асферический профиль, и заднюю поверхность, которая является сферической. Альтернативно, задняя поверхность может быть асферической, а передняя поверхность сферической. В других вариантах осуществления изобретения, и передняя поверхность, и задняя поверхность могут быть асферическими, т.е. полная требуемая степень асферичности может делиться между передней и задней поверхностями.
Согласно родственному аспекту асферичность одной или нескольких поверхностей ИОЛ можно охарактеризовать следующим соотношением:
где z обозначает прогиб поверхности, параллельный оси (z), например оптической оси, перпендикулярной поверхности,
c обозначает кривизну на вершине поверхности,
cc обозначает конический коэффициент,
R обозначает радиальную позицию на поверхности,
ad обозначает коэффициент деформации четвертого порядка, и
ae обозначает коэффициент деформации шестого порядка.
Расстояние измеряется здесь в миллиметрах. Например, постоянная кривизны измеряется в единицах, обратных миллиметру, а ad измеряется в единицах мм-3 и ae измеряется в единицах мм-5.
Параметры в вышеприведенном соотношении можно выбирать исходя из, например, требуемой оптической силы линзы, материала, из которого сформирована линза, и степени улучшения изображения, предполагаемого вследствие асферичности профиля. Например, в некоторых вариантах осуществления, в которых оптика линзы сформирована в виде двояковыпуклой линзы из акрилового полимерного материала средней силы (например, силы в 21 диоптрию), коническая постоянная (cc) передней поверхности может составлять в пределах от около 0 (нуля) до около -50 (минус пятьдесят), или в пределах от около -10 (минус 10) до около -30 (минус 30), или в пределах от около -15 (минус 15) до около -25 (минус 25), и постоянные деформации (ad) и (ae) могут составлять, соответственно, в пределах от около 0 до около -1×10-3 (минус 0,001) и в пределах от около 0 до около -1×10-4 (минус 0,0001).
Согласно еще одному аспекту настоящее изобретение предусматривает псевдоаккомодационную аподизированную дифракционную ИОЛ, которая включает в себя оптику, имеющую переднюю поверхность и заднюю поверхность, в которой, по меньшей мере, одна из поверхностей включает в себя асферический базовый профиль и совокупность дифракционных зон, наложенных на участок базового профиля, в результате чего каждая зона располагается на выбранном радиусе от оптической оси оптики и отделена от соседней зоны ступенькой. Эта поверхность линзы может дополнительно включать в себя периферийную область, окружающую дифракционные зоны. Дифракционные зоны создают дальний фокус и ближний фокус, и асферический профиль повышает контрастность изображения в дальнем фокусе относительно полученной посредством, по существу, идентичной линзы, имеющей сферический профиль.
Согласно другим аспектам настоящее изобретение предусматривает псевдоаккомодационную дифракционную ИОЛ, которая включает в себя оптику, выполненную из биосовместимого полимерного материала и имеющую заднюю поверхность и переднюю поверхность, где оптика обеспечивает ближний фокус и дальний фокус. По меньшей мере, одну из передней и задней поверхностей можно охарактеризовать базовой кривой и совокупностью дифракционных зон, расположенных в виде кольцевых концентрических дифракционных элементов вокруг оптической оси, где каждая имеет высоту относительно базовой кривой, которая постепенно уменьшается по мере увеличения расстояния дифракционного элемента от оптической оси. Базовая кривая может демонстрировать асферический профиль для повышения контрастности изображения в дальнем фокусе для диаметров зрачка в пределах от около 4 до около 5 миллиметров относительно, по существу, идентичной ИОЛ, в которой базовая кривая является сферической.
Согласно другим аспектам изобретение предусматривает аподизированную дифракционную офтальмическую линзу, которая включает в себя оптику, имеющую переднюю поверхность и заднюю поверхность, по меньшей мере, одна из которых имеет асферический базовый профиль и совокупность кольцевых дифракционных зон, расположенных на базовом профиле, для создания ближнего фокуса и дальнего фокуса. Асферический профиль повышает контрастность изображения в дальнем фокусе относительно полученной посредством, по существу, идентичной линзы, в которой соответствующий базовый профиль является сферическим. Офтальмическая линза может представлять собой, без ограничения, интраокулярную линзу или контактную линзу.
Согласно еще одному аспекту изобретение предусматривает способы вычисления оптических свойств аподизированных дифракционных линз, и, в частности, аподизированных дифракционных линз, которые имеют, по меньшей мере, одну асферическую поверхность. Аподизированные дифракционные линзы реализуют аспекты дифракции и аподизации. Поэтому, оба эти аспекта следует учитывать при конструировании линзы. В частности, аподизированные дифракционные линзы демонстрируют изменение дифракционного эффекта в разных радиальных положениях на линзе, что может влиять на контрастность изображения. Традиционные аберрации, например сферическая аберрация, обусловленная формой роговицы глаза, обычно вычисляются, исходя из того, что пропускание света постоянно по поверхности линзы. Например, каждый луч, трассируемый через оптическую систему в стандартной программе трассировки лучей, имеет один и тот же весовой коэффициент. Однако такой традиционный подход не годится для аподизированных дифракционных линз, в которых оптическое пропускание может быть разным в разных областях линзы. При осуществлении оптических вычислений для аподизированных линз, несомненно, нужно применять принципы физической оптики. Например, как рассмотрено более подробно ниже, согласно способу, отвечающему изобретению, аподизацию можно моделировать как снижение оптического пропускания через разные области линзы.
Согласно родственному аспекту изобретение предусматривает способ вычисления функции передачи модуляции (ФПМ) для аподизированной дифракционной линзы, имеющей совокупность кольцевых дифракционных структур, расположенных на выбранных радиальных расстояниях от оптической оси линзы, путем определения функции аподизации, которая характеризует значения дифракционной эффективности на совокупности радиальных положений от оптической оси для направления света в выбранный дифракционный порядок линзы. Функцию аподизации можно интегрировать по выбранной апертуре для определения доли энергии света, дифрагирующего в дифракционный порядок. Предварительную ФПМ (например, вычисленная исходя из того, что в ИОЛ недостает дифракционных структур) можно выбрать в соответствии с интегралом функции аподизации для создания требуемой ФПМ.
Псевдоаккомодационная дифракционная ИОЛ, отвечающая принципам изобретения, может иметь многочисленные применения. Например, ее можно использовать для псевдофакичных и факичных пациентов. Например, такую ИОЛ, имеющую низкую базовую силу (или нулевую базовую силу), можно использовать как линзу передней камеры у факичных пациентов.
Для более полного понимания изобретения ниже приведено его подробное описание в сочетании с прилагаемыми чертежами, которые кратко описаны ниже.
Краткое описание чертежей
Для более полного понимания настоящего изобретения и его преимуществ следует обратиться к нижеследующему описанию, приведенному совместно с прилагаемыми чертежами, снабженных сквозной системой обозначений, в которых:
фиг.1A - схематический вид спереди аподизированной дифракционной линзы, имеющей асферическую переднюю поверхность согласно одному варианту осуществления изобретения;
фиг.1B - схематический вид в разрезе оптики дифракционной линзы, показанной на фиг.1A, иллюстрирующий совокупность дифракционных структур, наложенных на асферический базовый профиль передней поверхности;
фиг.1C - схематическое изображение асферического базового профиля передней поверхности линзы, показанной на фиг.1A и 1B по отношению к мнимому сферическому профилю;
фиг.2А - вид в разрезе аподизированной дифракционной линзы согласно другому варианту осуществления изобретения, в котором высоты совокупности дифракционных структур уменьшаются как функция увеличения расстояния от оптической оси линзы;
фиг.2B - схематическое изображение асферического профиля поверхности линзы, показанной на фиг.2, в сравнении с мнимым сферическим профилем;
фиг.3A - график, описывающий сфокусированную функцию передачи модуляции (ФПМ), вычисленную для модельного глаза для асферической аподизированной дифракционной линзы согласно одному варианту осуществления изобретения;
фиг.3B - график, описывающий сфокусированную функцию передачи модуляции (ФПМ), вычисленную для модельного глаза для аподизированной дифракционной линзы, по существу, идентичной линзе, показанной на фиг.3A, но имеющей сферические профили поверхностей;
фиг.4A - совокупность графиков, описывающих функции передачи модуляции, вычисленные для модельного глаза при 50 пл/мм и размере зрачка 4,5 мм для каждой из нескольких иллюстративных асферических аподизированных дифракционных линз, объединенных с роговицами, демонстрирующими диапазон асферичности, а также контрольный график, демонстрирующий соответствующие ФПМ для, по существу, идентичных линз, имеющих сферические профили;
фиг.4B - совокупность графиков, описывающих функции передачи модуляции, вычисленные для модельного глаза при 100 пл/мм и размере зрачка 4,5 мм для каждой из нескольких иллюстративных асферических аподизированных дифракционных линз, объединенных с роговицами, демонстрирующими диапазон асферичности, а также контрольный график, демонстрирующий соответствующие ФПМ для, по существу, идентичных линз, имеющих сферические профили;
фиг.5 - схематическое изображение дифракционных структур ИОЛ согласно одному варианту осуществления изобретения, которые демонстрируют постепенное уменьшение высоты как функцию увеличения расстояния от оптической оси (базовая кривая не показана);
фиг.6A - графики, соответствующие вычисленной частичной дифракционной эффективности для нулевого и первого дифракционных порядков линзы, схематически изображенной на фиг.5;
фиг.6B - графики, соответствующие энергии света, направляемого в фокусы нулевого и первого порядков, показанные на фиг.5, полученной интегрированием данных дифракционной эффективности, представленных на фиг.6A;
фиг.7A - схематическое изображение асферического профиля в увеличенном виде в одном поверхностном направлении торической поверхности ИОЛ согласно одному варианту осуществления изобретения; и
фиг.7B - схематическое изображение асферического профиля в увеличенном виде в другом направлении торической поверхности, связанной с профилем, показанным на фиг.7A.
Подробное описание изобретения
Настоящее изобретение предусматривает многофокусные офтальмические линзы, включающие в себя, по меньшей мере, одну асферическую поверхность линзы, имеющую асферичность, выбранную для повышения контрастности изображения относительно обеспечиваемой, по существу, идентичной линзой, в которой соответствующая поверхность является сферической. В нижеописанных вариантах осуществления принципы изобретения проиллюстрированы, главным образом, в связи с интраокулярными линзами. Однако следует понимать, что эти принципы применимы также к различным другим офтальмическим линзам, например контактным линзам.
На фиг.1A и 1B схематически изображена многофокусная дифракционная интраокулярная линза 10 согласно одному варианту осуществления изобретения, имеющая оптику 12, которая включает в себя переднюю поверхность 14 и заднюю поверхность 16. Согласно этому варианту осуществления передняя поверхность и задняя поверхность симметричны относительно оптической оси 18 линзы, хотя также можно использовать асимметричные поверхности. Линза дополнительно включает в себя отходящие по радиусу элементы фиксации или гаптические элементы 20 для ее размещения в глазу пациента. Оптика 12 может быть выполнена из биосовместимого полимерного материала, например мягких акриловых, силиконовых или гидрогелевых материалов, фактически можно использовать любой биосовместимый - предпочтительно, мягкий - материал, который демонстрирует необходимый показатель преломления для конкретного применения линзы. Кроме того, элементы 20 фиксации также могут быть выполнены из подходящих полимерных материалов, например полипропилена, полиметил-метакрилата и т.п. Хотя поверхности 14 и 16 описаны как в целом выпуклые, любая поверхность может в целом иметь вогнутую форму. Альтернативно поверхности 14 и 16 можно выбрать для обеспечения плоско-выпуклой или плоско-вогнутой линзы. Термин "интраокулярная линза" и его аббревиатура ИОЛ используются здесь взаимозаменяемо для описания линз, имплантируемых в глаз либо для замены естественного хрусталика, либо для той или иной коррекции зрения независимо от того, удален ли естественный хрусталик.
Передняя поверхность иллюстрируемой ИОЛ включает в себя совокупность кольцевых дифракционных зон 22a, обеспечивающий квазипериодические микроскопические структуры 22b для дифракции света одновременно в нескольких направлениях (размеры дифракционных структур представлены в увеличенном виде в целях иллюстрации). Хотя, в общем случае, дифракционные структуры могут быть призваны отклонять свет в более чем двух направлениях, в этом иллюстративном варианте осуществления, дифракционные зоны совместно направляют свет, главным образом, в двух направлениях, одно из которых сходится к ближнему фокусу 24, а другое - к дальнему фокусу 26, как схематически показано на фиг.1B. Хотя здесь показано ограниченное количество дифракционных зон, количество зон, в общем случае можно выбирать в соответствии с конкретным применением. Например, количество дифракционных зон может составлять в пределах от около 5 до около 30. Во многих вариантах осуществления оптическая сила, связанная с дальним фокусом, может составлять в пределах от около 18 до около 26 диоптрий, тогда как ближний фокус обеспечивает добавочную силу около 4 диоптрий. Хотя в этом иллюстративном варианте осуществления ИОЛ 10 имеет положительную оптическую силу, в некоторых других вариантах осуществления, она может иметь отрицательную оптическую силу с положительной добавочной силой, отделяющей ближний фокус от дальнего фокуса. Дифракционные зоны сосредоточены на участке поверхности, именуемом здесь зоной аподизации, и окружены периферийным участком 28 передней поверхности, лишенным таких дифракционных структур. Другими словами, ИОЛ 10 является "аподизированной дифракционной линзой". Таким образом, ИОЛ 10 демонстрирует неоднородную дифракционную эффективность по передней поверхности 14 линзы, согласно рассмотренному более подробно ниже. Аподизации можно добиться, обеспечив дифракционные структуры в области поверхности линзы (именуемой здесь зоной аподизации), окруженной периферийным участком поверхности, лишенным таких дифракционных структур. Поэтому, аподизация включает в себя как область линзы, именуемую зоной аподизации, так и периферийную/внешнюю область линзы.
Как показано схематически на фиг.1C, переднюю поверхность 14 можно охарактеризовать базовой кривой 30, которая изображает профиль поверхности как функцию радиального расстояния (r) от оптической оси, на участок которой наложены дифракционные зоны 22. Каждая дифракционная зона отделена от соседней зоны ступенькой, высота которой связана с расчетной длиной волны линзы согласно следующему соотношению:
где λ - расчетная длина волны (например, 550 нм),
n2 - показатель преломления оптики, и
n1 - показатель преломления среды, окружающей линзу.
Согласно одному варианту осуществления где окружающая среда является водянистой влагой, имеющей показатель преломления 1,336, показатель преломления оптики (n2) выбирают равным 1,55. Однородная высота ступеньки, обеспечиваемая вышеприведенным уравнением, является иллюстративной. Можно также использовать другие однородные высоты ступенек (для изменения энергетического баланса между ближним и дальним изображениями).
Согласно этому варианту осуществления, высоты ступенек между разными дифракционными зонами ИОЛ 10, по существу, однородны, что приводит к резкому переходу от зоны аподизации к внешнему участку линзы, в других вариантах осуществления, например, более подробно рассмотренных ниже, высота ступеньки может быть неоднородной, например, может постепенно уменьшаться по мере увеличения ее расстояния от оптической оси.
Границу каждой кольцевой зоны (например, радиус r i-й зоны) относительно оптической оси можно выбирать по-разному, что известно специалистам в области офтальмологии.
Согласно фиг.1C, базовый профиль 30 передней поверхности является асферическим с выбранной степенью отклонения от мнимого сферического профиля 32, который, по существу, совпадает с асферическим профилем на малых радиальных расстояниях (т.е. вблизи оптической оси). В этом иллюстративном варианте осуществления задняя поверхность имеет сферический профиль. В других вариантах осуществления задняя поверхность может быть асферический, тогда как передняя поверхность является сферической. Альтернативно и задняя поверхность, и передняя поверхность могут быть асферическими для придания линзе нужной суммарной асферичности. Согласно этому варианту осуществления профиль 30 передней поверхности, в целом, является более плоским, чем мнимый сферический профиль с отклонением от сферического профиля, который становится более выраженным с увеличением расстояния от оптической оси. Согласно рассмотренному более подробно ниже, более выраженная асферичность на периферийном участке линзы может быть, в частности, выгодна для повышения контрастности изображения в дальнем фокусе, поскольку этот участок, в частности, эффективно направляет свет в дальний фокус. В других вариантах осуществления асферическая передняя поверхность может быть круче мнимого сферического профиля.
Термины "асферическая базовая кривая" и "асферический профиль" используются здесь взаимозаменяемо, и хорошо известны специалистам в данной области техники. Постольку, поскольку может потребоваться какое-либо дополнительное объяснение, эти термины используются здесь в отношении радиального профиля поверхности, которая демонстрирует отклонения от сферической поверхности. Такие отклонения можно охарактеризовать, например, плавно изменяющимися различиями между асферическим профилем и мнимым сферическим профилем, который, по существу, совпадает с асферическим профилем на малых радиальных расстояниях от вершины профиля. Кроме того, используемые здесь термины "по существу, идентичная ИОЛ" или "по существу, идентичная линза", означают ИОЛ, которая выполнена из того же материала, что асферическая ИОЛ, отвечающая изобретению, с которой она сравнивается. Каждая поверхность "по существу, идентичной ИОЛ" имеет такой же центральный радиус (т.е. радиус в вершине поверхности, соответствующей пересечению оптической оси с поверхностью), как соответствующая поверхность асферической ИОЛ. Кроме того, "по существу, идентичная ИОЛ" имеет такую же центральную толщину, как асферическая ИОЛ, с которой она сравнивается. Однако "по существу, идентичная ИОЛ" имеет сферические профили поверхностей; т.е. не имеет асферичности, демонстрируемой асферической ИОЛ.
Во многих вариантах осуществления изобретения асферичность поверхности выбирают для повышения, и, в ряде случаев, максимизации, контрастности изображения для пациента, которому имплантирована ИОЛ, относительно обеспечиваемой, по существу, идентичной ИОЛ, в которой передняя поверхность имеет мнимый сферический профиль 32, а не асферический профиль 30. Например, асферический профиль может быть призван обеспечивать пациенту контрастность изображения, характеризуемую функцией передачи модуляции (ФПМ), по меньшей мере, около 0,2 в дальнем фокусе, измеренной или вычисленной с помощью монохроматического света, имеющего длину волны около 550 нм на пространственной частоте 100 пар линий на миллиметр (соответствующей зрению 20/20) и при апертуре (например, размере зрачка) около 4,5 мм. ФПМ может составлять, например, в пределах от около 0,2 до около 0,5. Поскольку прямые измерения ФПМ в глазу пациента могут представлять сложность, во многих вариантах осуществления улучшение изображения, обеспечиваемое асферической аподизированной дифракционной ИОЛ, отвечающей принципам изобретения, можно оценивать путем теоретического вычисления ФПМ в модельном глазу, демонстрирующем выбранные аберрации роговицы и/или естественного хрусталика, соответствующие глазу отдельного пациента или глазам выбранной группы пациентов. Информацию, необходимую для моделирования роговицы и/или естественного хрусталика пациента, можно получить из измерений аберраций волнового фронта глаза, осуществляемых с использованием известных топографических методов.
Как известно специалистам в данной области техники, измеренная или вычисленная функция передачи модуляции (ФПМ), связанная с линзой, может обеспечивать количественную меру контрастности изображения, обеспечиваемой этой линзой. В общем случае, контрастность или модуляцию, связанную с оптическим сигналом, например, двухмерной картиной распределения интенсивности света, излучаемого или отражаемого изображаемым объектом, или связанную с изображением такого объекта, можно задать согласно следующему соотношению:
где Imax и Imin указывают, соответственно, максимальную и минимальную интенсивности, связанные с сигналом. Такую контрастность можно вычислять или измерять для каждой пространственной частоты, присутствующей в оптическом сигнале. ФПМ оптической системы формирования изображения, например ИОЛ, объединенной с роговицей, можно затем определить как отношение контрастности, связанной с изображением объекта, сформированным оптической системой, к контрастности, связанной с объектом. Как известно, ФПМ, связанная с оптической системой, не только зависит от пространственных частот распределения интенсивности света, освещающего систему, то также может зависеть от других факторов, например размера апертуры освещения, а также от длины волны света освещения.
В некоторых вариантах осуществления изобретения асферичность передней поверхности 14 выбирают так, чтобы обеспечить пациенту, которому имплантирована ИОЛ, контрастность изображения, характеризуемую функцией передачи модуляции (ФПМ), которая превышает около 0,2, в то же время поддерживая глубину поля в приемлемых пределах. ФПМ и глубину поля можно вычислять для модельного глаза.
В некоторых вариантах осуществления изобретения асферический профиль передней поверхности 14 ИОЛ 10 как функцию радиального расстояния (R) от оптической оси 18, или задней поверхности или обеих в других вариантах осуществления, можно охарактеризовать следующим соотношением:
где z обозначает прогиб поверхности, параллельный оси (z), например оптической оси, перпендикулярной поверхности,
c обозначает кривизну на вершине поверхности,
cc обозначает конический коэффициент,
R обозначает радиальную позицию на поверхности,
ad обозначает коэффициент деформации четвертого порядка, и
ae обозначает коэффициент деформации шестого порядка.
Хотя в некоторых вариантах осуществления изобретения, для получения требуемого отклонения от сферичности регулируют только коническую постоянную cc, в других вариантах осуществления, помимо конической постоянной cc, регулируют одну или обе постоянные высших порядков ad и ae (и в особенности ae), которые в большей степени влияют на профиль внешнего участка поверхности для обеспечения выбранного асферического профиля для одной или обеих поверхностей ИОЛ. Асферические постоянные высших порядков (ad и ae) могут быть, в частности, полезными для настройки профиля периферийных участков поверхности линзы, т.е. участков, далеких от оптической оси.
Выбор асферических постоянных в вышеприведенном соотношении для создания требуемого сферического профиля может зависеть, например, от аберраций глаза в который имплантирована ИОЛ, материала, из которого изготовлена ИОЛ, и оптической силы, обеспечиваемой ИОЛ. В общем случае эти постоянные выбирают так, чтобы ИОЛ совместно с роговицей или ИОЛ совместно с роговицей и естественным хрусталиком, обеспечивали контрастность изображения, характеризуемую ФПМ, например, ФПМ, вычисленной для модельного глаза, свыше около 0,2 на пространственной частоте около 100 пл/мм, длине волны около 550 нм, и при размере зрачка около 4,5 мм. Например, в некоторых вариантах осуществления изобретения, в которых ИОЛ изготовлена из акрилового полимерного материала (например, сополимера акрилата и метакрилата) для имплантации в глаз, демонстрирующий асферичность роговицы, характеризуемую конической постоянной в пределах от нуля (связано с сильной сферической аберрацией) до около -0,5 (связано с высоким уровнем асферического уплощения), причем коническая постоянная cc для ИОЛ в отношении вышеуказанных параметров может состоять в пределах от около 0 до около -50 (минус пятьдесят), или в пределах от около -10 (минус 10) до около -30 (минус 30), или в пределах от около -15 (минус 15) до около -25 (минус 25), тогда как коэффициенты деформации ad и ae могут составлять, соответственно, в пределах от около 0 до около ±1×10-3 и в пределах от около 0 до около ±1×10-4. Хотя в некоторых вариантах осуществления изобретения, только коническая постоянная не равна нулю, в других вариантах осуществления изобретения, коэффициенты ad и ae не равны нулю, а коэффициент конусности задан равным нулю. Более обычно, всем трем асферическим коэффициентам cc, ad и ae и, возможно, постоянным высших порядков, придаются ненулевые значения для задания нужного профиля. Кроме того, коэффициент кривизны (c) можно выбирать исходя из требуемой оптической силы линзы, материала, из которого сформирована линза, и кривизны другой поверхности линзы, способом, известным в технике.
Согласно фиг.2A и 2B, дифракционная интраокулярная линза 34, согласно другому варианту осуществления изобретения, включает в себя оптику 36, имеющую заднюю поверхность 38 и переднюю поверхность 40 с совокупностью дифракционных структур 42 в виде кольцевых дифракционных зон, наложенных на базовый профиль 44 поверхности, которая окружена периферийным участком 45, лишенным дифракционных структур, для обеспечения дальнего фокуса и ближнего фокуса для света, проходящего через линзу. По аналогии с предыдущим вариантом осуществления базовый профиль 44 является асферическим с выбранной степенью отклонения от мнимого сферического профиля 46, который совпадает с асферическим базовым профилем на малых радиальных расстояниях от пересечения оптической оси 48 линзы и передней поверхности 40, как схематически показано на фиг.2B. Система декартовых координат, изображенная на фиг.2B, позволяет демонстрировать местоположение точки на передней поверхности, путем задания ее радиального расстояния от пересечения оптической оси и передней поверхности (т.е. координаты r) и ее прогиба (z) относительно плоскости, касательной к профилю в его вершине (т.е. его пересечении с оптической осью) и перпендикулярной к оптической оси.
Каждая кольцевая дифракционная зона отделена от соседней зоны ступенькой (например, ступенькой 50, отделяющей вторую зону от третьей зоны), высота которой уменьшается с увеличением расстояния зоны от оптической оси, что обеспечивает постепенный сдвиг в распределении пропускаемой оптической энергии между ближним и дальним фокусами линзы. Это уменьшение высоты ступеньки выгодно подавляет нежелательные эффекты сияния, воспринимаемого как ореол или кольца вокруг удаленного, дискретного источника света. Ступеньки располагаются на радиальных границах зон. В этом иллюстративном варианте осуществления радиальное положение границы зоны можно определить согласно следующему соотношению:
где i обозначает номер зоны (i=0 обозначает центральную зону) λ обозначает расчетную длину волны, и f обозначает фокальное расстояние ближнего фокуса.
В некоторых вариантах осуществления расчетную длину волны λ выбирают равной 550 нм, что соответствует зеленому свету в центре зрительной характеристики.
Высоту ступеньки между соседними зонами, или вертикальную высоту каждого дифракционного элемента на границе зоны, можно задать согласно следующему соотношению:
где λ обозначает расчетную длину волны (например, 550 нм),
n2 обозначает показатель преломления материала, из которого сформирована линза,
n1 обозначает показатель преломления среды, в которой располагается линза,
и fapodize представляет функцию масштаба, значение которой уменьшается как функция увеличения радиального расстояния от пересечения оптической оси с передней поверхностью линзы.
Например, функцию масштаба можно задать следующим соотношением:
где ri обозначает радиальное расстояние i-й зоны,
rin обозначает внутреннюю границу зоны аподизации, схематически изображенной на фиг.2A,
rout обозначает внешнюю границу зоны аподизации, схематически изображенной на фиг.2A, и
exp - это значение, выбранное на основании относительного положения зоны аподизации и требуемого уменьшения высоты ступеньки дифракционного элемента.
Показатель степени exp можно выбирать на основании требуемой степени изменения