Способ получения карбоновых кислот и их производных
Изобретение относится к усовершенствованному способу получения уксусной кислоты и/или ее эфира или ангидрида, который включает контактирование метанола и/или его реакционноспособного производного, выбранного из метилацетата и диметилового эфира, с монооксидом углерода в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар и где содержание йодида в метаноле и/или его реакционноспособном производном, монооксиде углерода и катализаторе составляет меньше 500 час/млн, где катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько из других элементов, выбранных из галлия и бора, и в котором ионообменом или иным способом введены медь, никель, иридий, родий или кобальт. Способ обеспечивает повышенную селективность в отношении целевого продукта и/или повышенную стабильность катализатора. 21 з.п. ф-лы, 3 табл.
Реферат
Настоящее изобретение относится к способу получения алифатической карбоновой кислоты и/или ее производных реакцией соответствующего спирта или его реакционноспособного производного с моноксидом углерода в присутствии содержащего металл морденитного катализатора.
Получение уксусной кислоты из метанола и моноксида углерода представляет собой хорошо известный процесс карбонилирования, который проводят в промышленном масштабе. В промышленном масштабе получение уксусной кислоты можно осуществлять как гомогенный жидкофазный процесс, в котором реакцию карбонилирования катализируют растворимым комплексом родия/иодида и алкилиодидом, таким как метилиодид. Основными недостатками этого способа являются применение иодида, которое может привести к проблемам коррозии, и затруднения, связанные с выделением продуктов и каталитических компонентов из единственной фазы. Оба эти недостатка могли бы быть устранены, если бы мог быть разработан гетерогенный газофазный способ с использованием свободного от иодида твердого катализатора.
В GB 1185453 описаны некоторые мультифазные катализаторы, включающие каталитически активный металл, к которому относятся, помимо прочего, медь, родий и иридий, нанесенные на материалы-носители широкого ряда, включая кремнеземы, глиноземы, угли, цеолиты, глины и полимеры. Эти мультифазные катализаторы представлены как те, которые могут быть использованы в гетерогенном газофазном карбонилировании метанола до уксусной кислоты в присутствии галогенидного промотора. Аналогичный способ описан в GB 1277242, хотя ни в одном патенте не приведены примеры применения в таком способе цеолитов.
В US 4612387 описан способ получения монокарбоновых кислот и сложных эфиров, включающий контактирование моноксида углерода с одноатомным спиртом, содержащим от 1 до 4 углеродных атомов, в присутствии кристаллического алюмосиликатного цеолита, обладающего отношением диоксида кремния к оксиду алюминия по меньшей мере примерно 6 и индексом проницаемости в интервале от 1 до 12 под давлением по меньшей мере 1 ат. Наиболее предпочтительные цеолиты в соответствии с этим определением представляют собой ZSM-5, ZSM-11, ZSM-12, ZSM-38 и ZSM-35, причем особенно предпочтителен ZSM-5. В примере VI, эксперимент 30, представлены ссылки на цеолиты морденитного типа, которые обладают индексом проницаемости 0,4, причем показано, что водородная форма не является каталитически эффективной. Предпочтительные цеолиты в предпочтительном варианте модифицируют путем введения металлов группы IB, IIB, IVB или VIII, из которых наиболее предпочтительна медь.
В J.Catalysis, 71, 233-43 (1981) описано применение фотоэлектронной спектроскопии (ЭСХА) для определения активности родиевого морденитного катализатора и других нанесенных на носители родиевых катализаторов в отношении карбонилирования метанола до уксусной кислоты.
В DE 3606169 описан способ получения уксусной кислоты, метилацетата и/или диметилового эфира карбонилированием безводного метанола, метилацетата и/или диметилового эфира в присутствии кобальтсодержащих цеолитов или цеолитов, смешанных с кобальтовыми солями. Такое карбонилирование необязательно проводят в присутствии галогенида. Предпочтительные цеолиты описаны как относящиеся к пентазильному типу, размеры пор которых являются промежуточными между размерами пор цеолита А, с одной стороны, и цеолитов Х и Y, с другой.
Работа в Chemistry Letters, cc.2047-2050 (1984) относится к парофазному карбонилированию метанола в отсутствие галогенового промотора. Таблица 1 этой статьи относится к трем примерам, эксперименты которых проводят при 200°С и под давлением 10 бар, где в качестве катализаторов используют водородный морденит и медный морденит. Во всех трех случаях значения выхода были низкими относительно выхода в аналогичных экспериментах с применением катализатора на основе ZSM-5.
В ЕР 0596632 А1 описан способ получения алифатической карбоновой кислоты введением спирта или его реакционноспособного производного в контакт с моноксидом углерода по существу в отсутствие галогенов или их производного, в присутствии катализатора, состоящего по существу из морденитного цеолита, в который предварительным ионообменом или иным путем вводят медь, никель, иридий, родий или кобальт, характеризующийся тем, что процесс проводят при температуре в интервале от 300 до 600°С и под давлением в интервале от 15 до 200 бар.
Таким образом, все еще сохраняется потребность в разработке усовершенствованного гетерогенного газофазного способа получения карбоновых кислот и/или их производных из спиртов и/или их реакционноспособных производных и моноксида углерода с использованием содержащего металл цеолитного катализатора, который осуществляют при практическом отсутствии галогенов или их производных.
Было установлено, что морденитный цеолит (в дальнейшем обозначен как морденит), который предварительно модифицируют включением в каркас металлов, в дополнение к кремнию и алюминию, обеспечивает повышенную селективность в отношении продукта (в отношении уксусной кислоты или ее производных) и/или повышенную стабильность катализатора.
Соответственно, объектом настоящего изобретения является способ получения алифатической карбоновой кислоты, содержащей (n+1) углеродных атомов, где n обозначает целое число до 6, и/или ее эфира или ангидрида, который включает контактирование алифатического спирта, содержащего n углеродных атомов, или его реакционноспособного производного с моноксидом углерода по существу в отсутствие галогенов или их производных и в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар, характеризующийся тем, что катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько других элементов, выбранных из галлия, бора и железа, и в который предварительным ионообменом или иным способом введены медь, никель, иридий, родий или кобальт.
В способе по настоящему изобретению используют модифицированный морденитный катализатор в условиях высоких температур и давлений с достижением хороших значений выхода карбоновых кислот и их производных. Было установлено, что повышенная селективность в отношении продукта и повышенная стабильность катализатора могут быть достигнуты с использованием морденита, который предварительно модифицируют добавлением в качестве каркасного элемента одного или нескольких из галлия, бора и железа (модифицирующие каркас элементы), в сравнении с морденитом, обладающим в качестве единственных каркасных элементов кремнием и алюминием.
В способе по настоящему изобретению алифатический спирт или его реакционноспособное производное карбонилируют моноксидом углерода. Способ особенно применим для алифатических спиртов, содержащих до 6, в частности до 3, углеродных атомов. Предпочтительным спиртом является метанол.
Реакционноспособные производные такого спирта, которые можно использовать в качестве альтернативы или в дополнение к этому спирту, включают диалкиловые эфиры, сложные эфиры спирта и алкилгалогениды. Приемлемые реакционноспособные производные метанола, например, включают метилацетат, диметиловый эфир и метилиодид. Может быть также использована смесь спирта и его реакционноспособного производного, например смесь метанола и метилацетата.
В одном варианте, где в качестве спирта предусмотрено применение метанола, метанол можно использовать как таковой, или он может быть получен из источника моноксида углерода и водорода, такого как технически доступный синтез-газ, в присутствии приемлемого катализатора синтеза спирта. Приемлемые катализаторы синтеза метанола описаны, например, в WO 99/38836 и WO 01/07393. Конкретный пример подходящего катализатора синтеза метанола представляет собой катализатор на основе меди/оксида цинка совместно или без алюминиевого промотора. Синтез метанола можно проводить in situ или в реакторе, отделенном от процесса карбонилирования по настоящему изобретению.
Продукт процесса карбонилирования может представлять собой алифатическую карбоновую кислоту и может также включать эфир алифатической карбоновой кислоты. Так, например, когда спиртом является метанол, продукт включает уксусную кислоту и может также включать метилацетат. Сложный эфир можно превращать в алифатическую карбоновую кислоту по известным методам. Способ по настоящему изобретению может быть также осуществлен при синтезе пропионовой кислоты из этанола, а также масляной кислоты из н-пропанола.
Этот процесс можно проводить в присутствии или по существу в отсутствие воды. Когда в качестве исходного материала используют реакционноспособное производное, такое как сложный эфир или простой эфир, в предпочтительном варианте в реакцию вводят также воду. Так, например, в реакцию вводят также воду, когда в качестве исходного материала используют диметиловый эфир, в частности при мольном соотношении вода:диметиловый эфир от больше 0 до меньше или равно 1.
Полагают, что степень чистоты используемого монооксида углерода особо решающего значения на имеет, хотя следует использовать газовые смеси, в которых моноксид углерода является основным компонентом. Может быть допустимым наличие небольших количеств примесей, таких как азот и благородные газы. Кроме того, в способе по настоящему изобретению могут быть также использованы смеси моноксида углерода и водорода в том виде, как их получают реформингом или частичным окислением углеводородов (синтез-газ).
Катализатор, используемый в способе по настоящему изобретению, представляет собой модифицированный морденитный цеолит, в который предварительным ионообменом или иным путем вводят медь, никель, иридий, родий или кобальт. Структура морденита хорошо известна и определена, например, в работе 'Atlas of Zeolite Structure Types' by W.M. Meier and D.H. Olson, опубликованной by Structure Commission of the International Zeolite Association в 1978 г. Она, кроме того, характеризуется индексом проницаемости 0,4 и отношением диоксида кремния к оксиду алюминия в интервале от 8:1 до 20:1. Специалистам в данной области техники хорошо известно, что отношение диоксида кремния к оксиду алюминия может быть увеличено с использованием методов деалюминирования, например гидротермической обработкой или кислотным выщелачиванием морденита. Морденит также обладает характерной порошковой рентгенограммой, которая специалистам в данной области техники в общем известна хорошо. Предпочтительный для осуществления способа по настоящему изобретению морденит обладает отношением диоксида кремния к оксиду алюминия в интервале от 8:1 до 50:1, более предпочтительно в интервале от 10:1 до 30:1, а наиболее предпочтительно в интервале от 15:1 до 25:1.
Модифицирующие каркас элементы (галлий, бор и/или железо) могут быть введены в каркас с помощью любого обычного средства. Так, например, морденит может быть синтезирован с использованием приемлемых предшественников для кремниевых, алюминиевых и галлиевых, железных и/или борных компонентов каркаса, таких как для модифицированного галлием морденита, совместной реакцией в смеси, включающей белую сажу, нитрат галлия и алюминат натрия.
Для осуществления способа по настоящему изобретению в предпочтительном варианте морденит обладает отношением диоксида кремния к оксидам модифицирующих каркас элементов (т.е. в совокупности к оксиду галлия, оксиду бора и оксиду железа) в интервале от 10:1 до 50:1, предпочтительнее в интервале от 20:1 до 50:1, а более предпочтительно в интервале от 30:1 до 40:1.
Предпочтительным модифицирующим каркас элементом является галлий. Таким образом, в предпочтительном варианте морденит обладает отношением диоксида кремния к оксиду галлия в интервале от 10:1 до 50:1, предпочтительнее в интервале от 20:1 до 50:1, а более предпочтительно в интервале от 30:1 до 40:1.
Перед применением в качестве катализатора морденит подвергают ионообмену или иным путем в него вводят медь, никель, родий, иридий или кобальт. Если морденит необходимо подвергнуть ионообмену, то до 80% способных к катионобмену участков на цеолите могут быть подвергнуты ионообмену с заменой, например, ионами Cu2+, Ir3+ или Rh3+ с применением хорошо известной технологии. В предпочтительном варианте оставшиеся катионы в подвергнутом ионообмену мордените приходятся на протоны, вследствие чего процесс ионообмена целесообразно начать с аммониевой или водородной формы.
В качестве альтернативы ионообмену аммониевая или водородная форма морденита может быть пропитана раствором соли металла и в дальнейшем высушена. Если используют аммониевую форму, то после насыщения или ионообмена морденит в предпочтительном варианте кальцинируют. Предпочтительны такие используемые количества, при которых готовят катализатор, содержание металла в котором составляет от 0,5 до 10 мас.% в пересчете на весь катализатор.
В предпочтительном варианте перед применением морденитный катализатор активируют путем, например, выдержки морденитного катализатора в течение по меньшей мере одного часа при повышенной температуре в токе азота, моноксида углерода или водорода.
Способ по настоящему изобретению в предпочтительном варианте осуществляют пропусканием паров метанола и газообразного моноксида углерода через неподвижный или псевдоожиженный слой катализатора, выдерживаемого в условиях требуемых температуры и давления. Такой процесс проводят по существу в отсутствие иодида. Под понятием "по существу" имеют в виду, что содержание иодида в исходных газах и катализаторе составляет меньше 500 част./млн, а предпочтительно меньше 100 част./млн.
Этот процесс проводят при температуре в интервале от 250 до 600°С, предпочтительно от 250 до 400°С, и под давлением в интервале от 10 до 200 бар, предпочтительно от 10 до 150 бар, в частности от 25 до 100 бар.
Молярное отношение моноксида углерода к метанолу в целесообразном варианте находится в интервале от 1:1 до 60:1, предпочтительно от 1:1 до 30:1, наиболее предпочтительно от 2:1 до 10:1. Если его подают в каталитический слой в жидкой форме, среднечасовая скорость подачи жидкости (СЧСЖ) в случае метанола в предпочтительном варианте должна находиться в интервале от 0,5 до 2.
Карбоновая кислота, получаемая согласно способу по настоящему изобретению, может быть удалена в форме пара и после этого конденсирована в жидкость. В дальнейшем карбоновая кислота может быть очищена с применением обычных методов, таких как дистилляция.
Изобретение далее проиллюстрировано со ссылкой на следующие примеры.
Примеры
Синтез морденита
Сравнительный пример А: синтез Ga морденита
Тетраэтиламмонийбромид (ТЭА-Br) (9,47 г) растворяли в 30 г дистиллированной воды и затем добавляли в суспензию 22,26 г белой сажи (Cab-O-Sil) в 150 г дистиллированной воды. Образовавшуюся смесь тщательно перемешивали. В эту суспензию добавляли раствор гидроксида натрия (6,75 г) в 30 г дистиллированной воды и затем смесь перемешивали в течение одного часа. По прошествии этого периода растворением 7,53 г нитрата галлия в 70 г дистиллированной воды готовили раствор нитрата галлия. Далее раствор нитрата галлия добавляли в суспензию диоксида кремния и образовавшийся гель перемешивали в течение еще 1 ч. По стехиометрическим расчетам этот гель представлял собой
25,2SiO2·1,0Ga2O3·5,7Na2O·3,0ТЭА-Br·1054Н2О
Далее гель переносили в автоклав из нержавеющей стали и выдерживали при 150°С в течение 16 дней. По прошествии этого периода автоклав охлаждали и содержимое фильтровали и промывали обильными количествами дистиллированной воды. Затем белый твердый продукт сушили при 120°С в течение ночи.
Рентгенографический анализ показывал, что материал был высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что материал обладал каркасом состава SiO2/Ga2O3=31,1.
Пример 1: синтез Ga/Al морденита "с низким содержанием Al"
Морденитный синтезный гель готовили в соответствии со способом сравнительного примера А, за исключением того, что в реакционную смесь добавляли смесь нитрата галлия и алюмината натрия. Этого добивались добавлением в силикагель с интенсивным перемешиванием раствора нитрата галлия (6,02 г, растворенных в 35 г дистиллированной воды) и раствора алюмината натрия (0,50 г, растворенных в 35 г дистиллированной воды). После перемешивания в течение одного часа образовавшийся гель переносили в автоклав из нержавеющей стали и выдерживали при 150°С в течение 11 дней. По стехиометрическим расчетам этот гель представлял собой
126,4SiO2·4,0Ga2O3·1.0Al2O3·29,6Na2O·15,2ТЭА-Br·5276H2O
По прошествии этого периода автоклав охлаждали и содержимое фильтровали и промывали обильными количествами дистиллированной воды. Далее белый твердый продукт сушили при 120°С в течение ночи.
Рентгенографический анализ показывал, что материал был высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что морденитный цеолит содержал каркасные как галлий, так и алюминий и обладал каркасом состава SiO2/Ga2O3=32,6 и SiO2/Al2O3=102,4.
Пример 2: синтез Ga/Al морденита "с высоким содержанием Al"
В этом примере Ga/Al морденитный цеолит синтезировали с увеличенным количеством каркасного алюминия. Повторяли эксперимент примера 1, за исключением того, что количество добавленного алюмината натрия увеличивали с 0,50 до 2,88 г. По стехиометрическим расчетам этот гель представлял собой
48,5SiO2·1,5Ga2O3·1,0Al2O3·29,6Na2O·15,2ТЭА-Br·5276H2O
Образовавшийся гель выдерживали при 150°С в течение 14 дней. Полученный кристаллический твердый продукт отфильтровывали, промывали обильными количествами воды и сушили при 120°С в течение ночи. Рентгенографический анализ показывал, что материал был высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что морденитный цеолит содержал каркасные как галлий, так и алюминий и обладал каркасом состава SiO2/Ga2O3=39,2 и SiO2/Al2O3=19,4.
Сравнительный пример Б: синтез морденита "с низким содержанием Al"
Морденит "с низким содержанием Al" готовили кислотным выщелачиванием. 30 г технически доступного морденитного цеолита (ex. PQ, CBV20A, SiO2/Al2O3=19,4) кипятили с обратным холодильником в течение 2 ч в растворе соляной кислоты, приготовленном разбавлением 24 мл концентрированной соляной кислоты 76 мл дистиллированной воды. По прошествии этого периода твердый продукт отфильтровывали и промывали обильными количествами дистиллированной воды.
Рентгенографический анализ показывал, что материал был, тем не менее, высококристаллическим и обладал морденитной структурой. Химический анализ показывал, что материал обладал каркасом состава SiO2/Al2O3=36,0.
Сравнительный пример В: Al морденит
В качестве дополнительного сравнительного примера использовали технически доступный морденитный цеолит (ex. PQ, CBV20A, SiO2/Al2O3=19,4).
Приготовление катализатора
Синтезированные мордениты сравнительного примера А и примеров 1 и 2 кальцинировали выдержкой твердых частиц при 550°С в течение 6 ч для удаления органического шаблона. Мордениты сравнительных примеров с А по В и примеров 1 и 2 превращали в аммониевую форму контактированием твердых частиц с 1,5 М раствором нитрата аммония при 80°С в течение 3 ч с последующими фильтрованием и сушкой. Массовое отношение 1,5 М раствора нитрата аммония к мордениту, используемому при ионообменах, составляло 25:1. Процесс инообмена для каждого морденита повторяли три раза.
Мордениты в аммониевой форме превращали в содержавшие введенную медь кислотные формы пропиткой морденитов медьсодержащим раствором с последующим кальцинированием. Все полученные мордениты обладали номинальным содержанием меди приблизит. 7 мас.%.
Следующий процесс со ссылкой на сравнительный пример Б является примером процесса введения меди. 23,04 г аммониевой формы морденита "с низким содержанием Al", полученного в сравнительном примере Б, добавляли в раствор тригидрата нитрата меди (6,33 г) в 140 г дистиллированной воды и интенсивно перемешивали. Раствор выпаривали досуха выдержкой при 80°С. Голубой твердый продукт кальцинировали при 500°С в течение 2 ч. Химический анализ показывал, что материал содержал 6,6 мас.% Cu. Далее катализаторы таблетировали раздавливанием содержавших введенную медь цеолитов под давлением 10 т в инфракрасном прессе, полученную таблетку разрушали и материал просеивали с выделением частиц размерами в интервале от 250 до 850 мкм.
Карбонилирование метанола
Каждый из катализаторов сравнительных примеров с А по В и примеров 1 и 2 использовали для катализа реакции метанола и моноксида углерода в однозаходном микрореакторе высокого давления. Объем используемого катализатора, как правило, составлял 10 мл. С целью обеспечить эффективный предварительный нагрев реагентов перед контактированием с катализатором использовали предварительный слой гранул карбида кремния. Катализаторы активировали в токе азота (100 мл/мин) при 350°С в течение 16 ч, а затем восстанавливали в токе моноксида углерода (200 мл/мин) при 350°С в течение 2 ч. Далее с помощью регулятора обратного давления давление в системе доводили до 25 ат. Скорость потока монооксида углерода доводили до 800 мл/мин и с помощью насоса в реактор подавали метанол (с расходом 0,15 мл/мин). Жидкие и твердые продукты собирали в охлажденной ловушке, тогда как газообразные продукты и реагенты отбирали после регулятора обратного давления.
Каждые три часа отбирали пробы реакционной смеси. Все пробы анализировали с помощью осуществляемой вне технологической линии газовой хроматографии. Содержание диоксида углерода, образовывавшегося в качестве побочного продукта в результате параллельной реакции изменения соотношения оксида углерода и водорода в водяном газе, во всех случаях было относительно низким, находилось в интервале от 1 до 10 мольных % от общего числа молей образовывавшегося продукта.
Результаты экспериментов с карбонилированием представлены в таблицах с 1 по 3.
Таблица 1 | ||||||||
Каталитические эксплуатационные свойства Cu/Н-(Ga) морденита и Cu/Н-(Ga, Al) морденитов при карбонилировании метанола | ||||||||
Катализатор | Катализатор SiO2/Ga2O3 | Катализатор SiO2/Al2O3 | Время реакции, ч | Превращение МеОН, % | Селективность в отношении продукта (С-мольных %) | |||
ДМЭ | УВ(I) | МеОАс | АсОН | |||||
Сравнительного примера А | 30,6 | - | 3 | 92,5 | 48,5 | 4,8 | 31,6 | 15,1 |
7 | 88,7 | 82,7 | 1,1 | 13,5 | 5,4 | |||
Примера 1 | 32,6 | 102,4 | 3 | 99,5 | 0,0 | 22,8 | 6,9 | 68,2 |
6 | 98,2 | 1,2 | 7,5 | 34,8 | 52,6 | |||
Примера 2 | 39,2 | 19,4 | 3 | 96,8 | 2,0 | 44,8 | 23,4 | 29,8 |
6 | 97,0 | 4,2 | 3,1 | 49,2 | 42,9 | |||
Реакционная температура: 350°С, манометрическое давление: 25 бар, ССПГ: 4400, СО/МеОН: 9, СЧСЖ: 0,9 (I), УВ означает углеводороды.
Результаты в таблице 1 показывают, что катализатор, обладающий морденитной структурой, содержащий галлий (сравнительный пример А), способен катализировать безиодидное карбонилирование метанола до уксусной кислоты. Однако у катализаторов примеров 1 и 2, у которых в морденитной структуре содержатся как алюминий, так и галлий, могут быть достигнуты намного более высокие значения активности и селективности в отношении получаемых уксусной кислоты и метилацетата. Благотворное влияние применения в морденитном каркасе как алюминия, так и галлия на селективность в отношении продукта дополнительно продемонстрировано в таблице 2.
Таблица 2 | ||||||
Сопоставление значений селективности в отношении продукта в случаях Cu/Н-(Al) морденитов и Cu/H-(Ga, Al) морденитных катализаторов | ||||||
Катализатор | Катализатор SiO2/Ga2O3 | Катализатор SiO2/Al2O3 | Селективность в отношении продукта (С-мольных %) | |||
ДМЭ | УВ | МеОАс | АсОН | |||
Примера 2 | 39,2 | 19,4 | 4,2 | 3,1 | 49,2 | 42,9 |
Сравнительного примера Б | - | 36,0 | 60,4 | 1,1 | 28,9 | 6,0 |
Сравнительного примера В | - | 20,0 | 6,7 | 34,7 | 17,5 | 39,3 |
Время реакции: 6 ч. Реакционная температура: 350°С, манометрическое давление: 25 бар, ССПГ: 4400, СО/МеОН: 9, СЧСЖ: 0,9. Из данных таблицы 2 можно видеть, что с содержащим Ga и Al морденитным катализатором (пример 2) может быть достигнута высокая активность, о чем свидетельствуют низкая селективность в отношении ДМЭ и высокая селективность в отношении получаемых уксусной кислоты и метилацетата, если сравнивать с системой только с алюминием, которая обеспечивает относительно высокие значения селективности в отношении углеводородного побочного продукта при высоком содержании каркасного алюминия и низкую активность (о чем свидетельствует большое количество получаемого ДМЭ) при низком содержании каркасного алюминия.
Таблица 3 показывает, что значительная селективность в отношении уксусной кислоты и метилацетата у катализаторов по настоящему изобретению сохраняется даже после 70 ч применения в процессе.
Таблица 3 | |||||
Исследование срока службы для примера 1 | |||||
Время реакции, ч | Превращение МеОН, % | Селективность в отношении продукта (С-мольных %) | |||
ДМЭ | УВ | МеОАс | АсОН | ||
3 | 99,5 | 0,0 | 22,8 | 6,9 | 68,2 |
6 | 98,2 | 1,2 | 7,5 | 34,8 | 52,6 |
26 | 93,1 | 41,2 | 1,2 | 39,9 | 17,5 |
59 | 86,4 | 61,1 | 0,3 | 30,4 | 8,1 |
68 | 88,7 | 77,4 | 0,7 | 15,2 | 6,6 |
Реакционная температура: 350°С, манометрическое давление: 25 бар, ССПГ: 4400, СО/МеОН: 9, СЧСЖ: 0,9.
1. Способ получения уксусной кислоты и/или ее эфира или ангидрида, который включает контактирование метанола и/или его реакционноспособного производного, выбранного из метилацетата и диметилового эфира, с монооксидом углерода в присутствии катализатора при температуре в интервале от 250 до 600°С и под давлением в интервале от 10 до 200 бар, и где содержание йодида в метаноле и/или его реакционноспособном производном, монооксиде углерода и катализаторе составляет меньше 500 млн-1, отличающийся тем, что катализатор состоит по существу из морденита, который в качестве каркасных элементов включает кремний, алюминий и один или несколько из других элементов, выбранных из галлия и бора, и в котором ионообменом или иным способом введена медь, никель, иридий, родий или кобальт.
2. Способ по п.1, в котором каркасными элементами являются кремний, алюминий и галлий.
3. Способ по п.1 или 2, в котором в морденит ионообменным или иным способом вводят медь.
4. Способ по п.1 или 2, в котором морденит обладает отношением диоксида кремния к оксиду алюминия в интервале от 10:1 до 30:1.
5. Способ по п.1 или 2, в котором морденит обладает отношением диоксида кремния к оксидам галлия и бора в интервале от 20:1 до 50:1.
6. Способ по п.5, в котором отношение диоксида кремния к оксиду галлия находится в интервале от 20:1 до 50:1.
7. Способ по п.1 или 2, в котором морденит подвергают ионообмену с медью, никелем, иридием, родием или кобальтом.
8. Способ по п.1 или 2, в котором морденит включает до 80% своих способных к обмену участков, подвергнутых ионообмену с медью, никелем, иридием, родием или кобальтом.
9. Способ по п.1 или 2, в котором катализатор обладает содержанием металла от 0,5 до 10 мас.% в пересчете на общую массу катализатора.
10. Способ по п.1 или 2, в котором катализатор перед применением активируют.
11. Способ по п.10, в котором катализатор активируют контактированием катализатора с током азота, монооксида углерода или водорода в течение по меньшей мере одного часа при повышенной температуре.
12. Способ по п.1 или 2, в котором монооксид углерода и пар метанола подают через неподвижный или псевдоожиженный слой катализатора, и где содержание йодида в метаноле, монооксиде углерода и катализаторе составляет меньше 500 млн-1.
13. Способ по п.1 или 2, в котором метанол получают из смеси монооксида углерода и водорода.
14. Способ по п.1 или 2, в котором метанол получают in situ.
15. Способ по п.1 или 2, в котором в качестве реакционноспособного производного используют диметиловый эфир.
16. Способ по п.15, в котором используют смесь метанола и диметилового эфира.
17. Способ по п.15, в котором в качестве исходного материала для процесса используют воду.
18. Способ по п.17, в котором мольное соотношение вода: диметиловый эфир находится в интервале от больше 0 до меньше или равно 1.
19. Способ по п.1 или 2, в котором процесс проводят при практическом отсутствии воды.
20. Способ по п.1 или 2, в котором процесс проводят при температуре в интервале от 250 до 400°С и под давлением в интервале от 10 до 150 бар.
21. Способ по п.1 или 2, в котором молярное отношение монооксида углерода к метанолу находится в интервале от 1:1 до 30:1.
22. Способ по п.1 или 2, в котором среднечасовая скорость подачи жидкости в случае метанола находится в интервале от 0,5 до 2.