Плавкая полимерная композиция, содержащая фторполимер, имеющий длинные боковые цепочки

Описана формуемая из расплава полимерная композиция, включающая: (а) формуемый из расплава нефторированный полимер; и (б) фторполимер, полученный в результате сополимеризациии (1) от 20% до 30% от общего веса винилиденфторида; (2) одного или более фторированных мономеров, не являющихся винилиденфторидом, и (3) одного или более модификаторов, которые выбираются из (i) олефинов, содержащих атом брома или иода, связанный с атомом углерода двойной связи олефина, (ü) олефинов, соответствующих формуле (IV):

,

причем каждый Ха независимо может быть представлен водородом, фтором, хлором, при этом Rf представляет собой перфторалкиленовую группу, перфтороксиалкиленовую группу или перфторполиэфирную группу; Xb представляет собой Br или I или r, равную 1, 2 или 3, а также (iii) смеси этих веществ; также при этом содержание одного или более модификаторов составляет не более 1 весового процента, достаточное для формирования длинной, разветвленной цепи фторполимера без образования геля, причем композиция включает в себя 0,005-50 весовых процентов фторполимера, при этом нефторированный полимер - это тот, который не включает в себя атомы фтора или включает в себя атомы фтора в соотношении атомы фтора к атомам углерода как менее 1:1, при этом фторполимер имеет фторированную цепь, в которой соотношение между атомами фтора и атомами углерода составляет, по крайней мере, 1:1. Также описана полимерная плавкая добавочная композиция для использования в качестве технологической добавки при экструзии нефторированного полимера. 2 н. и 8 з.п. ф-лы, 8 табл.

Реферат

1. Область применения.

Настоящее изобретение распространяется на плавкие полимерные композиции, которые содержат смесь нефторированного плавкого полимера и фторсодержащего полимера. Такую композицию можно использовать в качестве полимерной технологической добавки или же она может служить композицией, готовой к переработке в требуемое изделие, такое, например, как полимерная пленка.

2. Предпосылки изобретения.

Для любой плавкой термопластической полимерной композиции существует критическая величина коэффициента сдвига, выше которой поверхность экструдата становится неровной, а ниже которой экструдат будет гладким. Более подробную информацию об этом можно найти, например, в статье R.F.Westover, Melt Extrusion, Encyclopedia of Polymer Science and Technology, Vol.8, pp 573-81 (John Wiley & Sons 1968). Стремление к получению гладкой поверхности экструдат сталкивается с экономическими соображениями, и должно быть оптимизировано с учетом экономических характеристик экструзии полимерной композиции при самой высокой допустимой скорости (то есть при высоких скоростях сдвига).

Некоторые из различных типов неровностей и деформаций экструдата, обнаруживаемых в полиэтиленах высокой и низкой плотности, описаны в работе A.Rudin et al., Fluorocarbon Elastomer Aids Polyolefin Extrusion, Plastics Engineering, Mar. 1986, at 63-66. Авторы утверждают, что при данных технологических условиях и геометрии головки экструдера существует критическая величина shear stress, выше которой в полиолефинах, таких как линейный полиэтилен низкой плотности (LLDPE), полиэтилен высокой плотности (HDPE) и полипропилен, возникают дефекты плавления. При низких скоростях сдвига дефекты могут принимать форму "акульей кожи", происходит потеря глянца на поверхности, которая при более серьезных проявлениях выглядит как выступы, проходящие более или менее перпендикулярно по отношению к направлению экструзии. При более высоких скоростях в экструдате может возникнуть "постоянный разрыв расплава", который вызывает очень сильные деформации. При скоростях более низких, чем те, при которых впервые обнаруживается постоянный разрыв расплава, в таких материалах, как LLDPE и HDPE, могут возникать также "циклический разрыв расплава", при котором поверхность экструдата становится то гладкой, то неровной. Авторы утверждают также, что снижение напряжения сдвига при повышенной температуре, подборе соответствующих условий обработки или изменения конфигурации экструзионной головки может помочь избежать этих дефектов в определенной степени, но при этом нельзя исключить возникновения новых проблем. Например, экструзия при более высокой температуре может привести к получению более слабых стенок с пузырьками при экструзии пленочных рукавов, а более широкая экструзионная головка может повлиять на ориентацию пленки.

Существуют и другие проблемы, нередко возникающие при экструзии термопластических полимеров. Они включают наплыв полимера на насадке головки (называемый также наплыв головки или течь головки), увеличение противодавления в процессе экструзионных протяжек и избыточное разрушение или низкое натяжение плавления полимера из-за высоких температур экструзии. Эти проблемы замедляют процесс экструзии или потому, что процесс приходится останавливать и проводить чистку оборудования, или потому, что процесс приходится проводить при более низкой скорости.

Известно, что некоторые фторуглеродные процессинговые добавки частично ослабляют дефекты плавления в экструдируемых термопластических углеводородных полимерах и позволяют проводить экструзию быстрее и более эффективно. В патенте США №3,125,547 на имя Blatz, например, впервые описывается использование фторуглеродных полимерных процессинговых добавок с экструдируемыми из расплава углеводородными полимерами, причем фторированными полимерами являются гомополимеры и сополимеры фторированных олефинов, в которых отношение атомов фтора к атомам углерода составляет, по меньшей мере, 1:2, и при этом фторуглеродные полимеры имеют показатели текучести расплава, аналогичные таковым для углеводородных полимеров.

В патенте США №4,904,735 (Chapman, Jr. et al.) описывается фторсодержащая процессинговая добавка для использования с тугоплавким полимером, который содержит (1) фторуглеродный сополимер, который при температуре технологической переработки в расплаве тугоплавкого полимера находится или в расплавленном виде, если является кристаллическим веществом, или выше точки стеклования, если является аморфным, и (2), по меньшей мере, один гомополимер тетрафторэтилена или сополимер тетрафторэтилена и, по меньшей мере, еще один сополимеризуемый мономер, причем молярное соотношение составляет, по меньшей мере, 1:1, и который является твердым при температуре обработки в расплаве тугоплавкого полимера.

В патенте США №5,397,897 to Morgan et al. описывается применение сополимеров тетрафторэтилена и гексафторпропилена с высоким содержанием гексафторпропилена в качестве процессинговых добавок в полиолефинах.

В патенте США №5,064,594 на имя Priester et al. и в патенте США №5,132,368 на имя Chapman, Jr. et al. описано применение некоторых фторполимерных процессинговых добавок, содержащих определенные функциональные группы на концах полимеров для применения с тугоплавким полимером.

В патенте США №5,464,904 на имя Chapman et al. раскрывается применение унимодальных полукристаллических фторопластов, таких как сополимеры тетрафторэтилена и гексафторпропилена и тройные сополимеры тетрафторэтилена, гексафторпропилена и винилиденфторида с полиолефином.

Единственный момент, связанный с облегчением переработки и описанный в этом патенте, представлен в примере 25, в котором указывается, что фторсодержащий полимер в концентрации 1000 ppm в линейном полиэтилене низкой плотности снижает экструзионное давление экструдируемой композиции. При этом не демонстрируется снижение дефектов плавления.

В патентах США №№5,015,693 и 4,855,013 на имя Duchesne и Johnson раскрывается применение комбинации поли(оксиалкилен)ового полимера и фторуглеродного полимера в качестве процессинговой добавки для термопластических углеводородных полимеров. Поли(оксиалкилен)овый полимер и фторуглеродный полимер применяются в таких относительных концентрациях и пропорциях, чтобы снизить частоту возникновения дефектов плавления в процессе экструзии. Как правило, концентрация фторсодержащего полимера находится на уровне от 0,005 до 0,2 весовых процентов от веса конечного экструдата, а концентрация поли(оксиалкилен)ового полимера находится на уровне от 0,01 до 0,8 весовых процентов от веса конечного экструдата. Предпочтительно, чтобы масса фторуглеродного полимера в составе экструдата и масса поли(оксиалкилен)ового полимера в составе экструдата находились в соотношении от 1:1 до 1:10.

В патенте США №5,710,217 на имя Blong et al. раскрывается экструдируемая термопластическая углеводородная композиция, которая содержит примесь плавкого углеводородного полимера в качестве основного компонента и эффективного количества химически стойкой фторполимерной процессинговой добавки. Этот фторсодержащий полимер содержит, по меньшей мере, 50 массовых % фтора и включает один или несколько фторсодержащих полимеров, которые практически полностью являются этилен-ненасыщенными.

В патенте США №6,277,919 на имя Dillon et al. раскрывается состав добавки, облегчающей переработку полимеров и содержащей мультимодальный фторсодержащий полимер и композицию с полимерной добавкой, облегчающей переработку. Считается, что мультимодальный характер фторсодержащего полимера подавляет появление таких дефектов плавления, как "акулья кожа", в термопластических полимерах и/или отдаляет возникновение этих дефектов при применении более высоких скоростей экструзии, которые не достижимы без применения мультимодальных фторсодержащих полимеров.

В заявке WO 02/066544 раскрывается состав процессинговой добавки для переработки расплава полимера, которая включает фторсодержащий полимер. Утверждается, что экструзионная обрабатываемость нефторированных плавких полимеров улучшается при введении фторполимерной процессинговой добавки благодаря тому, что средневзвешенный размер частиц фторсодержащего полимера превышает 2 микрона к тому моменту, когда он достигает входа в головку экструдера.

Несмотря на то, что многие из существующих процессинговых добавок, полученных на основе фторсодержащих полимеров, хорошо известны опытным специалистам, все еще сохраняется потребность в поиске новых процессинговых добавок. Желательно, чтобы такие процессинговые добавки проявляли высокую эффективность в снижении дефектов плавления при переработке, в частности при экструзии нефторированных плавких полимеров. Предпочтительно, чтобы процессинговая добавка была способна снижать количество нагара на экструзионной головке и/или снижать величину противодавления в процессе экструзии нефторированных полимеров.

3. Краткое описание изобретения.

В настоящем изобретении представлена плавкая полимерная композиция, включающая (а) нефторированный плавкий полимер и (b) фторсодержащий полимер, у которого показатель длинноцепочечных боковых групп (LCBI) составляет, по меньшей мере, 0,2, а вязкость при нулевой скорости сдвига и при температуре 265°С не превышает величины 107 Па.

Обнаружено, что такие фторсодержащие полимеры представляют собой высокоэффективные полимерные процессинговые добавки, снижающие частоту таких дефектов плавления, "акулья кожа" и разрыв расплава. В частности, эти процессинговые добавки, как правило, осветляют расплав нефторированных плавких полимеров быстрее, чем аналогичные фторсодержащие полимеры, которые имеют линейную структуру или разветвленную структуру с показателем длинноцепочечных боковых групп менее 0,2 и/или вязкость при нулевой скорости сдвига и при температуре 265°С на уровне не более чем 107 Па. Таким образом, можно снизить фактическую продолжительность периода с момента включения экструдера, при котором экструдированные изделия показывают высокую степень разрывов расплава, до момента получения экструдата с гладкой поверхностью, без разрывов расплава. Кроме того, может потребоваться меньшее количество фторполимерной процессинговой добавки для снижения частоты дефектов плавления и/или сокращения времени, необходимого для достижения прозрачности расплава. И более того, фторсодержащий полимер может также снижать противодавление при экструзии нефторированных плавких полимеров.

В изобретении также представлен способ получения плавкой полимерной композиции с композиционной полимерной добавкой, облегчающей переработку, для использования в качестве процессинговой добавки при экструзии нефторированных полимеров, причем эта добавка, облегчающая переработку полимеров, включает фторсодержащий полимер, у которого показатель длинноцепочечных боковых групп (LCBI) составляет, по меньшей мере, 0,2, а вязкость при нулевой скорости сдвига и при температуре 265°С не превышает величины 107 Па, и синергист, такой, например, как полиоксиалкиленовый полимер или поликапролактон.

Еще один аспект изобретения представляет композицию с полимерной добавкой, облегчающей переработку, причем эта композиция включает смесь, по меньшей мере, двух фторсодержащих полимеров, которые отличаются по показателям текучести расплава, и в которой, по меньшей мере, у одного из указанных фторсодержащих полимеров LCBI составляет, по меньшей мере, 0,2, а вязкость при нулевой скорости сдвига и при температуре 265°С не превышает величины 107 Па. Такую композицию можно использовать не только для того, чтобы улучшить переработку нефторированных полимеров, но и для того, чтобы облегчить переработку фторсодержащих полимеров, в частности, путем экструзии фторсодержащих полимеров.

Под термином "нефторированный" понимается, что полимер не содержит атомов фтора или содержит атомы фтора в таком количестве, что отношение атомов фтора к атомам углерода находится на уровне менее чем 1:1. Под термином "плавкий" понимается, что полимер подлежит переработке на стандартном оборудовании для термопластичных материалов, в частности, например, на экструдерах. Например, если нефторированным полимером является полиэтилен, то у него показатель плавления составляет обычно 5 г/10 минут или менее, предпочтительно, 2 г/10 минут или менее (измеренный в соответствии с требованиями ASTM D1238 при температуре 190°С, с нагрузкой 2160 г).

Под термином "фторсодержащий полимер" понимается полимер, у которого углеродная цепь содержит атомы фтора и у которого отношение атомов фтора к атомам углерода составляет, по меньшей мере, 1:1, предпочтительно, по меньшей мере, 1:1,5. Фторсодержащий полимер может быть, таким образом, частично фторированным по углеродной цепи или может иметь полностью фторированную углеродную цепь, то есть являться перфторполимером.

Термин "плавкая полимерная композиция" объединяет в себе все композиции, которые можно использовать в качестве присадки или процессинговой добавки, то есть эта композиция предназначена для смешивания с другим плавким нефторированным полимером и/или другими компонентами для получения композиции, готовой к переработке в полимерное изделие, а также полимерные композиции, которые готовы к экструзии и изготовлению из них полимерного изделия.

4. Подробное описание изобретения

Фторсодержащие полимеры, предназначенные для использования в составе плавкой полимерной композиции, являются нелинейными полимерами, то есть это разветвленные полимеры. Степень разветвленности или нелинейности может быть количественно охарактеризована с помощью показателя длинноцепочечных боковых групп (LCBI). Величину LCBI можно определить, как описано в работах R.N.Shroff, H.Mavridis; Macromol., 32, 8464-8464 (1999) & 34, 7362-7367 (2001) в соответствии со следующим уравнением:

В вышеприведенном уравнении [η]0,br - это вязкость при нулевой скорости сдвига (в Па) разветвленного фторсодержащего полимера, измеренная при температуре Т, а [η]br - это характеристическая вязкость (в мл/г) разветвленного фторсодержащего полимера при температуре Т′ в растворителе, в котором растворим разветвленный фторсодержащий полимер, а величины а и k - константы. Эти константы определяются из следующего уравнения:

где η0,lin и [η]lin представляют, соответственно, вязкость при нулевой скорости сдвига и характеристическую вязкость соответствующего линейного фторсодержащего полимера, измеренные при соответственно тех же температурах Т и Т' и в том же растворителе. Таким образом, величина LCBI не зависит от выбора температур измерения и выбранного растворителя, разумеется, при том условии, что в уравнениях 1 и 2 используются тот же растворитель и температуры измерения. Вязкость при нулевой скорости сдвига и характеристическую вязкость обычно определяют на образцах фторсодержащих полимеров, осажденных замораживанием.

Величины a и k наряду с условиями тестирования для некоторых из фторсодержащих полимеров, которые можно использовать в плавкой полимерной композиции, приведены в следующей таблице:

Полимер Условия испытаний величина а величина k
TFE39/HFP11/VDF50 А 5,8 2,4·10-8
TFE24,5/HFP23/VDF52,5 А 5,8 5,5·10-8
VDF78/HFP22 А 5,8 1,5·10-8
поливинилиденфторид В 5,8 1,2·10-8
поливинилиденфторид С 5,8 2,2·10-8

В вышеприведенной таблице цифры при аббревиатурах мономеров в полимере указывают количество соответствующих блоков в моль % и условия проведения испытаний, как указано ниже:

А: сдвиговая вязкость при температуре 265°С и характеристическая вязкость в метилэтилкетоне при 35°С

В: сдвиговая вязкость при температуре 230°С и характеристическая вязкость в диметилформамиде при температуре 23°С

С: сдвиговая вязкость при температуре 230°С и характеристическая вязкость в диметилформамиде при температуре 110°С.

Можно видеть из вышеприведенной таблицы, что константа а является практически независимой от тестируемого фторсодержащего полимера, тогда как величина k изменяется в зависимости от состава фторсодержащего полимера и применяемых условий испытаний.

Показатель LCBI используемого фторсодержащего полимера должен иметь величину на уровне, по меньшей мере, 0,2. Как правило, эффективность фторсодержащего полимера в плане подавления дефектов плавления возрастает при увеличении величины LCBI для полимеров, имеющих сходные величины вязкости при нулевой скорости сдвига (η0). Однако, если степень ветвления (и таким образом, величина LCBI) становится слишком большой, фторсодержащий полимер может иметь гелеподобную фракцию, которая будет нерастворимой в органическом растворителе. При таких высоких уровнях ветвления положительное влияние фторсодержащего полимера на процессинг плавкой полимерной композиции уменьшается, так как вязкость расплава фторсодержащего полимера оказывается слишком высокой. Опытный специалист в ходе рутинных экспериментов может легко установить соответствующую величину LCBI. Как правило, эта величина LCBI находится в диапазоне от 0,2 до 5, предпочтительно от 0,5 до 1,5.

Фторсодержащие полимеры для использования в плавкой полимерной композиции могут быть аморфными, то есть не имеющими точки плавления или демонстрирующими с трудом определяемую точку плавления, или они могут быть полукристаллическими фторсодержащими полимерами, то есть полимерами, у которых есть четко определяемая точка плавления. Как правило, фторсодержащие полимеры несовместимы с плавкими нефторированными полимерами (здесь и далее называемыми базовые полимеры) и должны обладать такой вязкостью при нулевой скорости сдвига η0, которая не превышает величины 107 Па при температуре 265°С. Предпочтительно, чтобы η0 (265°С) находилась в диапазоне между 103 Па и 5·106 Па, более предпочтительно между 104 и 106 Па. Хотя вязкость при нулевой скорости сдвига указывается как вязкость при температуре 265°С, в то же время не требуется, чтобы η0 обязательно измерялась при температуре 265°С. Например, для некоторых полимеров может оказаться более удобно или необходимо измерить η0 при более низкой или при более высокой температуре. В то же время величина η0, определенная при более низкой или при более высокой температуре, может быть переведена или пересчитана на величину при температуре 265°С с использованием уравнения Аррениуса, как описано, например, в работе М.Pahl, W.Gleissle, Н.Laun: "Praktischer Rheologie der Kunststoffe und Elastomere", VDI Verlag Dusseldorf.

Фторсодержащие полимеры для использования в рамках настоящего изобретения включают фторсодержащие полимеры, которые содержат сополимеризованные блоки, полученные из, по меньшей мере, одного фторсодержащего, этилен-ненасыщенного мономера, предпочтительно, двух или более мономеров, соответствующих формуле:

,

где каждая из групп R выбирается независимо из Н, F, Cl, алкильная группа длиной от 1 до 8 атомов углерода, алкильная группа длиной от 1 до 8 атомов углерода, циклическая алкильная группа длиной от 1 до 10 атомов углерода, или перфторалкильная группа длиной от 1 до 8 атомов углерода. R-группа предпочтительно содержит от 1 до 3 атомов углерода. В этом мономере каждая из групп R может быть такой же, как и другие R-группы. В альтернативном варианте каждая из групп R может отличаться от одной или нескольких других R-групп.

Фторсодержащий полимер может также содержать сополимер, полученный в результате сополимеризации, по меньшей мере, одного мономера, соответствующего формуле I, с, по меньшей мере, одним нефторированным, сополимеризуемым сомономером, соответствующим формуле:

где R1 выбирается из Н, Cl, или алкильной группы длиной от 1 до 8 атомов углерода, ациклической алкильной группы длиной от 1 до 10 атомов углерода, или арильной группы длиной от 1 до 8 атомов углерода. R1 предпочтительно содержит от 1 до 3 атомов углерода.

В качестве репрезентативных примеров подходящих фторированных мономеров, соответствующих формуле I, можно назвать, среди многих других, винилиденфторид, тетрафторэтилен, гексафторпропилен, хлортрифторэтилен, 2-хлорпентафторпропен, дихлордифторэтилен, 1,1-дихлорфторэтилен и их смеси. Можно также использовать перфтор-1,3-диоксолы. Перфтор-1,3-диоксоловые мономеры и их сополимеры описаны в патенте США №4,558,141 (Squires).

В качестве репрезентативных примеров подходящих мономеров, соответствующих формуле II, можно назвать этилен, пропилен и т.д.

В качестве конкретных примеров фторсодержащих полимеров можно назвать поливинилиденфторид, фторсодержащие полимеры, полученные в результате сополимеризации двух или нескольких разных мономеров, соответствующих формуле I, и фторсодержащие полимеры, полученные из одного или нескольких мономеров, соответствующих формуле I, с одним или несколькими мономерами, соответствующими формуле II. В качестве примеров таких полимеров можно назвать соединения из сополимеризованных блоков, полученных из винилиденфторида (VDF) и гексафторпропилена (HFP); а также полученные из тетрафторэтилена (TFE) и, по меньшей мере, 5 весовых %, по меньшей мере, одного сополимеризуемого сомономера, отличного от TFE. Этот последний класс фторсодержащих полимеров включает полимеры из сополимеризованных блоков, полученных из TFE и HFP; полимеры из сополимеризованных блоков, полученных из TFE, HFP и VDF; полимеры из сополимеризованных блоков, полученных из TFE, HFP и мономера, соответствующего формуле II; и полимеры, синтезированные из сополимеризованных блоков, полученных из TFE и мономера, соответствующего формуле II.

Нужный уровень ветвления фторсодержащих полимеров может быть получен разными способами. Например, в одном из вариантов реализации изобретения ветвление фторсодержащего полимера может быть получено в результате процесса полимеризации с получением фторсодержащего полимера. Таким образом, разветвленный фторсодержащий полимер может быть получен в результате сополимеризации одного или нескольких фторсодержащих мономеров и, факультативно, нефторированных со-мономеров с модификатором, который вызывает образование длинноцепочечных боковых цепей в процессе полимеризации. Такие модификаторы обычно представляют собой мономеры, которые могут быть фторсодержащими или нефторированными и которые содержат атом галогена, который легко отделяется в процессе полимеризации, например брома или йода, таким образом, что на углеродной цепи полимера образуется радикал, который может затем участвовать в дальнейшей полимеризации, образуя в результате длинную боковую цепь. В число подходящих модификаторов входят, например, фторированные или нефторированные олефины, которые имеют один или несколько атомов брома и/или йода.

В качестве примеров олефинов, которые можно использовать в качестве модификатора при получении разветвленного фторсодержащего полимера, можно назвать олефины, соответствующие общей формуле:

где Х-группы могут быть одинаковыми или разными и выбираются из списка, включающего водород, F, Cl, Br и I, при условии, что, по меньшей мере, одна группа Х представляет собой Br или I, Z представляет собой водород, F, Cl, Br, I, перфторалкильную группу, перфторалкокси-группу или перфторполиэфирную группу. В качестве примеров перфторалкильных групп можно назвать линейные или разветвленные перфторалкильные группы, содержащие от 1 до 8 атомов углерода, например от 1 до 5 атомов углерода. В качестве примеров перфторалкоксигрупп можно назвать группы, содержащие от 1 до 8 атомов углерода, например от 1 до 5 атомов углерода в алкильной группе, причем такие алкильные группы могут быть линейными или разветвленными. В качестве примеров перфторполиэфирных групп можно назвать группы, соответствующие общей формуле:

где каждая из групп и является линейной или разветвленной перфторалкиленовой группой, содержащей 1-6 атомов углерода, в частности от 2 до 6 атомов углерода, m и n - независимо друг от друга 0-10, причем сумма m+n составляет, по меньшей мере, 1 a - это перфторалкильная группа длиной 1-6 атомов углерода.

Подкласс олефинов, которые соответствуют формуле (III) и могут применяться в рамках настоящего изобретения, включает соединения, в которых Х выбирается из водорода, F и Br при условии, что, по меньшей мере, один Х представляет собой Br, a Z - это водород, F, Br, перфторалкильная группа или перфторалкокси-группа. В качестве конкретных примеров олефинов, которые удобно использовать, можно назвать 1-бром-1,2,2,-трифторэтилен, бромтрифторэтилен (обозначаемый как BTFE), винилбромид, 1,1-дибромэтилен, 1,2-дибромэтилен и 1-бром-2,3,3,3-тетрафторпропен. Как правило, предпочтительным является 1-бром-2,2-дифторэтилен (BDFE). Разумеется, возможно также использование смеси олефинов, содержащих атомы брома или йода.

Еще одной группой модификаторов, которые можно использовать, являются соединения, соответствующие общей формуле:

где каждая группа Xa независимо представляет собой водород, фтор, бром, хлор или йод; Rf - это перфторалкиленовая группа, обычно содержащая от 1 до 8 атомов углерода, перфтороксиалкиленовая группа или перфторполиэфирная группа, Xb представляет собой галоген, выбираемый из брома, йода и их смеси, а r равняется 1, 2 или 3. Галогены Xb могут находиться в терминальном положении Rf - группы, но могут также, в альтернативном варианте, содержаться в середине цепи Rf - группы. В качестве примеров олефинов, соответствующих формуле (IV), можно назвать:

CH2=CH-CF2-Br

CF2=CF-CF2-CFBr-CF3

CF2=F-(CF2)3-CF2Br

CH2=CH-O-(CF2)-CF2Br

CF2=CF-O-CF2-CF2-O-CF2CF2CF2Br

CH2=CH-CF2CF2-I

Вышеупомянутые модификаторы следует, как правило, использовать в довольно низких концентрациях, чтобы избежать слишком распространенного ветвления, происходящего в процессе полимеризации. Количество модификатора, которое обычно используется в ходе полимеризации для того, чтобы привести к получению нужного количества разветвленного фторсодержащего полимера, зависит от природы используемого модификатора и от условий полимеризации, таких, например, как время реакции и температура. Количество используемого модификатора выбирается таким образом, чтобы была получена нужная величина LCBI. Оптимальное количество модификатора можно быть легко определено опытным специалистом, но составляет, как правило, не более чем 1% в/в и, например, не более чем 0,7% или 0,5% в/в от общего веса мономеров, загружаемых для полимеризации. Удобное количество может составлять от 0,01% до 1% в/в, более приемлемое - от 0,05 до 0,5% в/в, в альтернативном варианте от 0,01 до 0,3% в/в или от 0,05% до 0,25% в/в. Этот модификатор можно добавлять в начале полимеризации и/или можно добавлять в процессе полимеризации в непрерывном режиме и/или порционно. Предпочтительно, чтобы такой модификатор добавляли непрерывно в ходе полимеризации.

В альтернативном варианте, чтобы вызвать ветвление фторсодержащего полимера в процессе полимеризации, можно использовать бифункциональный сомономер, то есть сомономер, в молекуле которого имеется 2 полимеризуемые группы. В качестве примеров таких сомономеров можно назвать бисолефины, включающие фторсодержащие бисолефины, которые описаны в патенте США №5,585,449. Однако при включении таких бифункциональных мономеров в процесс полимеризации фторсодержащего полимера следует уделять особое внимание, чтобы не допустить существенного образования поперечных сшивок в процессе полимеризации.

Фторсодержащие полимеры для использования в качестве процессинговых добавок можно получать с помощью любого из известных способов полимеризации, в том числе полимеризации в растворе, полимеризации в суспензии и полимеризации в суперкритическом CO2. Фторсодержащие полимеры предпочтительно получать с помощью процесса водоэмульсионной полимеризации, который можно проводить стандартным способом, в том числе порционным, полупорционным или непрерывным способом полимеризации. Реакционный сосуд для использования в процессе водоэмульсионной полимеризации обычно является прочным сосудом, способным выдерживать внутреннее давление, необходимое для проведения реакции полимеризации. Обычно реакционный сосуд бывает оборудован механической мешалкой, которая обеспечивает перемешивание содержимого реактора и функционирование системы теплообмена. В реакционный сосуд может быть загружено любое количество фтормономера (фтормономеров). Эти мономеры можно загружать партиями или в непрерывном или полунепрерывном режиме. Под термином «полунепрерывный» понимается, что множество партий мономера загружается в сосуд в процессе проведения полимеризации. Независимая скорость, с которой подаются мономеры в котел, будет зависеть от скорости расхода данного мономера с течением времени. Предпочтительно, чтобы скорость добавления мономера была равна скорости расхода мономера, то есть превращения мономера в полимер.

Реакционный котел загружается водой, количество которой не является критичным. К водной фазе добавляется, как правило, также фторсодержащее поверхностно-активное вещество, обычно нетелогенное фторсодержащее поверхностно-активное вещество, хотя возможно также проведение водоэмульсионной полимеризации без добавления фторсодержащего поверхностно-активного вещества. Если используется фторсодержащее поверхностно-активное вещество, то его обычно добавляют в количестве от 0,01% в/в до 1% в/в. В число подходящих фторсодержащих поверхностно-активных веществ входят любые фторсодержащие поверхностно-активные вещества, которые обычно применяют при водоэмульсионной полимеризации. Особенно предпочтительными фторсодержащими поверхностно-активными веществами являются вещества, соответствующие общей формуле:

Y-Rf-Z-M

где Y представляет собой водород, Cl или F; Rf представляет собой линейные или разветвленные перфторированные алкиленовые группы длиной от 4 до 10 атомов углерода; Z представляет собой СОО- или и М представляет собой ион щелочного металла или ион аммония. Наиболее предпочтительными фторсодержащими поверхностно-активными веществами для использования в рамках настоящего изобретения являются аммонийные соли перфтороктановой кислоты и перфтороктан-сульфоновой кислоты. Можно использовать также смеси фторсодержащих поверхностно-активных веществ.

Для контроля молекулярного веса фторсодержащего полимера можно использовать агент-переносчик цепей с тем, чтобы получить нужный уровень вязкости при нулевой скорости сдвига. В число подходящих агентов-переносчиков цепей входят С26 углеводороды, такие как этан, спирты, простые и сложные эфиры, в том числе алифатические эфиры карбоновых кислот и малоновые эфиры, кетоны и галоуглероды. Особенно подходящими агентами-переносчиками цепей являются диалкиловые эфиры, такие как диметиловый эфир и метил-трет-бутиловый эфир.

Процесс полимеризации обычно запускается после первоначальной загрузки мономера путем добавления инициатора или инициаторной системы в водную фазу. Например, в качестве инициаторов свободных радикалов можно использовать пероксиды. В качестве конкретных примеров пероксидных инициаторов можно назвать перекись водорода, диациловые пероксиды, такие как диацетилпероксид, дипропионилпероксид, дибутирилпероксид, дибензоилпероксид, бензоилацетилпероксид, пероксид диглутаровой кислоты и дилаурилпероксид, а также водорастворимые перкислоты и водорастворимые соли таких кислот как, например, аммонийные, натриевые или калиевые соли. В качестве примеров таких перкислот можно назвать перуксусную кислоту. Можно использовать также эфиры перкислот, и среди примеров таких эфиров можно назвать трет-бутилпероксиацетат и трет-бутилпероксипивалат.

Еще одним классом соединений, которые можно использовать в этом процессе, являются водорастворимые азосоединения. В число редокс-систем, подходящих для использования в качестве инициаторов, входят, например, комбинации пероксодисульфата и сульфита или дисульфита водорода, комбинации тиосульфата и пероксодисульфата или комбинации пероксодисульфата и гидразина. Еще одной группой инициаторов, которые можно использовать в этих целях, являются соли аммония, щелочных и щелочно-земельных металлов и персульфатов, марганцовой или марганцовистой кислоты или марганцовистых кислот. Количество используемого инициатора обычно находится в диапазоне между 0,03 и 2% в/в, предпочтительно между 0,05 и 1% в/в от общего веса полимеризационной смеси. Все количество инициатора можно добавлять в начале полимеризации или же инициатор можно добавлять в полимеризационную смесь в непрерывном режиме в процессе полимеризации до превращения на 70-80%. Можно также добавить часть инициатора в начале, а остаток одной или несколькими дополнительными порциями в процессе полимеризации. Возможно и иногда предпочтительно добавление катализаторов, таких, например, как водорастворимые соли железа, меди и серебра.

В ходе реакции инициации полимеризации запечатанный реакционный котел и его содержимое обычно предварительно нагревают до температуры реакции. Полимеризацию обычно проводят при температурах от 20°С до 150°С, предпочтительно от 30°С до 110°С и наиболее предпочтительно от 40°С до 100°С. Давление при полимеризации обычно находится в диапазоне между 4 и 30 бар, в частности от 8 до 20 бар. Система для водоэмульсионной полимеризации может также включать вспомогательные вещества, такие как буферные растворы и комплексообразователи.

Количество твердого полимера, которое можно получить в конце полимеризации, обычно находится в диапазоне между 10% и 45% в/в, предпочтительно между 20% и 40% в/в, и средний размер частиц полученного фторсодержащего полимера обычно находится в диапазоне между 50 нм и 500 нм.

В еще одном дополнительном варианте реализации изобретения ветвление фторсодержащего полимера может завершаться привитой сополимеризацией боковых цепей на молекулах фторсодержащего полимера. Например, если фторсодержащий полимер способен вступать в реакцию дегидрофторирования при взаимодействии с дегидрофторирующим агентом так, как это происходит, например, в случае для полимеров, полученных из VDF и факультативных сомономеров, фторсодержащий полимер может быть дегидрофторирован с образованием двойных связей в углеродной цепи фторсодержащего полимера. Их можно затем использовать для проведения последовательной или параллельной реакции для того, чтобы вызвать ветвление фторсодержащего полимера.

В качестве примеров материалов, используемых в качестве дегидрофторирующих агентов, можно назвать сильные основания, такие как 1,8 диаза[5.4.0]бицикло ундец-7-ен, (DBU) и 1,5-диазабицикло[4.3.0]-5-нонен, (DBN). Также в качестве дегидрофторирующего агента можно использовать органоониевые соединения, которые широко известны и широко используются при вулканизации фторсодержащих эластомеров на основе реакции полигидрокси-вулканизации. В качестве примеров органоониевых соединений можно назвать вещества, которые содержат, по меньшей мере, один гетероатом, то есть неуглеродный атом, такой как N, P, S, О, связанный с органическими или неорганическими остатками, и можно назвать, например, соли аммония, соли фосфония и соли иминия. Один класс четвертичных органоониевых соединений, подходящих для применения в рамках настоящего изобретения, включает относительно положительные и относительно отрицательные ионы, в которых фосфор, мышьяк, сурьма или азот, как правило, служат центральным атомом положительного иона, а отрицательный ион мо