Способы, изделия и устройства для проверки подлинности

Иллюстрации

Показать все

Изобретение относится к проверке подлинности изделия. Изобретение позволяет повысить защищенность изделия от подделки без изготовления специальных маркеров. Когерентный источник света направляет пучок для освещения изделия, а детекторная установка собирает информационные точки от света, рассеянного от множества различных частей изделия для сбора большого числа независимых информационных точек, как правило, 500 или более. Посредством сбора большого числа независимых вкладов сигналов, характерных для множества различных частей изделия, можно вычислить цифровую сигнатуру, уникальную для сканированной области изделия. Это измерение можно повторять всякий раз, когда требуется проверить подлинность изделия. 10 н. и 36 з.п ф-лы, 16 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ИЗОБРЕТЕНИЮ

Изобретение относится к способам обеспечения безопасности и, более конкретно, к проверке подлинности изделия, такого как личная идентификационная (ID) карта, товар, предназначенный для продажи, важный документ или другие изделия.

В основе многих традиционных систем обеспечения безопасности на основе аутентификации лежит процесс, который трудно выполнить кому-либо, кроме производителя, причем трудность может быть связана с расходами на производственное оборудование, сложностью технологии или, предпочтительно, и с тем, и с другим. Примерами могут служить нанесение водяного знака на денежные купюры и голограмм на кредитные карты и паспорта. К сожалению, преступники становятся все более изощренными и могут воспроизводить практически все, что могут делать оригинальные производители.

По этой причине существует известный подход к системам обеспечения безопасности на основе аутентификации, который основан на создании защитных знаков с использованием какого-либо процесса, управляемого законами природы, который приводит к уникальности каждого знака и, что более важно, к наличию у знака уникальной характеристики, которую можно измерить и, таким образом, можно использовать в качестве основы для последующей проверки. Согласно этим подходам, маркеры изготавливают и измеряют единообразным способом для получения уникальной характеристики. Эту характеристику можно затем сохранить в компьютерной базе данных или каким-либо иным образом. Знаки этого типа можно включать в изделие-носитель, например, в денежную купюру, паспорт, идентификационную карту, важный документ.Впоследствии изделие-носитель можно опять подвергнуть измерению и сравнить измеренную характеристику с характеристиками, хранящимися в базе данных, для установления наличия соответствия.

В рамках этого общего подхода было предложено использовать различные физические эффекты. Один эффект, который рассматривался, заключался в том, чтобы измерять характеристику магнитного отклика от нанесенных магнитных материалов, где каждый образец обладает уникальным магнитным откликом вследствие естественных дефектов в магнитном материале, которые образуются невоспроизводимым образом [1]. Другой эффект, который рассматривался в ряде документов, известных из уровня техники, заключается в том, чтобы использовать лазерный спекл, связанный с внутренними свойствами изделия, для получения уникальной характеристики.

В патентном документе GB 2221870 [2] раскрыт способ, в котором защитное устройство, такое как ID-карта, фактически обладает выдавленным в нем знаком. Форма знака представляет собой структурированную поверхность, полученную при помощи шаблона. Спекл-структура от рассеивающей свет структуры является уникальной для данного шаблона, и поэтому ее можно измерить для доказательства подлинности знака на защитном устройстве. Знак на защитном устройстве измеряют считывающим устройством, которое содержит лазер для формирования когерентного пучка, размер которого примерно равен размеру знака (2 мм в диаметре), и детектор, такой как детектор на приборах с зарядовой связью (ПЗС), для измерения спекл-структуры, созданной в результате взаимодействия лазерного пучка со знаком. Полученные данные записывают. Для проведения проверки защитное устройство можно поместить в считывающее устройство и сравнить записанный сигнал его спекл-структуры с аналогичным записанным сигналом от эталонного устройства, созданного с того же оригинала.

В патентном документе US 6584214 [3] описана альтернатива использованию спекл-структур, полученных в отраженном свете от специально подготовленной структуры поверхности, в которой вместо этого используют спекл-структуры, полученные в проходящем свете от специально подготовленного прозрачного знака. Предпочтительный вариант осуществления этого способа заключается в изготовлении эпоксидных маркеров размером примерно 1 см × 1 см, в которые вкраплены стеклянные шарики. Маркеры изготавливают посредством перемешивания стеклянных шариков в коллоидной суспензии в жидком полимере, который затем отверждается с фиксацией положения стеклянных шариков. Затем уникальную совокупность стеклянных шариков зондируют при помощи проходящего когерентного лазерного пучка и детектора ПЗС, расположенного так, чтобы измерять спекл-структуру. В модификации этого способа на отражающей поверхности кодируют известный идентификатор, который затем прикрепляют к одной стороне маркера. Зондирующий свет проходит через маркер, отражается от известного идентификатора и вновь проходит через маркер. Тем самым стеклянные шарики видоизменяют спекл-структуру, так что из известного идентификатора генерируется уникальный хешированный ключ.

Имеется краткое сообщение Kralovec [4] о том, что в 1980-х сотрудники Sandia National Laboratories в США проводили эксперименты со специальной бумагой для денежных купюр, в которую были вкраплены мелко нарезанные оптические волокна. Можно было измерить спекл-структуру, полученную от оптических волокон, и ее вариант в виде цифровой подписи напечатать в виде штрихкода на краю денежной купюры. Однако Kralovec сообщает, что эту идею не удалось воплотить надлежащим образом, поскольку оптические волокна оказались слишком хрупкими и спекл-структура слишком быстро менялась в результате износа денежной купюры в процессе обращения. Это означало, что спекл-структура, измеренная от оптических волокон в старой денежной купюре, больше не соответствовала штрихкоду, поэтому денежную купюру больше нельзя было проверить на подлинность по спекл-структуре предполагаемым образом.

Anderson [5] на странице 251 своего учебника 2001 года также вкратце упоминает способ, который представляется аналогичным способу, описанному Kravolec [4] и который используется для контроля выполнения соглашений по контролю над вооружениями. Anderson обращает внимание, что поверхности многих материалов уникальны и что их можно сделать такими, нарушив их при помощи небольшого заряда взрывчатого вещества. Утверждается, что таким образом можно легко идентифицировать капитальное оборудование, такое как тяжелая артиллерия, где достаточно идентифицировать каждый ствол пушки, чтобы никакая из сторон не допускала обмана в отношении выполнения соглашению по контролю над вооружениями. Anderson сообщает, что узор на поверхности ствола пушки измерялся при помощи метода спекл-структур, и этот узор либо записывался в файл, либо прикреплялся к устройству в виде машиночитаемой цифровой подписи.

Помимо использования лазерных спекл-структур существует группа более непосредственных способов, в которых просто обеспечивают изображение изделия с высоким разрешением и используют это изображение с высоким разрешением в качестве уникальной характеристики, которую затем можно снять повторно с целью проверки подлинности. Это можно рассматривать в качестве распространения традиционного подхода, используемого для библиотек отпечатков пальцев, которые ведутся полицией.

В патентном документе US 5521984 [6] предлагается использовать оптический микроскоп для получения изображения небольших участков ценных изделий, таких как картины, скульптуры, марки, драгоценные камни или определенного рода документы.

Anderson [5] на странице 252 своего учебника 2001 года сообщает, что почтовые службы рассматривают вопрос о применении такого рода способов, основанных на прямом получении изображений конвертов при помощи микроскопа. Сообщается, что получено изображение волокон бумаги конверта, из которой изготовлен конверт, из него извлечен узор и записан на почтовом штемпеле, который снабжен цифровой подписью.

В патентном документе US 5325167 [7] предлагается схожим образом получать изображение зернистой структуры частиц тонера на части ценного документа.

Благодаря этой проделанной работе стало ясно, какими различными желательными признаками должен обладать идеальный способ проверки (верификации).

Указанные способы с использованием магнитных свойств или спекл-структур, по-видимому, способны обеспечить высокий уровень защиты, но требуют изготовления специальных материалов [1, 2, 3], чтобы их практическое воплощение обеспечивало долгосрочную стабильность проверяемой структуры [4]. Во многих случаях внедрение маркера (знака) в защищаемое изделие является нетривиальной задачей. В частности, внедрение каучукового маркера или магнитного чипа в бумагу или картон является непростой задачей и требует значительных затрат. В идеальном случае любой маркер, предназначенный для внедрения в бумагу или картон, должен быть идеально впечатываемым. Кроме того, при подходе с использованием прикрепляемых маркеров существует естественный риск нарушения безопасности, связанный с потенциальной возможностью отсоединения и прикрепления маркера к другому изделию.

Указанные способы непосредственного получения изображений [5, 6, 7] имеют то преимущество, что в них цифровую подпись получают непосредственно из изделия, избегая необходимости в специальных маркерах (знаках). Однако им присущ низкий уровень защиты. Например, они уязвимы перед незаконным доступом к данным сохраненных изображений, которые могут быть использованы при изготовлении изделия, которое при проверке будет ошибочно признано подлинным, или перед подделкой посредством простого использования принтера с высоким разрешением для печати изображения того, что было бы видно под микроскопом при рассмотрении соответствующей части подлинного изделия. Кроме того, уровень защиты способов непосредственного получения изображений сильно зависит от объема данных изображения, вынуждает применять дорогостоящее оборудование для получения изображений с высоким разрешением, чтобы обеспечить более высокий уровень безопасности. В некоторых сферах применения, таких как сортировка почты или проверка денежных купюр, это может быть приемлемо, но во многих сферах применения это неприемлемо.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение явилось следствием работы изобретателя над применением способов аутентификации с использованием маркеров, сделанных из магнитных материалов, где уникальность обеспечивается невоспроизводимыми дефектами в магнитном материале, которая влияет на магнитный отклик [1] маркера. В качестве составной части этой работы магнитные материалы изготавливаются в штрихкодовом формате, то есть в виде нескольких параллельных полосок. Помимо считывания уникального магнитного отклика посредством проведения магнитного устройства считывания через магнитное поле, был создан оптический сканер для считывания штрихкодовых полосок посредством сканирования штрихкода лазерным лучом и использования контраста вследствие изменяемой отражательной способности штрихкодовых полосок и изделия, на котором они были сформированы. Эта информация дополняла магнитную характеристику, поскольку штрихкод использовался для кодирования цифровой подписи уникального магнитного отклика в схеме самоаутентификации хорошо известного типа, например, в схеме, описанной выше для денежных купюр [4].

К удивлению изобретателя в процессе использования оптического сканера было обнаружено, что от материала бумажной основы, на которую наносились магнитные частицы, в сканер поступал уникальный оптический отклик. При дальнейшем исследовании было установлено, что тот же эффект демонстрируют многие другие неподготовленные поверхности, например, всякого рода картонные и пластиковые поверхности. Кроме того, изобретателем было установлено, что уникальная характеристика, по меньшей мере, частично связана со спекл-структурой, но также включает вклад, не связанный со спекл-структурой.

Таким образом, было обнаружено, что все преимущества способов, основанных на использовании спекл-структур, можно усилить без обязательного использования специально изготовленных маркеров или какой-либо иной специальной подготовки изделия. В частности, было обнаружено, что некоторые виды бумаги и картона имеют уникальные характеристические сигналы рассеяния под действием когерентного пучка света, так что уникальные цифровые подписи можно получить почти для любого бумажного документа или для картонной упаковки.

Представляется, что вышеописанные известные из уровня техники устройства для считывания спекл-структур использованные в защитных устройствах основаны на освещении всего маркера коллимированным, то есть несфокусированным, лазерным пучком и снятии при помощи ПЗС изображения части образующейся спекл-структуры в значительном телесном угле [2,3], в результате чего получают основанное на спекл-структуре отображение маркера, состоящее из большого массива информационных точек.

Считывающее устройство, используемое изобретателем, работает иначе. В нем используется четыре одноканальных детектора (для четырех фототранзисторов), которые разнесены друг от друга на определенный угол для сбора только четырех компонент сигнала от рассеянного лазерного пучка. Лазерный пучок фокусируют в пятно, охватывающее лишь очень небольшую часть поверхности. Снимают сигнал с четырех локализованных участков поверхности четырьмя одноканальными детекторами, когда при сканировании поверхности пятном. Таким образом, характеристический отклик изделия состоит из независимых измерений на большом числе (обычно сотни и тысячи) различных локализованных участков поверхности изделия. Хотя используется четыре фототранзистора, анализ, использующий данные только одного фототранзистора, показывает, что уникальный характеристический отклик можно получить только от одного канала! Однако, включение в отклик данных от четырех каналов обеспечивает более высокий уровень защиты.

Согласно одному аспекту изобретения представлено устройство для определения сигнатуры изделия, размещенного в объеме считывания, содержащее: источник для формирования когерентного пучка; детекторную установку для сбора набора информационных точек от сигналов, полученных при рассеянии лазерного пучка в объеме считывания, причем различные информационные точки относятся к рассеянию от различных частей объема считывания; и модуль сбора и обработки данных для определения сигнатуры изделия на основе набора значений данных.

В некоторых вариантах осуществления то, что различные информационные точки относятся к рассеянию от различных частей объема считывания, обеспечивается посредством привода, под действием которого когерентный пучок перемещается по объему считывания, и при этом размеры поперечного сечения когерентного пучка существенно меньше проекции объема считывания на плоскость, перпендикулярную когерентному пучку, так что под действием привода когерентный пучок осуществляют выборку различных частей объема считывания. Привод может быть снабжен электродвигателем, который перемещает пучок по неподвижному изделию. Приводной двигатель может быть серводвигателем, двигателем свободных колебаний, шаговым двигателем или любым двигателем подходящего типа. В альтернативном варианте привод в недорогом считывающем устройстве может быть ручным. Например, оператор может сканировать пучком объем считывания, перемещая несущее устройство, на котором установлено изделие, через статичный пучок. Поперечное сечение когерентного пучка обычно по меньшей мере на один (предпочтительно по меньшей мере на два) порядок меньше проекции объема считывания, так чтобы можно было собрать значительное число независимых информационных точек (значений данных). Может быть предусмотрено фокусирующее устройство для фокусирования когерентного пучка в объеме считывания. Фокусирующее устройство может быть выполнено с возможностью сведения когерентного пучка в вытянутый фокус, и в этом случае привод предпочтительно выполнен с возможностью перемещения когерентного пучка по объему считывания в направлении, перпендикулярном большой оси вытянутого фокуса. Наиболее удобным образом вытянутый фокус можно получить при помощи цилиндрических линз или эквивалентной установки из зеркал.

В других вариантах осуществления изобретения предусматривается, что различные значения данных относятся к рассеянию от различных частей объема считывания, при этом детекторная установка включает множество детекторных каналов, расположение и конфигурация которых таковы, что они воспринимают рассеяние от соответствующих различных частей объема считывания. Этого можно достичь при помощи направленных детекторов, локального сбора сигнала посредством оптического волокна и других мер. При использовании направленных детекторов или других способов локального сбора сигнала когерентный пучок не требуется фокусировать. На самом деле когерентный пучок может быть неподвижным и освещать весь измеряемый объем. Направленные детекторы можно реализовать, если вплавить в детекторные элементы или прикрепить к ним каким-либо иным образом фокусирующие линзы. Оптическое волокно можно использоваться совместно с микролинзами.

Устройство считывания может дополнительно содержать корпус, вмещающий по меньшей мере часть детекторной установки и имеющий апертуру для считывания, напротив которого помещают изделие таким образом, чтобы она находилось в объеме считывания. Для работы на местах предусмотрено, чтобы устройство считывания представляло собой автономный блок на основе корпуса с апертурой для считывания. Затем изделие, которое должно быть подвергнуто аутентификации, например, сотрудником таможни или инспектором по проверке торговых стандартов, можно поместить в заданное положение над апертурой для считывания. Апертура для считывания обычно закрыта прозрачным окном, чтобы не допустить попадания грязи в компоненты оптики.

При использовании на производственных линиях могут оказаться подходящими другие формы устройства считывания. Например, устройство считывания может дополнительно содержать конвейер для подачи изделия, по которому изделие или, скорее, несколько одинаковых изделий перемещаются мимо когерентного пучка. В условиях производства когерентный пучок может быть неподвижен, а изделия могут перемещаться через него. Например, упаковочные коробки для духов могут перемещаться на конвейере на заданной высоте и пересекать горизонтальный лазерный пучок.

Во многих случаях может быть полезным вспомогательное средство задания физического положения для расположения изделия данной формы в фиксированном положении относительно объема считывания. Следует иметь в виду, что обычно для получения сигнатуры используют лишь небольшую часть изделия, например элемент упаковки, или лист бумаги, или паспорт. Поэтому важно при повторном считывании изделия с целью аутентификации, чтобы измерение той же самой части изделия производилось так же, как и первоначально. При этом очень полезным является использование вспомогательного средства задания физического положения.

Могут применяться различные детекторные установки.

Можно создать работоспособное устройство считывания, когда детекторная установка состоит всего из одного детекторного канала. В других вариантах осуществления используется детекторная установка, которая содержит группу детекторных элементов, имеющих угловое распределение и работающих таким образом, чтобы для каждой различной части объема считывания собирать группу значений данных, предпочтительно это небольшая группа из нескольких детекторных элементов. Когда сигнатура содержит вклад от сравнения значений данных одной группы, обеспечивается более высокий уровень защиты. Это сравнение может при желании включать взаимную корреляцию.

Хотя работающее устройство считывания можно изготовить лишь с одним детекторным каналом, предпочтительно наличие по меньшей мере 2 каналов. В этом случае имеется возможность определить взаимные корреляции, что ценно при обработке сигнала, связанного с определением сигнатуры. Предусматривается, что для большинства применений достаточно иметь от 2 до 10 каналов, причем в настоящее время 2-4 канала считаются оптимальным соотношением между простотой устройства и безопасностью.

Детекторные элементы предпочтительно расположены в плоскости, пересекающей объем считывания, причем каждый элемент пары имеет угловое распределение в плоскости по отношению к оси когерентного пучка, при этом предпочтительно, когда с каждой стороны оси пучка располагаются один или несколько детекторных элементов. Однако допустимо, чтобы детекторные элементы располагались не в одной плоскости.

Было обнаружено, что использование взаимных корреляций сигналов, полученных от различных детекторов, дает ценные данные, касающиеся увеличения уровня защиты, а также более надежного воспроизведения сигнатур по прошествии времени. Полезность применения взаимных корреляций вызывает некоторое удивление с научной точки зрения, поскольку спекл-структурам присуща некоррелированность (за исключением сигналов с противоположных точек структуры). Иными словами, для спекл-структуры по определению имеет место нулевая взаимная корреляция между сигналами от различных детекторов, если только они смещены не под равными углами относительно местоположения возбуждения в общей плоскости, пересекающей местоположение возбуждения. Поэтому значимость использования вклада взаимных корреляций указывает на то, что значительная часть сигнала рассеяния не связана со спеклом. Не связанный со спеклом вклад можно считать результатом прямого рассеяния, или вкладом диффузного рассеяния, от сложной поверхности, такой как скрученные бумажные волокна. В настоящее время относительная значимость вкладов, связанных и не связанных со спеклом, в сигнал рассеяния, остается неясной. Одного из уже проведенных экспериментов ясно, что детекторы измеряют не чистую спекл-структуру, а составной сигнал, в котором имеются компоненты, связанные и не связанные со спеклом.

Включение в сигнатуру компонента, связанного с взаимными корреляциями, также способствует повышению защиты документа. Это связано с тем, что хотя для изготовления изделия, которое воспроизводит колебания контраста на поверхности подлинного изделия, можно использовать печать с высоким разрешением, таким образом не удастся обеспечить соответствие коэффициентов взаимной корреляции, полученных при сканировании подлинного изделия.

В основном варианте осуществления изобретения детекторные каналы состоят из дискретных детекторных компонентов в виде простых фототранзисторов. Могут использоваться и другие простые детекторные компоненты, например PIN-диоды и фотодиоды. Могут также применяться объединенные детекторные компоненты, такие как детекторные матрицы, хотя это увеличит стоимость и сложность устройства.

Исходя из результатов начальных экспериментов, в которых изменялся угол падения лазерного пучка на изделие, подлежащее сканированию, представляется также практически важным, чтобы лазерный пучок падал приблизительно перпендикулярно к сканируемой поверхности, для получения характеристики, которую можно повторно снять с той же поверхности с незначительными изменениями, даже если между измерениями изделие подверглось износу. По меньшей мере в некоторых устройствах считывания, известных из уровня техники, используется наклонное падение [2] излучения. Как только этот эффект понят, он кажется очевидным, но он явно не является непосредственно очевидным, о чем свидетельствует конструкция некоторых устройств считывания спекл-структур, известных из уровня техники, в том числе устройства считывания, предложенного Ezra и др. [2], и, надо сказать, первого устройства считывания прототипа, созданного изобретателем. Первое устройство считывания прототип изобретателя с наклонным падением излучения работало более или менее сносно в лабораторных условиях, но было весьма чувствительно к износу бумаги, используемой в качестве изделия. Например, достаточно было потереть бумагу пальцами, чтобы при повторном измерении проявились значительные различия. Во втором устройстве считывания прототипе использовалось падение излучения под прямым углом, и было обнаружено, что это устройство устойчиво к износу бумаги в результате обычного обращения с ней, а также в результате более серьезных испытаний, в том числе: прохождения через принтеры различных типов, включая лазерный принтер, прохождения через копировальный аппарат, нанесения рукописного текста, нанесения печатного текста, умышленного прокаливания бумаги в печи, а также смятия бумаги с последующим распрямлением.

Поэтому может быть выгодно установить источник таким образом, чтобы когерентный пучок был направлен на объем считывания так, чтобы обеспечивать падение излучения на изделие почти перпендикулярно. Почти перпендикулярное падение излучения означает±5, 10 или 20 градусов. В альтернативном варианте изобретения пучок излучения может быть направлен наклонно к изделию. Обычно в этом случае имеет место отрицательное влияние в случае, при сканировании пучком изделия.

Следует также заметить, что в устройствах считывания, описанных в подробном описании, детекторное устройство расположено в отраженном свете для регистрации излучения, рассеянного назад от объема считывания. Однако в случае прозрачного изделия детекторы могут быть расположены по направлению распространения света.

В одной группе вариантов осуществления изобретения модуль сбора и обработки данных выполнен с возможностью дополнительного анализа значений данных для идентификации компоненты сигнала, которая соответствует предварительно заданному протоколу кодирования, и для создания из нее эталонной сигнатуры. В большинстве вариантов осуществления предусматривается, что характеристика предварительно заданного протокола кодирования основана на контрасте, то есть на силе сигнала рассеяния. В частности, можно использовать протокол для обычного штрихкода, в соответствии с которым штрихкод печатают или иным образом наносят на изделие в виде полосок в случае одномерного штрихкода или в виде более сложных узоров в случае двумерного штрихкода. В этом случае модуль сбора и обработки данных может быть выполнен с возможностью осуществления сравнения, чтобы установить, соответствует ли эталонная сигнатура сигнатуре, полученной при считывании изделия, помещенного в объем считывания. Следовательно, изделие, например лист бумаги, может быть промаркировано несущим цифровой знак вариантом своей собственной характеристики, например штрихкодом. Из характеристики изделия может быть получена эталонная сигнатура при помощи необратимой функции, то есть при помощи ассиметричного алгоритма шифрования, который требует закрытого личного ключа. Это служит препятствием для неуполномоченного третьего лица, оснащенного устройством считывания, которое хочет считывать поддельные изделия и отпечатывать на них этикетку, которая содержит сканированные данные, полученные при помощи устройства считывания, в соответствии со схемой шифрования. Как правило, этикетка со штрих-кодом или другая маркировка представляет собой шифрограмму, которую можно расшифровать при помощи открытого ключа, а закрытый ключ предназначен уполномоченному лицу, изготавливающему этикетки.

Может быть предусмотрена база данных заранее записанных сигнатур, при этом модуль сбора и обработки данных выполнен с возможностью доступа к базе данных и выполнения сравнения с целью установить, содержит ли база данных сигнатуру изделия, помещенного в объем считывания. База данных может быть частью запоминающего устройства большой емкости или может находиться в удаленном месте, и с возможностью доступа устройства считывания к ней по телекоммуникационной связи. Телекоммуникационная связь может быть любым традиционным видом связи, в том числе беспроводной или фиксированной связью, или может осуществляться через Интернет.Модуль сбора и обработки данных может быть выполнен с возможностью, по меньшей мере в некоторых режимах работы, добавления сигнатуры к базе данных, если совпадение не обнаружено. По понятным причинам такая возможность обычно представляется только уполномоченным лицам.

Базы данных в процессе использования, помимо хранения сигнатуры, могут использоваться для связи этой сигнатуры в базе данных с другой информацией об изделии, например со сканированной копией документа, с фотографией владельца паспорта, со сведениями о месте и времени изготовления продукта или со сведениями о предполагаемых местах сбыта предназначенных к продаже товаров (например, для отслеживания "серого" импорта).

Описанные выше устройства считывания могут использоваться для заполнения базы данных сигнатурами посредством считывания ряда изделий, например, на производственной линии, и (или) для последующей проверки подлинности изделия, например, при использовании на местах.

Изобретение обеспечивает идентификацию изделий, сделанных из материалов различного типа, таких как бумага, картон и пластик.

Изобретение позволяет установить, имела ли место подделка изделия. Это возможно в том случае, если сканируемую область, используемую для создания сигнатуры, заклеить прозрачной пленкой, например клейкой лентой. Если для подделки изделия ленту необходимо удалить, например вскрыть упаковочную коробку, то клеевое соединение можно выбрать таким образом, что оно неизбежно изменит нижележащую поверхность. Следовательно, даже если коробку вновь заклеят аналогичной лентой, это можно будет обнаружить.

Изобретение предусматривает способ идентификации изделия, выполненного из бумаги или картона, содержащий этапы, на которых: подвергают бумагу или картон воздействию когерентного излучения; собирают группу значений данных, которые являются результатом измерения рассеяния когерентного излучения на внутренней структуре бумаги или картона; и определяют сигнатуру изделия по набору значений данных.

Под внутренней структурой мы имеем в виду структуру, которая становится присуща изделию в процессе его производства, и тем самым она отличается от структуры, специально созданной для целей защиты, такой как структура, придаваемая маркерам или искусственным волокнам, включенным в изделие.

Под бумагой или картоном мы имеем в виду любое изделие, сделанное в процессе переработки целлюлозы. На бумагу или картон может быть нанесено покрытие, или они могут быть пропитаны или покрыты прозрачным материалом, например целлофаном. Если особое значение имеет долговременная стабильность поверхности, то бумагу можно, например, обработать акриловым напыляемым прозрачным покрытием.

Таким образом, значения данных могут собираться как функция от места освещения когерентным пучком. Это достигается либо посредством сканирования изделия локализованным когерентным пучком, либо посредством использования направленных детекторов для сбора рассеянного света от различных частей изделия, либо посредством комбинирования обоих подходов.

Предполагается, что изобретение будет особенно полезно для бумажных и картонных изделий из следующего перечня примеров:

1) ценные документы, такие как свидетельства на акцию, транспортные накладные, паспорта, межгосударственные договоры, уставы, водительские удостоверения, сертификаты о пригодности транспортного средства к эксплуатации, любые свидетельства о подлинности,

2) любой документ, предназначенный для целей отслеживания и сопровождения, например, конверты для почтовых систем, денежные купюры с возможностью отслеживания, предоставляемой правоохранительным органам,

3) упаковки продуктов, предназначенных для продажи,

4) ярлыки с маркой на модельные товары, например, на предметы моды,

5) упаковка косметики, фармацевтических препаратов или других продуктов,

6) компакт-диски и DVD-диски либо на самом диске, например, вблизи центра, либо на коробке.

Изобретение также предусматривает способ идентификации изделия, сделанного из пластика, содержащий этапы, на которых: подвергают пластик воздействию когерентного излучения; собирают набор значений данных, которые являются результатом измерения рассеяния когерентного излучения от внутренней структуры пластика; и определяют сигнатуру изделия по набору значений данных.

Если пластик непрозрачен для когерентного излучения, то рассеяние будет происходить на внутренней структуре поверхности пластика, а если пластик прозрачен, то рассеяние может иметь место в любой части изделия, подвергнутой воздействию когерентного излучения.

Предполагается, что изобретение особенно полезно для пластиковых изделий из следующего перечня примеров:

1) пластиковая упаковка, например, для фармацевтических препаратов,

2) идентификационные карты, в том числе банковские карты, служебные пропуска, магазинные карты - включая полосу для подписи на идентификационной карте, особенно на банковской или магазинной карте.

Особенно полезным применением может быть сканирование полоски для подписи на идентификационной карте, после того как подпись поставлена, так чтобы цифровая подпись, используемая для проверки подлинности, была особой для данной подписанной карты и формировалась на основе сочетания подписи лица и структуры поверхности полоски, на которую ставится подпись.

В случае, когда идентификационная карта содержит фотографию лица (которая может представлять собой пластиковую идентификационную карту или удостоверение личности из другого материала, например бумажный паспорт), то может быть полезно, если устройство считывания просканирует часть с фотографией идентификационной карты (отдельно от сканирования обложки или пустой страницы) с целью проверки на отсутствие попыток подделки. Это делается для того, что если для крепления фотографии к идентификационному изделию используют покровную или клеящуюся пленку, фальсификатор должен ее удалить, чтобы наклеить на идентификационное изделие фальшивую фотографию. Устройство считывания, реализованное согласно настоящему изобретению, распознает подделку такого типа, поскольку у новой фотографии будет иная структура поверхности.

Предполагается, что при помощи изобретения можно идентифицировать материал любого другого типа при условии, что он обладает подходящей структурой поверхности. Типы материалов с очень гладкой поверхностью на микроскопическом уровне могут оказаться непригодны, равно как и непрозрачные материалы, у которых очень глубокая и (или) неустойчивая поверхность (например, текстильное полотно с начесом).

Изобретение позволяет также идентифицировать изделия множества других типов, в том числе упаковку, документы и одежду.

Изобретение предусматривает способ идентификации продукта по его упаковке, содержащий этапы, на которых: подвергают упаковку воздействию когерентного излучения; собирают набор значений данных, которые являются результатом измерения рассеяния когерентного излучения от внутренней структуры упаковки; и определяют сигнатуру продукта по набору значений данных.

Соответствующая часть упаковки, подвергаемая воздействию когерентного излучения, может быть сделана из бумаги, картона, пластика (например, упаковка из целлофана), металла или другого материала с подходящей характерной поверхностью или внутренней структурой. Изделие может содержаться в упаковке, и необязательно упаковка может быть загерметизирована для защиты от неумелого обращения. В альтернативном варианте упаковка может быть дополнением к изделию, например, ярлыком, прикрепленным соединительным элементом, который нельзя отсоединить без видимых повреждений. Это может быть особенно полезно, например, для фармацевтических продуктов, косметических и парфюмерных товаров, а также запасных частей для воздушных судов или наземных или водных транспортных средств.

Изобретение предусматривает способ идентификации документа, содержащий этапы, на которых: подвергают документ воздействию когерентного излучения; собирают набор значений данных, которые являются результатом измерения рассеяния когерентного излучения от внутренней структуры документа; и определяют сигнатур