Передача пилот-сигнала и оценка канала для системы связи, использующей мультиплексирование с частотным разделением каналов

Иллюстрации

Показать все

Изобретение относится к олсти связи: к передаче пилот-сигнала и к оценке канала для системы связи. Технический результат: уменьшение вредного влияния высокого отношения пиковой мощности к средней мощности (PARP) при модуляции с несколькими несущими. Пилот-сигнал можно генерировать, основываясь на многофазной последовательности и используя множественный доступ с частотным разделением каналов на одной несущей (SC-FDMA). SC-FDMA включает в себя перемежаемый FDMA (IFDMA), в котором данные и/или пилот-сигнал передают в поддиапазонах, и локализованный FDMA (LFDMA), в котором данные и/или пилот-сигнал передают обычно в смежных поддиапазонах среди всех К поддиапазонов. Передатчик генерирует пилот-сигнал, имеющий постоянную огибающую во временной области и равномерный частотный спектр, основываясь на многофазной последовательности. Для генерации пилотного символа IFDMA первую последовательность пилотных символов формируют, основываясь на многофазной последовательности, и многократно повторяют для получения второй последовательности пилотных символов. Пилообразный фазовый сигнал применяют ко второй последовательности пилотных символов для получения третьей последовательности выводимых символов. Циклический префикс добавляют к третьей последовательности выводимых символов для получения символа IFDMA, который передают во временной области через канал связи. Пилотные символы можно мультиплексировать с символами данных, используя TDM и/или CDM. Пилотный символ LFDMA можно также генерировать с помощью многофазной последовательности и мультиплексировать, используя TDM или CDM. Приемник получает оценку канала, основываясь на принятых пилотных символах и с использованием методики минимальной среднеквадратичной ошибки, наименьших квадратов или некоторой другой методики оценки канала. 15 н. и 44 з.п ф-лы, 13 ил.

Реферат

Требование приоритета по разделу 35 §119 Свода законов США

По настоящей заявке на патент испрашивается приоритет по дате подачи предварительной заявки на патент №60/659526, озаглавленной «Estimation for Pilot Design and Channel Interleaved Frequency Division Multiple Access Communication», зарегистрированной 7 марта 2005 г., и переуступленной правопреемнику, которая специально приведена здесь в качестве ссылки.

I. Область техники, к которой относится изобретение

Настоящее изобретение относится в общем случае к связи, а более конкретно - к передаче пилот-сигнала и к оценке канала для системы связи.

II. Уровень техники

Мультиплексирование с ортогональным частотным разделением каналов (OFDM) является методикой модуляции с несколькими несущими, которая делит весь диапазон частот системы на множество (K) ортогональных поддиапазонов. Эти поддиапазоны также называют тонами, поднесущими и элементами разрешения по частоте. С помощью OFDM каждый поддиапазон связывают с соответствующей поднесущей, которую можно модулировать с помощью данных.

OFDM имеет определенные желательные характеристики, такие как высокая спектральная эффективность и устойчивость против эффектов многолучевого распространения. Однако главным недостатком OFDM является высокое отношение пиковой мощности к средней мощности (PAPR), что означает, что отношение пиковой мощности к средней мощности сигнала OFDM может быть высоким. Высокое PAPR для сигнала OFDM является результатом возможного синфазного (или когерентного) сложения всех поднесущих, когда их независимо модулируют данными. Фактически, можно показать, что пиковая мощность может быть до K раз больше, чем средняя мощность для OFDM.

Высокое PAPR для сигнала OFDM нежелательно и может ухудшать качество работы. Например, большие пики в сигнале OFDM могут приводить к работе усилителя мощности в очень нелинейной области, или возможно обрезание, что затем вызывает искажение взаимной модуляции и другие искажения, которые могут ухудшать качество сигнала. Ухудшение качества сигнала может неблагоприятно влиять на эффективность оценки канала, обнаружения данных и т.д.

Поэтому в предшествующем уровне техники существует потребность в методиках, которые могут уменьшать вредное влияние высокого PAPR при модуляции с несколькими несущими.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В данном описании раскрыты методики передачи пилот-сигнала, с помощью которых можно избежать высокого PAPR, и методики оценки канала. Пилот-сигнал можно генерировать, основываясь на многофазной последовательности и используя множественный доступ с частотным разделением каналов на одной несущей (SC-FDMA). Многофазная последовательность является последовательностью, которая имеет хорошие временные характеристики (например, постоянную огибающую во временной области) и хорошие спектральные характеристики (например, равномерный частотный спектр). SC-FDMA включает в себя (1) перемежаемый FDMA (IFDMA), в котором данные и/или пилот-сигнал передают в поддиапазонах, которые равномерно распределены по всем K поддиапазонам, и (2) локализованный FDMA (LFDMA), в котором данные и/или пилот-сигнал передают обычно в смежных поддиапазонах среди всех K поддиапазонов. IFDMA также называют распределенным FDMA, а LFDMA также называют узкополосным FDMA.

В варианте осуществления для передачи пилот-сигнала с использованием IFDMA первую последовательность пилотных символов формируют, основываясь на многофазной последовательности, и повторяют много раз для получения второй последовательности пилотных символов. Пилообразный фазовый сигнал можно применять ко второй последовательности пилотных символов для получения третьей последовательности выводимых символов. Циклический префикс добавляют к третьей последовательности выводимых символов для формирования символа IFDMA, который передают во временной области через канал связи. Пилотные символы можно мультиплексировать с символами данных, используя мультиплексирование с временным разделением каналов (TDM), мультиплексирование с кодовым разделением каналов (CDM) и/или некоторую другую схему мультиплексирования.

В варианте осуществления для передачи пилот-сигнала с использованием LFDMA первую последовательность пилотных символов формируют, основываясь на многофазной последовательности, и преобразовывают в частотную область для получения второй последовательности символов частотной области. Третью последовательность символов формируют с помощью отображения второй последовательности символов частотной области на группу поддиапазонов, используемых для передачи пилот-сигнала, и отображения нулевых символов на остальные поддиапазоны. Третью последовательность символов преобразовывают во временную область для получения четвертой последовательности выводимых символов. К четвертой последовательности выводимых символов добавляют циклический префикс для формирования символа LFDMA, который передают во временной области через канал связи.

В одном из вариантов осуществления для оценки канала по меньшей мере один символ SC-FDMA принимают через канал связи и обрабатывают (например, демультиплексируют для пилот-сигнала TDM или объединяют каналы для пилот-сигнала CDM) для получения принятых пилотных символов. Символ SC-FDMA может быть символом IFDMA или символом LFDMA. Оценку канала получают, основываясь на принятых пилотных символах и использовании методики минимальной среднеквадратичной ошибки (MMSE), методики наименьших квадратов (LS) или на некоторой другой методике оценки канала. Фильтрацию, сравнение с пороговым значением, усечение и/или выбор сигнала можно выполнять для получения улучшенной оценки канала. Оценку канала можно также улучшать с помощью выполнения итерационной оценки канала или оценки канала с помощью данных.

Различные аспекты и варианты осуществления изобретения описаны более подробно ниже.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Особенности и сущность настоящего изобретения станут более очевидными из сформулированного ниже подробного описания при рассмотрении его вместе с чертежами, на которых одинаковые позиционные обозначения совпадают соответствующим образом по всему тексту.

Фиг.1 показывает структуру чередующихся поддиапазонов для системы связи.

Фиг.2 показывает генерацию символа IFDMA для одного набора из N поддиапазонов.

Фиг.3 показывает структуру узкополосных поддиапазонов.

Фиг.4 показывает генерацию символа LFDMA для одной группы из N поддиапазонов.

Фиг.5A и 5B показывают две схемы пилот-сигнала TDM, когда пилот-сигналы и данные мультиплексируют по периодам символа и периодам отсчетов соответственно.

Фиг.5C и 5D показывают две схемы пилот-сигнала CDM, когда пилот-сигналы и данные объединяют по периодам символа и периодам отсчетов соответственно.

Фиг.6 показывает широкополосные пилот-сигналы, которые мультиплексируют с временным разделением каналов с данными.

Фиг.7A показывает процесс генерации пилотного символа IFDMA.

Фиг.7B показывает процесс генерации пилотного символа LFDMA.

Фиг.8 показывает процесс выполнения оценки канала.

Фиг.9 показывает структурную схему передатчика и приемника.

Фиг.10A и 10B показывают блоки обработки передаваемых (ПД) данных и пилот-сигнала для схемы пилот-сигнала TDM и схемы пилот-сигнала CDM соответственно.

Фиг.11A и 11B показывают модуляторы IFDMA и LFDMA соответственно.

Фиг.12A и 12B показывают демодуляторы IFDMA для пилот-сигналов TDM и CDM соответственно.

Фиг.13A и 13B показывают демодуляторы LFDMA для пилот-сигналов TDM и CDM соответственно.

ПОДРОБНОЕ ОПИСАНИЕ

Слово «примерный» в данном описании означает «служащий примером, вариантом или иллюстрацией». Любой вариант осуществления или разработка, описанные в данном описании как «примерный», не обязательно должны рассматриваться как предпочтительный или преимущественный по сравнению с другими вариантами осуществления или разработками.

Описанные методики передачи пилот-сигнала и оценки канала могут использоваться для различных систем связи, которые используют модуляцию с несколькими несущими или выполняют мультиплексирование с частотным разделением каналов. Например, эти методики могут использоваться для системы множественного доступа с частотным разделением каналов (FDMA), системы множественного доступа с ортогональным частотным разделением каналов (OFDMA), системы SC-FDMA, системы IFDMA, системы LFDMA, системы на основе OFDM и т.д. Эти методики могут также использоваться для прямого канала связи (или нисходящего канала связи) и обратного канала связи (или восходящего канала связи).

Фиг.1 показывает примерную структуру 100 поддиапазонов, которая может использоваться для системы связи. Система имеет полный диапазон частот BW МГц, который разделен на K ортогональных поддиапазонов, которым присваивают индексы с 1 по K. Промежуток между смежными поддиапазонами равен BW/K МГц. В системе, имеющей определенную форму спектра, некоторые поддиапазоны на обоих концах диапазона частот системы не используются для передачи данных/пилот-сигнала и служат защитными поддиапазонами для предоставления возможности системе отвечать требованиям спектральной маски. Альтернативно, K поддиапазонов можно определять в пригодной для использования части диапазона частот системы. Для простоты последующее описание предполагает, что все K поддиапазонов могут использоваться для передачи данных/пилот-сигнала.

Для структуры 100 поддиапазонов все K поддиапазонов компонуют в S непересекающихся наборов поддиапазонов, которые также называют «перемежениями». S наборов отделены друг от друга, или не перекрываются друг с другом, т.к. каждый из K поддиапазонов принадлежит только одному набору. Каждый набор содержит N поддиапазонов, которые равномерно распределены по всем K поддиапазонам так, что последовательные поддиапазоны в наборе отделены друг от друга S поддиапазонами, где K=S·N. Таким образом набор u содержит поддиапазоны u, S+u, 2S+u,..., (N-1)(S+u, где u - индекс набора и u∈{1,..., S}. Индекс u также является смещением поддиапазона, которое указывает первый поддиапазон в наборе. N поддиапазонов в каждом наборе чередуются с N поддиапазонами в каждом из других S-1 наборов.

Фиг.1 показывает определенную структуру поддиапазонов. В общем случае структура поддиапазонов может включать в себя любое количество наборов поддиапазонов, и каждый набор может включать в себя любое количество поддиапазонов. Наборы могут включать в себя одинаковое или отличающееся количество поддиапазонов. Например, некоторые наборы могут включать в себя N поддиапазонов, в то время как другие наборы могут включать в себя 2N, 4N или некоторое другое количество поддиапазонов. Поддиапазоны в каждом наборе равномерно распределены (т.е. равномерно расположены) по всем K поддиапазонам для достижения описанных ниже преимуществ. Для простоты последующее описание предполагает использование структуры 100 поддиапазонов, показанной на фиг.1.

S наборов поддиапазонов можно рассматривать как S каналов, которые можно использовать для передачи данных и пилот-сигнала. Например, каждому пользователю можно назначать один набор поддиапазонов, и данные и пилот-сигнал для каждого пользователя можно посылать в назначенном наборе поддиапазонов. S пользователей могут одновременно передавать данные/ пилот-сигнал в S наборах поддиапазонов через обратный канал связи к базовой станции. Базовая станция может также одновременно передавать данные/ пилот-сигнал в S наборах поддиапазонов через прямой канал связи S пользователям. Для каждого канала связи до N символов модуляции можно посылать в каждом периоде символа (по времени или по частоте) в N поддиапазонах в каждом наборе, не вызывая интерференции с другими наборами поддиапазонов. Символ модуляции - комплексное число для точки в совокупности (созвездии) сигнала (например, для M-PSK (M-арной фазовой манипуляции), M-QAM (M-арной квадратурной амплитудной модуляции) и т.д.).

При OFDM символы модуляции передают в частотной области. Для каждого набора поддиапазонов N символов модуляции можно передавать в N поддиапазонах в каждом периоде символа. В последующем описании период символа является продолжительностью времени одного символа OFDM, одного символа IFDMA или одного символа LFDMA. Один символ модуляции отображают на каждый из N поддиапазонов, используемых для передачи, и нулевой символ (который является значением нулевого сигнала) отображают на каждый из неиспользуемых K-N поддиапазонов. K символов модуляции и нулевых символов преобразовывают из частотной области во временную область, выполняя K-точечное обратное быстрое преобразование Фурье (ОБПФ) для K символов модуляции и нулевых символов для получения K отсчетов временной области. Отсчеты временной области могут иметь высокое PAPR.

Фиг.2 показывает генерацию символа IFDMA для одного набора из N поддиапазонов. Исходная последовательность из N символов модуляции, которую будут передавать в одном периоде символа в N поддиапазонах в наборе u, обозначена как {d1, d2, d3,..., dN} (блок 210). Исходную последовательность из N символов модуляции повторяют S раз для получения расширенной последовательности из K символов модуляции (блок 212). N символов модуляции посылают во временной области и все вместе занимают N поддиапазонов в частотной области. S копий исходной последовательности приводят к N занятым поддиапазонам, разделяемым S поддиапазонами, причем S-1 поддиапазонов нулевой мощности отделяют смежные занятые поддиапазоны. Расширенная последовательность имеет гребенчатый частотный спектр, который занимает набор 1 поддиапазонов на фиг.1.

Расширенную последовательность умножают на пилообразный фазовый сигнал для получения последовательности выводимых символов с преобразованной частотой (блок 214). Каждый выводимый символ в последовательности с преобразованной частотой можно генерировать следующим образом:

xn=dn·e-j2π·(n-1)·(u-1)/K, для n=1,…, K, Ур.(1)

где dn является n-ным символом модуляции в расширенной последовательности и xn является n-ным выводимым символом в последовательности с преобразованной частотой. Пилообразный фазовый сигнал e-j2π·(n-1)·(u-1)/K имеет фазовый наклон 2π(u-1)/K, который определяется первым поддиапазоном в наборе u. Элементы «n-1» и «u-1» в экспоненте пилообразного фазового сигнала появляются для того, чтобы индексы n и u начинались с '1' вместо '0'. Умножение на пилообразный фазовый сигнал во временной области преобразовывает гребенчатый частотный спектр расширенной последовательности вверх по частоте так, чтобы последовательность с преобразованной частотой занимала набор u поддиапазонов в частотной области.

C последних выводимых символов последовательности с преобразованной частотой копируют к началу преобразованной частотой последовательности для формирования символа IFDMA, который содержит K+C выводимых символов (блок 216). Cо скопированных выводимых символов часто называют циклическим префиксом или интервалом защиты, и C - длина циклического префикса. Циклический префикс используется для борьбы с межсимвольной интерференцией (ISI, МСИ), вызванной избирательным замиранием частот, что является частотной характеристикой, которая изменяется по диапазону частот системы. K+C выводимых символов в символе IFDMA передают в K+C периодах отсчетов, один выводимый символ в каждом периоде отсчетов. Периодом символа для IFDMA является продолжительность одного символа IFDMA, и он равен K+C периодов отсчетов. Период отсчетов также часто называют периодом элементарного сигнала.

Так как символ IFDMA является периодическим во временной области (за исключением пилообразного фазового сигнала), символ IFDMA занимает набор из N расположенных на одинаковом расстоянии поддиапазонов, начиная с поддиапазона u. Пользователи с различными смещениями поддиапазонов занимают различные наборы поддиапазонов, которые ортогональны друг другу, подобно OFDMA.

Фиг.3 показывает примерную структуру 300 узкополосных поддиапазонов, которая может использоваться для системы связи. Для структуры 300 поддиапазонов K поддиапазонов компонуют в S непересекающихся групп. Каждая группа содержит N поддиапазонов, которые являются смежными друг с другом. В общем случае N>1, S>1 и K=S·N, где N и S для структуры 300 узкополосных поддиапазонов могут быть теми же самыми или отличаться от N и S для структуры 100 чередующихся поддиапазонов на фиг.1. Группа v содержит поддиапазоны (v-1)·N+1, (v-1)·N+2,..., v·N, где v - индекс группы и v∈{1,..., S}. В общем случае структура поддиапазонов может включать в себя любое количество групп, каждая группа может содержать любое количество поддиапазонов, и группы могут содержать одинаковое или отличающееся количество поддиапазонов.

Фиг.4 показывает генерацию символа LFDMA для одной группы из N поддиапазонов. Исходная последовательность из N символов модуляции, которые будут передавать в одном периоде символа в группе поддиапазонов, обозначена как {d1, d2, d3,..., dN} (блок 410). Исходную последовательность из N символов модуляции преобразовывают в частотную область с помощью N-точечного быстрого преобразования Фурье (БПФ) для получения последовательности из N символов частотной области (блок 412). N символов частотной области отображают на N поддиапазонов, используемых для передачи, и K-N нулевых символов отображают на оставшиеся K-N поддиапазонов для генерации последовательности из K символов (блок 414). N поддиапазонов, используемых для передачи, имеют индексы с k+1 по k+N, где 1≤k≤(K-N). Последовательность из K символов затем преобразовывают во временную область с помощью K-точечного ОБПФ для получения последовательности из K выводимых символов временной области (блок 416). Последние C выводимых символов последовательности копируют в начало последовательности для формирования символа LFDMA, который содержит K+C выводимых символов (блок 418).

Символ LFDMA генерируют так, что он занимает группу из N смежных поддиапазонов, начиная с поддиапазона k+1. Пользователям могут быть назначены различные неперекрывающиеся группы поддиапазонов, которые ортогональны друг другу, подобно OFDMA. Каждому пользователю могут быть назначены различные группы поддиапазонов в различных периодах символа для достижения частотного разнесения. Группы поддиапазонов для каждого пользователя можно выбирать, например, основываясь на образце скачкообразной перестройки частоты.

SC-FDMA имеет определенные желательные характеристики, такие как высокая спектральная эффективность и устойчивость против эффектов многолучевого распространения, подобно OFDMA. Кроме того, SC-FDMA не имеет высокого PAPR, так как символы модуляции посылают во временной области. PAPR сигнала SC-FDMA определяют с помощью точек сигналов в совокупности сигналов, выбранной для использования (например, M-PSK, M-QAM и т.д.). Однако символы модуляции временной области в SC-FDMA подвержены межсимвольной интерференции из-за неравномерной характеристики канала связи. Можно выполнять выравнивание принятых символов модуляции для смягчения вредного влияния межсимвольной интерференции. Выравнивание требует довольно точной оценки канала связи, которая может быть получена, используя описанные методики.

Передатчик может передавать пилот-сигнал для облегчения оценки канала приемником. Пилот-сигнал является передаваемыми символами, которые заранее известны и передатчику, и приемнику. В данной работе используется, что символ данных является символом модуляции для данных и пилотный символ является символом модуляции для пилот-сигнала. Символы данных и пилотные символы могут быть получены из тех же самых или различных совокупностей сигнала. Пилот-сигнал можно передавать различными способами, как описано ниже.

Фиг.5A показывает схему 500 пилот-сигнала TDM с пилот-сигналами и данными, мультиплексируемыми по периодам символа. Например, данные можно посылать в периоды символа D1, затем пилот-сигнал можно посылать в следующие периоды символа P1, затем данные можно посылать в следующие периоды символа D1 и т.д. В общем случае D1≥1 и P1≥1. Для примера, показанного на фиг.5A, D1>1 и P1=1. Последовательность из N символов данных можно посылать в одном наборе/группе поддиапазонов в каждом периоде символа, используемом для передачи данных. Последовательность из N пилотных символов можно посылать в одном наборе/группе поддиапазонов в каждом периоде символа, используемом для передачи пилот-сигнала. Для каждого периода символа последовательность из N символов данных или пилотных символов может быть преобразована в символ IFDMA или символ LFDMA, как описано выше для фиг.2 и 4 соответственно. Символ SC-FDMA может быть символом IFDMA или символом LFDMA. Символ SC-FDMA, содержащий только пилот-сигнал, называют пилотным символом SC-FDMA, который может быть пилотным символом IFDMA или пилотным символом LFDMA. Символ SC-FDMA, содержащий только данные, называют символом данных SC-FDMA, который может быть символом данных IFDMA или символом данных LFDMA.

Фиг.5B показывает схему 510 пилот-сигнала TDM с пилот-сигналами и данными, мультиплексируемыми по периодам отсчетов. Для этого варианта осуществления данные и пилот-сигнал мультиплексируют в пределах того же самого символа SC-FDMA. Например, символы данных можно посылать в периодах отсчетов D2, затем пилотные символы можно посылать в следующих периодах отсчетов P2, затем символы данных посылают в следующих периодах отсчетов D2 и т.д. В общем случае D2≥1 и P2≥1. Для примера, показанного на фиг.5B, D2=1 и P2=1. Последовательность из N данных и пилотных символов можно посылать в одном наборе/группе поддиапазонов в каждом периоде символа и можно преобразовывать в символ SC-FDMA, как описано выше для фиг.2 и 4.

Схема пилот-сигнала TDM может также мультиплексировать пилот-сигналы и данные и по периодам символа, и периодам отсчетов. Например, данные и пилотные символы можно посылать в нескольких периодах символа, только символы данных можно посылать в некоторых других периодах символа, и только пилотные символы можно посылать в определенных периодах символа.

Фиг.5C показывает схему 530 пилот-сигнала CDM с пилот-сигналами и данными, объединяемыми по периодам символа. Для этого варианта осуществления последовательность из N символов данных умножают на первую ортогональную последовательность из М элементарных сигналов {wd} для получения М последовательностей масштабированных символов данных, где M>1. Каждую последовательность масштабированных символов данных получают, умножая исходную последовательность символов данных на один элементарный сигнал ортогональной последовательности {wd}. Точно так же последовательность из N пилотных символов умножают на вторую ортогональную последовательность из М элементарных сигналов {wp} для получения М последовательностей масштабированных пилотных символов. Каждую последовательность масштабированных символов данных затем складывают с соответствующей последовательностью масштабированных пилотных символов для получения последовательности объединенных символов. М последовательностей объединенных символов получают, складывая М последовательностей масштабированных символов данных с М последовательностями масштабированных пилотных символов. Каждую последовательность объединенных символов преобразовывают в символ SC-FDMA.

Ортогональные последовательности могут быть последовательностями Уолша, последовательностями OVSF (ортогональных кодов переменной длины) и т.д. Для примера, показанного на фиг.5C, М=2, первая ортогональная последовательность {wd}={+1+1} и вторая ортогональная последовательность {wp}={+1 -1}. N символов данных умножают на+1 для периода символа t и также на+1 для периода символа t+1. N пилотных символов умножают на+1 для периода символа t и на -1 для периода символа t+1. Для каждого периода символа N масштабированных символов данных складывают с N масштабированными пилотными символами для получения N объединенных символов для этого периода символа.

Фиг.5D показывает схему 540 пилот-сигнала CDM с пилот-сигналами и данными, объединяемыми по периодам отсчетов. Для этого варианта осуществления последовательность из N/M символов данных умножают на ортогональную последовательность из М элементарных сигналов {wd} для получения последовательности из N масштабированных символов данных. В частности, первый символ данных d1(t) в исходной последовательности умножают на ортогональную последовательность {wd} для получения первых М масштабированных символов данных, следующий символ данных d2(t) умножают на ортогональную последовательность {wd} для получения следующих М масштабированных символов данных и т.д. и последний символ данных dN/M(t) в исходной последовательности умножают на ортогональную последовательность {wd} для получения последних М масштабированных символов данных. Точно так же последовательность из N/M пилотных символов умножают на ортогональную последовательность из М элементарных сигналов {wp} для получения последовательности из N масштабированных пилотных символов. Последовательность из N масштабированных символов данных складывают с последовательностью из N масштабированных пилотных символов для получения последовательности из N объединенных символов, которую преобразовывают в символ SC-FDMA.

Для примера, показанного на фиг.5D, М=2, ортогональной последовательностью для данных является {wd}={+1+1} и ортогональной последовательностью для пилот-сигнала является {wp}={+1 -1}. Последовательность из N/2 символов данных умножают на ортогональную последовательность {+1+1} для получения последовательности из N масштабированных символов данных. Точно так же последовательность из N/2 пилотных символов умножают на ортогональную последовательность {+1 -1} для получения последовательности из N масштабированных пилотных символов. Для каждого периода символа N масштабированных символов данных складывают с N масштабированными пилотными символами для получения N объединенных символов для этого периода символа.

Пилот-сигнал CDM можно посылать в каждом периоде символа, как показано на фиг.5C и 5D. Пилот-сигнал CDM можно также посылать только в определенных периодах символа. В схеме пилот-сигнала можно также использовать комбинацию TDM и CDM. Например, пилот-сигнал CDM можно посылать в нескольких периодах символа, а пилот-сигнал TDM можно посылать в других периодах символа. Мультиплексированный с частотным разделением каналов (FDM) пилот-сигнал можно также посылать в определенном наборе поддиапазонов, например, для нисходящего канала связи.

Для вариантов осуществления, показанных на фиг.5A-5D, пилот-сигнал TDM или CDM посылают в N поддиапазонах, используемых для передачи данных. В общем случае поддиапазоны, используемые для передачи пилот-сигнала (или просто пилотные поддиапазоны), могут быть теми же самыми или отличаться от поддиапазонов, используемых для передачи данных (или просто поддиапазонов данных). Пилот-сигнал можно также посылать в меньшем или большем количестве поддиапазонов данных. Поддиапазоны данных и пилотные поддиапазоны могут быть постоянными в течение всей передачи. Альтернативно, поддиапазоны данных и пилотные поддиапазоны могут скачкообразно изменяться по частоте в различных временных интервалах для достижения частотного разнесения. Например, физический канал может быть связан с образцом, скачкообразно изменяющимся по частоте (FH), который указывает один или большее количество определенных наборов поддиапазонов или групп для использования для физического канала в каждом временном интервале. Временной интервал может охватывать один или множество периодов символа.

Фиг.6 показывает схему 600 широкополосного пилот-сигнала, который более соответствует обратному каналу связи. Для этого варианта осуществления каждый пользователь передает широкополосный пилот-сигнал, который является пилот-сигналом, который посылают на всех или большинстве из всех K поддиапазонов, например, на всех поддиапазонах, пригодных для использования для передачи. Широкополосный пилот-сигнал можно генерировать во временной области (например, с помощью псевдослучайной (ПС) последовательности) или в частотной области (например, используя OFDM). Широкополосный пилот-сигнал для каждого пользователя можно мультиплексировать с временным разделением каналов с передачей данных от этого пользователя, которые можно генерировать, используя LFDMA (как показано на фиг.6) или IFDMA (не показано на фиг.6). Широкополосные пилот-сигналы от всех пользователей можно передавать в тех же самых периодах символа, с помощью чего можно избежать интерференции между данными и пилот-сигналом для оценки канала. Широкополосный пилот-сигнал от каждого пользователя можно мультиплексировать с кодовым разделением (например, псевдослучайным) по отношению к широкополосным пилот-сигналам от других пользователей. Этого можно достичь с помощью назначения каждому пользователю различных ПС последовательностей. Широкополосный пилот-сигнал для каждого пользователя имеет низкое отношение пиковой мощностей к средней мощности (PAPR) и охватывает весь диапазон частот системы, что предоставляет возможность приемнику получать широкополосную оценку канала для пользователя. Для варианта осуществления, показанного на фиг.6, поддиапазоны данных скачкообразно изменяются по частоте в различных временных интервалах. Для каждого временного интервала оценку канала можно получать для поддиапазонов данных, основываясь на широкополосном пилот-сигнале.

Фиг.5A-6 показывают примерные схемы передачи пилот-сигнала и данных. Пилот-сигнал и данные можно также передавать другими способами, используя любую комбинацию TDM, CDM и/или некоторых других схем мультиплексирования.

Пилот-сигналы TDM и CDM можно генерировать различными способами. В одном из вариантов осуществления пилотные символы, используемые для генерации пилот-сигналов TDM и CDM, являются символами модуляции известной совокупности сигнала, такой как QPSK (4-кратная фазовая манипуляция). Последовательность из N символов модуляции может использоваться для схемы пилот-сигнала TDM, показанной на фиг.5A, и схемы пилот-сигнала CDM, показанной на фиг.5C. Последовательность из N/M символов модуляции может использоваться для схемы пилот-сигнала TDM, показанной на фиг.5B, и схемы пилот-сигнала CDM, показанной на фиг.5D. Каждую из последовательностей из N символов модуляции и последовательностей из N/M символов модуляции можно выбирать так, чтобы иметь (1) частотный спектр, который настолько равномерный, насколько это возможно, и (2) временную огибающую, которая изменяется как можно меньше. Равномерный частотный спектр гарантирует, что все поддиапазоны, используемые для передачи пилот-сигнала, имеют достаточную мощность для предоставления возможности приемнику должным образом оценивать усиление канала для этих поддиапазонов. Постоянная огибающая устраняет искажение с помощью блоков схемы, таких как усилитель мощности.

В другом варианте осуществления пилотные символы, используемые для генерации пилот-сигналов TDM и CDM, формируют, основываясь на многофазной последовательности, которая имеет хорошие временные и спектральные характеристики. Например, пилотные символы можно генерировать следующим образом:

, для n=1,..., N, Ур.(2)

где фазу φn можно получать, основываясь на любом из следующих уравнений:

φn=π·(n-1) n, Ур.(3)

φn=π·(n-1)2, Ур.(4)

φn=π·[(n-1)·(n-N-1)], Ур.(5)

В уравнении (6) Q и N являются взаимно простыми числами. Уравнение (3) предназначено для последовательности Голомба, уравнение (4) - для последовательности P3, уравнение (5) - для последовательности P4 и уравнение (6) - для последовательности Chu. Последовательности P3, P4 и Chu могут иметь любую произвольную длину.

Пилотные символы можно также генерировать следующим образом:

, для l=1,..., T и m=1,..., T, Ур.(7)

где фазу φl,m можно получать, основываясь на любом из следующих уравнений:

φl,m=2π·(l-1)·(m-1)/T, Ур.(8)

φl,m=-(π/T)·(T-2l+1)·[(l-1)·T+(m-1)], Ур.(9)

Ур.(10)

Уравнение (8) предназначено для последовательности Френка, уравнение (9) - для последовательности P1 и уравнение (10) - для последовательности Px. Длина последовательностей Френка, P1 и Px ограничены N=T2, где T - положительное целое число.

Последовательность пилотных символов, сгенерированная, основываясь на любой из описанных выше многофазных последовательностей, имеет и равномерный частотный спектр, и постоянную огибающую временной области. Могут также использоваться другие многофазные последовательности, имеющие хорошие спектральные характеристики (например, равномерный или известный частотный спектр) и хорошие временные характеристики (например, постоянную или известную огибающую временной области). Пилот-сигналы TDM или CDM, сгенерированные с помощью этой последовательности пилотных символов, в таком случае имели бы (1) низкое PAPR, которое не искажается элементами схемы, такими как усилитель мощности, и (2) равномерный частотный спектр, который предоставляет возможность приемнику точно оценивать усиление канала для всех поддиапазонов, используемых для передачи пилот-сигнала.

Фиг.7A показывает процесс 700 генерации пилотного символа IFDMA. Первую последовательность пилотных символов формируют, основываясь на многофазной последовательности, которая может быть любой из описанных выше многофазных последовательностей или некоторой другой многофазной последовательностью (блок 710). Первую последовательность пилотных символов повторяют много раз для получения второй последовательности пилотных символов (блок 712). Пилообразный фазовый сигнал применяют ко второй последовательности пилотных символов для получения третьей последовательности выводимых символов (блок 714). Пилообразный фазовый сигнал можно применять в цифровой форме к пилотным символам или вычислять с помощью процесса преобразования частоты с повышением. Циклический префикс добавляют к третьей последовательности выводимых символов для получения четвертой последовательности выводимых символов, которая является пилотным символом IFDMA (блок 716). Пилотный символ IFDMA передают во временной области через канал связи (блок 718). Хотя не показано на фиг.7 для простоты, пилотные символы можно мультиплексировать с символами данных, используя TDM и/или CDM, например, как описано выше для фиг.5A-5D.

Фиг.7B показывает процесс 750 генерации пилотного символа LFDMA. Первую последовательность пилотных символов формируют, основываясь на многофазной последовательности, которая может быть любой из описанных выше многофазных последовательностей или некоторой другой многофазной последовательностью (блок 760). Первую последовательность из N пилотных символов преобразовывают в частотную область с помощью N-точечного БПФ для получения второй последовательности из N символов частотной области (блок 762). N символов частотной области затем отображают на N поддиапазонов, используемых для передачи пилот-сигнала, и нулевые символы отображают на оставшиеся K-N поддиапазонов для получения третьей последовательности из K символов (блок 764). Третью последовательность из K символов преобразовывают во временную область с помощью K-точечного ОБПФ для получения четвертой последовательности из K выводимых символов временной области (блок 766). Циклический префикс добавляют к четвертой последовательности выводимых символов для получения пятой последовательности из K+C выводимых символов, которая является пилотным символом LFDMA (блок 768). Пилотный символ LFDMA передают во временной области через канал связи (блок 770). Хотя не показаны на фиг.7B для простоты, пилотные символы можно мультиплексировать с символами данных, используя TDM и/или CDM, например, как описано выше для фиг.5A-5D.

И для IFDMA, и для LFDMA количество поддиапазонов, используемых для передачи пилот-сигнала, может быть тем же самым или отличаться от количества поддиапазонов, используемых для передачи данных. Например, пользователю может быть назначено 16 поддиапазонов для передачи данных и восемь поддиапазонов для передачи пилот-сигнала. Другие восемь поддиапазонов могут быть назначены другому пользователю д