Коррозионно-стойкий чугун с шаровидным графитом

Изобретение относится к литейному производству, в частности к составам коррозионностойких чугунов с шаровидным графитом. Может использоваться для производства рабочих органов грунтовых и песковых насосов и гидромашин, перекачивающих абразивные пульпы, смеси и суспензии. Коррозионностойкий чугун с шаровидным графитом содержит, мас.%: углерод 3,2-4,0; кремний 1,5-3,0; марганец 0,8-3,5; хром 7,0-10,0; никель 2,0-4,0; бор 0,2-0,4; ванадий 0,4-1,0; молибден 0,1-0,5; титан 0,1-0,4; алюминий 0,05-0,2; церий 0,03-0,2; магний 0,02-0,1; кальций 0,05-0,2; железо - остальное. Чугун обладает повышенной устойчивостью к воздействию коррозионно-абразивных сред. 2 табл.

Реферат

Изобретение относится к литейному производству, а именно к изысканию коррозионностойкого чугуна с шаровидным графитом для производства деталей, предназначенных для работы в условиях гидроабразивного износа, в частности для изготовления рабочих органов грунтовых и песковых насосов и гидромашин, перекачивающих абразивные пульпы, суспензии и смеси.

Известен износостойкий чугун, содержащий, мас.%: углерод 3,0-3,7; кремний 0,5-3,0; марганец 0,2-1,5; хром 4,0-15,0; никель 4,0-8,0; фосфор до 0,4; сера до 0,15; железо остальное (см. патент США №2662011, кл.75-128, 1953). Недостатком этого чугуна является низкая концентрация растворенного хрома (до 6%) в его металлической основе. В связи с этим на поверхности изделий из него не образуется коррозионностойкая пассивирующая пленка. В результате чего он имеет низкую устойчивость к воздействию коррозионно-абразивных сред.

Известен хромоникелевый чугун с шаровидным графитом (см., например, описание к патенту РФ №2234553, С1, 7 С22С 37110, 2004 г), выбранный в качестве прототипа по содержанию входящих компонентов и имеющих следующий состав, мас.%: углерод 3,2-4,0; кремний 1,4-2,5; марганец 0,4-1,2; хром 7,0-10,0; никель 2,5-5,5; бор 0,2-0,4; ванадий 0,6-1,0; алюминий 0,05-0,15; церий 0,05-0,20; магний 0,3-0,12; кальций 0,05-0,20; железо остальное.

В металлической основе указанного хромоникелевого чугуна с шаровидным графитом концентрация растворенного хрома достигает 11,8%. Благодаря этому он приобретает первую границу устойчивого пассивного состояния. Однако максимальная коррозионная стойкость у Fe-C сплавов обеспечивается, когда их основа содержит более 12% хрома [1].

Задачей предложенного изобретения является увеличение концентрации растворенного хрома (более 12%) в металлической основе хромоникелевого чугуна с шаровидным графитом с целью повышения устойчивости изделий из него к воздействию коррозионно-абразивных сред.

Технический результат, достигаемый при реализации предложенного технического решения, состоит в повышении коррозионной стойкости чугуна при снижении его себестоимости, предназначенного для изготовления отливок сложной конфигурации, например колес рабочих насосов для перекачки абразивных смесей, пульп и суспензий.

Указанный технический результат обеспечивается тем, что в предложенном хромоникелевом чугуне с шаровидным графитом, содержащем: углерод, кремний, марганец, хром, никель, бор, ванадий, алюминий, церий, магний, кальций, железо, дополнительно введен молибден и титан при следующем соотношении компонентов, мас.%: углерод 3,2-4,0; кремний 1,5-3,0; марганец 0,8-3,5; хром 7,0-10,0; никель 2,0-4,0; бор 0,2-0,4; ванадий 0,4-1,0; молибден 0,1-0,5; титан 0,1-0,4; алюминий 0,05-0,2; церий 0,03-0,2; магний 0,02-0,1; кальций 0,05-0,2; железо остальное.

Введение в состав предложенного чугуна молибдена позволяет увеличить концентрацию растворенного хрома в его металлической основе за счет частичного замещения молибденом атомов хрома в карбидной фазе.

Введение молибдена менее 0,1% не обеспечивает повышение концентрации растворенного хрома в металлической основе; увеличение содержания молибдена свыше 0,4% вызывает выделение карбидов молибдена типа Мо2С, что не обеспечивает повышение концентрации хрома в металлической основе чугуна и, соответственно, его коррозионной стойкости.

Добавка в состав предложенного чугуна титана способствует увеличению концентрации растворенного хрома в его металлической основе за счет частичного замещения титаном атомов хрома в карбидной фазе.

Введение титана менее 0,1% не обеспечивает повышения концентрации растворенного хрома в металлической основе; увеличение содержания титана свыше 0,4% вызывает выделение карбидов титана TiC, что не обеспечивает повышение концентрации хрома металлической основе чугуна и, соответственно, его коррозионной стойкости.

Увеличение содержания марганца в чугуне позволяет повысить его концентрацию в аустените.

Введение марганца в количестве менее 0,8% не обеспечивает повышения достаточной концентрации марганца в аустените, что способствует частичному распаду аустенита при охлаждении в троостит, обладающему низкой коррозионной стойкостью. Это влечет за собой резкое снижение устойчивости хромоникелевого чугуна с шаровидным графитом к воздействию коррозионно-абразивных сред, вследствие чего срок службы изделий из него сокращается. Увеличение содержания марганца свыше 3,5% вызывает выделение карбидов марганца типа Мn3С, что повышает хрупкость чугуна и ухудшает обработку отливок резанием.

Уменьшение содержания никеля в чугуне позволяет понизить себестоимость изготовления литья.

Введение никеля в количестве менее 2,0% не обеспечивает достижения достаточной концентрации никеля в аустените, что способствует частичному распаду аустенита при охлаждении в коррозионно-неустойчивый троостит. Увеличение содержания никеля свыше 4,0% способствует повышению доли остаточного аустенита в металлической основе чугуна, в результате чего понижается его твердость.

Плавку чугуна проводят в индукционных или дуговых электропечах с использованием стандартных шихтовых материалов. Легирующие элементы - никель, молибден, хром и ванадий вводят в металлозавалку. После расплавления шихты и перегрева чугуна до 1450-1500°С на зеркало расплава вводят кремний и марганец в виде 75%-ного ферросилиция и 60%-ного ферромарганца. Затем присаживают алюминий и кальций (в виде 20%-ного силикокальция). Магний в составе сфероидизирующей присадки, а также церий, бор и титан в виде ферроцерия, ферробора и ферротитана вводят на дно разливочного ковша перед выпуском жидкого металла из печи.

В таблице 1 приведен химический состав известного и предложенного чугунов. В таблице 2 приведены их механические свойства и стойкость в агрессивно-абразивных средах.

Техническим результатом является, как видно из данных таблицы 2, более высокая концентрация хрома в металлической основе и, соответственно, более высокая коррозионная стойкость и износостойкость предлагаемого чугуна в сравнении с прототипом.

Временное сопротивление чугуна при изгибе (σизг) определяли на цилиндрических образцах (⌀30×340 мм) при расстоянии между центрами опор 300 мм (ГОСТ 27208-87).

Твердость по Роквеллу определяли на приборе ТК-2М по ГОСТ 9013-59.

Микрораспределение хрома в металлической основе чугуна изучали на микроанализаторе MS-46 «Cameca».

Коррозионную стойкость в сернокислотной среде определяли по потере массы образцов после испытания продолжительностью 75 часов по ГОСТ 5272-50.

Концентрация серной кислоты составляла 0,02%, а рН среды 4,5.

Износостойкость в условиях гидроабразивного изнашивания определяли методом чашечного шлифования на стенде конструкции ЦНИИТМАШ. В процессе испытания образцы (⌀10×110 мм) перемещаются в гидроабразивной пульпе, состоящей из абразива и воды при соотношении 2:1,3 (по объему). В качестве абразива использовали электрокорунд зернистостью 0,6-1,5 мм. Длительность испытания - 1,5 часа. Частота вращения диска составляла 500 об/мин-1 и контролировалась стробоскопическим тахометром, линейная скорость перемещения образца составляла 4,7 м/сек-1.

Применение предлагаемого хромоникелевого чугуна с шаровидным графитом для отливок, имеющих сложную конфигурацию, например колес рабочих насосов для перекачки абразивных смесей, пульп и суспензий, позволяет существенно (на 30-40%) увеличить срок службы деталей в эксплуатации при снижении себестоимости их изготовления на 20-30%.

Таблица 1
Чугун № плавки Содержание химических элементов, мас.%
С Si Mn Cr Ni V Mo Ti В Се Mg Ca Al
Пред-лага-емый 11 3,2 0,5 0,8 3,0 2,0 0,4 0,1 0,1 0,2 0,03 0,02 0,05 0,05
12 2,7 1,8 2,2 8,5 33,0 0,7 0,8 0,35 0,3 0,12 0,06 0,13 0,13
13 4,0 3,0 3,5 10,0 4,0 1,0 0,5 0,4 0,4 0,2 0,1 0,2 0,2
Прототип 1 3,6 1,9 0,8 8,5 4,0 0,8 - - 0,3 0,12 0,8 0,1 0,3
Таблица 2
№ плавки Содержание хрома в металлической основе, % Прочность, МПа Твердость, HRC Скорость коррозии в сернокислой среде, г/м2·н Коэффициент относительной износостойкости в условиях гидроабразивногоизноса
11 12,2 905 62 0,44 6,8
12 12,8 910 63 0,41 7,0
13 13,4 902 64 0,38 7.2
1 11,8 900 62 0,55 6,4

Источники информации

1. Томашев Н.Ф., Чернова Г.Л. Коррозия и коррозионностойкие сплавы. М.: Металлургия, 1973. - 232.

Коррозионно-стойкий чугун с шаровидным графитом, содержащий углерод, кремний, марганец, хром, никель, бор, ванадий, алюминий, церий, магний, кальций и железо, отличающийся тем, что он дополнительно содержит молибден и титан при следующем соотношении компонентов, мас.%:

углерод 3,2-4,0
кремний 1,5-3,0
марганец 0,8-3,5
хром 7,0-10,0
никель 2,0-4,0
бор 0,2-0,4
ванадий 0,4-1,0
молибден 0,1-0,5
титан 0,1-0,4
алюминий 0,05-0,2
церий 0,03-0,2
магний 0,02-0,1
кальций 0,05-0,2
железо остальное