Автоматический дозатор
Иллюстрации
Показать всеИзобретение относится к области автоматики. Автоматический дозатор для дозирования отрезков бумаги для использования в качестве полотенец для рук включает в себя сенсорную ИК-систему для обнаружения пользователя. Сенсорная система осуществляет сканирование на первой частоте сканирования, а также на второй более высокой частоте сканирования. Когда сенсорная система обнаруживает пользователя, она изменяет частоту сканирования с первой до второй частоты сканирования. Технический результат - на снижение энергопотребления наряду с обеспечением быстрого времени реакции, когда требуется дозировать бумагу. 33 з.п. ф-лы, 8 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение в целом относится к дозатору, в частности, типа, включающего в себя систему дозированного отпуска с приводом от электродвигателя, комбинированную со схемой управления для опознавания присутствия возможного пользователя и управления работой упомянутого электродвигателя для осуществления отпуска дозированного материала. Более того, изобретение, даже еще более точно, относится к автоматическому дозатору полотенец (предпочтительно, бумажных полотенец, хранимых внутри корпуса дозатора) с электрическим приводом (в частности, действующего от аккумулятора, но также может быть питанием переменного тока (AC) или комбинацией питания переменного тока и постоянного тока (DC)), в котором бумажные листы, такие как бумажные полотенца для рук, дозируются, когда присутствие упомянутого возможного пользователя обнаружено удовлетворяющим условию нахождения в пределах заданной зоны, без физического контактирования пользователя с дозатором, требуемого для приведения в действие последовательности дозирования. Такие дозаторы часто указываются ссылкой как дозаторы, не требующие ручного манипулирования или бесконтактные дозаторы.
УРОВЕНЬ ТЕХНИКИ ДЛЯ ИЗОБРЕТЕНИЯ
Дозаторы вышеупомянутого типа известны, например, из US-A1-2003/0169046 и US-B1-6695246, а также US-A-60G9354.
Например, в дозаторе согласно US-B1-6695246 чувствительная схема управления использует либо пассивное ИК-излучение, то есть, детектирование отраженного внешнего ИК-излучения, или активное ИК-излучение (как испускание, так и детектирование ИК-излучения) для управления опознаванием присутствия возможного пользователя. В режиме активного ИК-излучения присутствие объекта (то есть, возможного пользователя) может обнаруживаться в пределах зоны обнаружения приблизительно от 12 до 24 см у дозатора и, по упомянутому обнаружению осуществляется управление электродвигателем для дозированной выдачи полотенца для рук пользователю. Зона детектирования удерживается небольшой, так что объекты, которые находятся снаружи зоны детектирования, не приводят к нежелательному или непреднамеренному дозированию. Когда в требуемой зоне, микропроцессор, управляющий работой электродвигателя, приводит в действие электродвигатель для дозирования полотенца, только когда два цикла сканирования принимаются схемой восприятия ИК-излучения. Микропроцессор может приводиться в действие, чтобы осуществлять сканирования на приблизительно 7 Гц (то есть 1 цикл сканирования каждые 0,14 секунд) посредством использования вибратора для включения и выключения питания для микропроцессора. В качестве альтернативы, он может быть настроен, чтобы работать на другой частоте. Когда электродвигатель является работающим, микропроцессор остается постоянно включенным.
US-A1-0169046 раскрывает дозатор, в котором сенсорная ИК-система упоминается в качестве альтернативы емкостному детектированию для ближнего обнаружения. В примере опознавания емкостного типа датчик емкостного типа присоединен к микропроцессору. Не даны никакие подробности ни в отношении того, где сенсорная ИК-система при наличии была бы расположена, ни как она была бы скомпонована для работы. Дополнительная сенсорная система включена в состав для детектирования бумажного полотна в выпускном желобе. Дополнительная сенсорная система для бумаги использует микропроцессор для подачи импульсов включения/выключения питания на фотодатчики. Дополнительно, может использоваться сторожевой таймер, который прекращает работу функции подачи импульсов и возобновляет ее вновь, когда он периодически переводит в активное состояние микропроцессор из режима бездействия.
US-A-6069354 раскрывает дозатор, использующий активное ИК-излучение, который формирует прямоугольное колебание при приблизительно 1,2 кГц, с тем чтобы испускать модулированный ИК-сигнал, который детектируется согласно отражению от возможного пользователя на ИК-детектор. Этот документ предполагает использование сенсорной системы, настроенной для опознавания пользователя, удаленного на между приблизительно 1,25 см и приблизительно 30 см от дозатора.
Вышеупомянутые документы все используют сенсорные системы, которые, когда действующие, работают при определенной частоте сканирования (частоте повторения) для приведения в действие электродвигателя, чтобы дозировать отрезок полотенца.
Вышеупомянутые дозаторы работают, используя частоту сканирования (количество циклов сканирования в секунду), которая постоянна, когда устройство является действующим. Эта частота сохраняется довольно высокой, так что, когда пользователь находится в зоне обнаружения, дозатор не будет слишком медлить для дозирования. Высокая частота сканирования, однако, означает, что энергия расходуется на высоком уровне, поскольку ИК-излучателям и детекторам необходимо активироваться очень часто, а таковые потребляют энергию, когда активны. Использование более низкой частоты сканирования, конечно, сберегало бы энергию, но время на дозирование полотенца, в таком случае, могло бы быть более длительным, а когда пользователь быстро перемещает его/ее руки к дозатору после мытья, это может давать пользователю ощущение, что устройство не является обнаруживающим его/ее надлежащим образом, если полотенце не дозируется незамедлительно.
Настоящее изобретение имеет в качестве одной из своих целей обеспечение низкого энергопотребления сенсорной системой в периоды, когда возможный/потенциальный пользователь (то есть объект, предполагаемый пользователем, требующим дозирования изделия, такого как отрезок полотенца для рук или туалетной бумаги) не расположен достаточно близко к дозатору и одновременно обеспечение относительно быстрого времени реакции, когда возможный/потенциальный пользователь достаточно близок к дозатору и нуждается, чтобы дозировалось полотенце. Низкое энергопотребление особенно важно в дозаторах, которые являются полностью работающими от аккумулятора, от одного или более заменяемых аккумуляторов, особенно таких аккумуляторных систем, которые работают без возможности подзарядки системой перезарядки на солнечных элементах или другим типом системы перезарядки, в то время как дозаторы этого типа предполагаются работающими в течение длительного времени (например, времени, достаточного для дозирования 60 или более рулонов бумаги, не требуя замены аккумуляторов).
Дополнительная цель изобретения состоит в том, чтобы, кроме того, предоставить возможность дополнительного сбережения энергии, когда нет возможных пользователей поблизости от дозатора.
Кроме того, дополнительные цели изобретения будут очевидны по прочтению этого описания изобретения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Основная цель изобретения достигается обеспечением дозатора, обладающего признаками, определенными в пункте 1 формулы изобретения. Некоторые предпочтительные признаки изобретения определены в зависимых пунктах формулы изобретения.
Дополнительные предпочтительные признаки изобретения будут очевидны читателю этого описания изобретения.
Изобретение основано на концепции, что частота сканирования, то есть количество циклов сканирования, выполняемых за секунду, предусмотрена изменяемой в зависимости от местоположения пользователя относительно дозатора, из условия, чтобы дозатор работал на первой частоте сканирования (то есть, выполнял последовательность сканирования приведением в действие схем ИК-излучателя и приемника и испусканием одиночных импульсов сканирования при первом количестве одиночных циклов сканирования в секунду), когда не обнаружено никакого возможного/потенциального пользователя. Система затем повышает частоту сканирования, когда пользователь регистрируется близкорасположенным к дозатору (то есть, проник в первую зону обнаружения). Эта переменная частота сканирования предоставляет возможность использоваться очень низкой мощности, когда никакие пользователи не являются в достаточной мере близкорасположенными к дозатору, и использовать более высокий уровень мощности, только когда требуется, так что пользователем испытывается быстрое время реакции для дозирования изделия.
Изобретение таким образом предлагает сенсорную систему, которая создает первую зону обнаружения, которая при проникновении возможного пользователя инициирует изменение частоты сканирования с первой более низкой частоты сканирования до второй более высокой частоты сканирования.
Первая зона обнаружения может изменяться по размеру, с тем чтобы обнаруживать пользователя на изменяющихся расстояниях. Например, вынесенный датчик, связанный либо проводным соединением с дозатором, либо беспроводной линией (например, ИК или радио) связи с дозатором, может использоваться для обнаружения пользователя, проникающего в туалетную комнату, и таким образом может инициировать изменение первой частоты сканирования до второй частоты сканирования. Такой «вынесенный» датчик мог бы, если требуется, в качестве альтернативы, устанавливаться на передней облицовочной части дозатора и может быть выполненным с возможностью работать при очень низкой частоте сканирования, обусловленной расстоянием входа в туалетную комнату от местоположения дозатора, из условия, чтобы к тому времени, когда возможный пользователь желает использовать дозатор и, соответственно, переместился ближе к дозатору, дозатор уже был работающим на более высокой второй частоте сканирования, предоставляющей возможность быстрого обнаружения активной сенсорной ИК-системой дозатора, определенной в формуле изобретения.
В качестве альтернативы, тот же самый набор датчиков, которые используются для побуждения дозатора дозировать изделие, также может использоваться для обнаружения пользователя, проникающего в первую зону обнаружения, и для включения в состав системы управления, которая изменяет частоту сканирования с первой более низкой частоты сканирования до второй более высокой частоты сканирования. Этим способом пользователь, подходящий к дозатору (например, на от 40 до 50 см или, может быть, еще дальше от дозатора), будет приводить сенсорную систему в действие для изменения частоты сканирования до более высокой частоты сканирования, и, по мере того, как пользователь продолжает перемещать его руки и/или тело ближе к выпускному отверстию дозатора, пользователь будет обнаруживаться в качестве находящегося в «зоне дозирования» и, соответственно, заставлять дозатор дозировать изделие (например, бумажное полотенце для рук).
Если требуется, может использоваться более чем две частоты сканирования. Например, может использоваться первая медленная частота сканирования (такая как 1 или 2 раза в секунду), сопровождаемая более высокой второй частотой сканирования (например, при с 3 до 6 разах в секунду), сопровождаемые дополнительной более высокой частотой (например, с 7 до 12 раз в секунду), в силу чего частота сканирования изменяется с одной частоты до следующей, по мере того как пользователь обнаруживается перемещающимся ближе к дозатору. Это может выполняться, например, последовательностью разных датчиков, каждый из которых обнаруживает на разных расстояниях, или, например, посредством использования такого же набора датчиков для обнаружения повышенного отражения ИК-сигнала от пользователя по мере того, как пользователь подходит ближе к дозатору.
Когда пользователь перемещается прочь от дозатора, частота сканирования, в таком случае, может вновь снижаться до более низкой частоты, тем самым потребляя меньше энергии на работу датчиков.
Как будет очевидно, даже при относительно небольших расстояниях для первой зоны обнаружения (например, вплоть до приблизительно 50 см от дозатора, например, в направлении от 30° до 60° наклонного вперед и вниз) будет понятно, что система обладает дополнительными преимуществами значительного сбережения энергии по-прежнему, наряду с предоставлением возможности хорошего времени реакции для дозирования полотенца. Это происходит потому, что пользователь предполагает, что следует перемещать его/ее руки относительно близко к устройству для того, чтобы происходило дозирование, а это занимает порядка между четвертью и половиной секунды при нормальных скоростях перемещения рук (между 0,2 м/с и 0,5 м/с), к тому времени дозатор уже может быть сделан сканирующим при второй более высокой частоте (или даже еще более высокой частоте) и таким образом способным осуществлять дозирование очень близко к моменту времени, когда руки находятся в «предполагаемом» положении для дозирования (то есть, положении, в котором пользователь мог бы ожидать, чтобы дозировалось полотенце, типично, каких-нибудь от 15 до 25 см от выпускного отверстия дозатора).
Подобным образом является предпочтительным, чтобы при использовании сенсорной ИК-системы сенсорная система предпочтительно должна была способна справляться с исключительными аномалиями краткосрочных отражений высокого ИК-излучения, которые иногда возникают, не осуществляя дозирование полотенца, так что она является подходящей для восприятия двух или более следующих друг за другом циклов сканирования или, например, предварительно определенного количества циклов сканирования за некоторое количество следующих друг за другом циклов сканирования (например, двух из трех следующих друг за другом циклов сканирования), каждый существует при предварительно определенном уровне ИК-излучения выше уровня фонового ИК-излучения до дозирования изделия.
Преимущественное использование может состоять из изменяющейся частоты сканирования посредством установления первой частоты сканирования, например между 0,15 и 0,25 секунд между циклами сканирования (то есть частоты сканирования, когда возможный пользователь находится вне первой зоны обнаружения) или даже продолжительнее (такой как между 0,25 секундами и 0,5 секундами), и второй частоты сканирования, порядка приблизительно от 0,08 до 0,12 секунд, между циклами сканирования, и требования только двух следующих друг за другом циклов сканирования (или, например, двух из трех следующих друг за другом циклов сканирования), предусматривающих уровень отраженного ИК-излучения выше уровня фонового ИК-излучения, для приведения в действие дозирования. Такое дозирование будет восприниматься пользователем в качестве почти незамедлительного, тем не менее значительное количество энергии, используемой сенсорной системой, может сберегаться благодаря низкой начальной частоте сканирования, которая расходует меньшую энергию.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение далее будет пояснено более подробно со ссылкой на некоторые неограничивающие варианты его осуществления и с помощью прилагаемых чертежей, на которых:
фиг.1 показывает схематический вид спереди дозатора бумажных полотенец с рулоном бумаги и механизмом транспортировки бумаги в скрытом виде, изображающий схематически вид первой зоны обнаружения,
фиг.2 показывает вид сбоку компоновки по фиг.1, в соответствии с которым боковая панель дозатора была снята, чтобы схематически показать рулон бумаги и упрощенные схематические детали механизма транспортировки бумаги,
фиг.3 показывает дополнительный вариант осуществления изобретения с дополнительным датчиком, способным обнаруживать пользователя на удаленном расстоянии от дозатора,
фиг.4 показывает примерный график амплитуды излучательной способности импульсов сканирования в зависимости от времени,
фиг.5 показывает график уровня принятого сигнала в зависимости от времени для последовательности принятых отражений ИК-излучения, происходящих вследствие испущенных импульсов ИК-излучения по фиг.4,
фиг.6 показывает схематическое представление основных элементов системы по варианту осуществления дозатора согласно изобретению,
фиг.7 показывает RC-цепь, используемую для осуществления перевода в активное состояние микропроцессора в MCU, с тем чтобы выполнять цикл сканирования, и
фиг.8 показывает альтернативный вариант RC-цепи, изображенной на фиг.7.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Фиг.1 и 2 показывают дозатор 1 на видах спереди и сбоку соответственно, в соответствии с чем фиг.2 показывает дозатор 1, прикрепленный на его задней стороне к стене (средство крепления не показано, но может быть любого подходящего типа, такого как винты, клей, клейкая лента или другие средства крепления).
Дозатор 1 содержит корпус 2, в пределах которого расположен запас изделия, в этом случае запас бумаги в рулоне 3. Рулон соответственно является рулоном непрерывной неперфорированной бумаги, но также может содержать перфорированную бумагу в некоторых случаях. Также расположенным в корпусе 2 является механизм 4 транспортировки бумаги, предпочтительно в виде модульной приводной кассеты со своим собственным кожухом 15, которая предпочтительно может выниматься в виде единого узла из корпуса 2, когда корпус открыт.
Фиг.1 показывает рулон 3 бумаги и механизм 4 транспортировки в качестве простых блоков ради упрощения. Подобным образом фиг.2 показывает рулон 3 бумаги и механизм 4 транспортировки в очень упрощенной форме, в силу чего механизм транспортировки включает в себя приводной валик 5, сцепленный с опорным валиком 6, в силу чего участок бумажного листа 7 показан расположенным между упомянутыми валиками 5, 6 с ведущей кромкой упомянутого бумажного листа 7, готовой для дозирования, в выпускном отверстии 8, сформированном в корпусе 2 на его нижней стороне.
Приводной валик 5 схематично показан присоединенным к приводному электродвигателю M, питаемому аккумуляторами B. Зубчатая передача, типично, в редукторе может быть включена между приводным валом электродвигателя и приводным валиком 5. Подходящие аккумуляторы могут подавать напряжение в 6В, когда новые, и типично четыре аккумулятора в 1,5 В являются подходящими для этой цели. Примерными из подходящих типов являются аккумуляторы MN1300 Duracell, в силу чего каждый аккумулятор имеет емкость в 13А·ч и может работать от целиком заряженного до полностью разряженного в диапазоне от 1,5В до 0,8В. Работа электродвигателя M заставляет приводной валик 5 вращаться и в силу этого протягивать бумажный лист 7 из рулона 3 бумаги посредством защемления бумаги в зоне контакта валиков 5 и 6. При приведении в действие электродвигатель вращается, тем самым извлекая бумажный лист из рулона 3, который также вращается, с тем чтобы предоставить бумаге возможность перемещаться по направлению к выпускному отверстию 8. Другие разновидности приводных механизмов для извлечения бумаги из рулона также могут использоваться. Детали механизма транспортировки бумаги или другого механизма транспортировки изделий, однако, не важны для понимания изобретения. Такие устройства также хорошо известны в данной области техники сами по себе.
Также будет априори понятно, что приводной валик 5 и опорный валик 6 могут иметь свои функции взаимно переставленными, из условия, чтобы опорный валик 6 был бы приводным валиком, который работоспособным образом присоединен к приводному электродвигателю (и таким образом приводной валик 5, изображенный на фиг.2, действует только в качестве опорного валика в соприкосновении с валиком 6, обычно с бумагой или полотенцем в зоне контакта между ними).
Хотя принцип работы пояснен с использованием бумаги в виде непрерывного бумажного листа в рулоне, должно быть понятно, что дозатор может использоваться для дозирования других изделий из запаса изделий, например, такого как непрерывный кусок бумаги в виде гармошки. Альтернативные изделия могут дозироваться устройством при надлежащем его переконструировании. Также возможно, что другие устройства дозирования могут функционировать с дозатором. Например, дозатор дополнительно может включать в себя освежитель воздуха, который приводится в действие, например, каждые 5 или 10 минут (или другое подходящее время) или один раз после определенного количества дозированных полотенец. Этот снабженный дополнительными признаками дозатор может управляться схемой управления дозатором (будет описана ниже) или отдельной схемой управления (не описанной в материалах настоящей заявки).
Электродвигатель M находится в состоянии покоя и без энергии, поданной на него, когда бумага совсем не должна дозироваться. Электродвигатель M вращается, когда бумага должна дозироваться через выпускное отверстие 8. Работа электродвигателя M управляется главным устройством управления (не показано на фиг.1 и 2, но описано позже), присоединенным к сенсорной системе, содержащей чувствительные элементы 9-13, из которых чувствительные элементы 10 и 12 являются излучателями, предпочтительно ИК-излучателями, а чувствительные элементы 9, 11 и 13 являются ИК-приемниками. Такие ИК-излучатели и приемники хорошо известны в данной области техники и типично содержат диодные структуры. Подходящие ИК-излучатели и приемники, например, изготовлены компанией Lite-ON Electronics Inc. под типовым номером LTE-3279K для ИК-излучателей и под типовым номером LTR-323DB для приемников. Другие типы ИК-излучателей и приемников, конечно, также могут использоваться. В показанном варианте осуществления изобретения чувствительные элементы: ИК-излучатели 10, 12 и ИК-приемники 9, 11, 13, показаны распределенными приблизительно с равномерным интервалом непрерывно в поперечном направлении X-X корпуса (в целом параллельном рулону 3 хранения изделий). Интервал надлежащим образом может быть интервалом около 5 см между следующими друг за другом излучателем и приемником, из условия, чтобы расстояние между чувствительными элементами 9 и 10, 10 и 11, 11 и 12, 12 и 13 все были приблизительно равными.
К тому же излучатели и приемники показаны (см. фиг.2) размещенными на противоположных сторонах выпускного отверстия 8. Другие компоновки чувствительных элементов также возможны, такие как где все чувствительные элементы размещены на передней стороне выпуска в прямом ряду (то есть, в месте, где сенсоры 10 и 12 показаны размещенными на фиг.2). Чувствительные элементы также могли бы размещаться на задней стороне выпуска в прямом ряду (например, где показаны размещенными чувствительные элементы 9, 11 и 13). Компоновка чувствительных элементов последовательно, в порядке приемник/излучатель/приемник/излучатель/приемник, предоставляет возможность преимущественной формы зоны обнаружения, которая, по форме, до некоторой степени подобна языку (см. фиг.1). Лежащая в основе форма языка может до некоторой степени изменяться, например, в зависимости от мощности, приложенной к излучателям, а также их относительной степени выступания из своего корпуса.
Дозатор 1 при обнаружении возможного пользователя (последовательность операций обнаружения дополнительно описывается ниже) без какого бы то ни было соприкосновения пользователя с дозатором или чувствительными элементами в течение достаточного времени в первой зоне обнаружения таким образом заставляет дозатор определять, что пользователь присутствует в зоне дозирования и, соответственно, осуществлять дозирование изделия. Дозирование, в этом случае, осуществляется с передней порцией бумаги 7, высвобождаемой автоматически. Это предоставляет пользователю возможность захватывать бумагу 7 и тянуть ее к режущей кромке, такой как режущая кромка 16, показанная на фиг.2, приближенная к выпускному отверстию 8, с тем чтобы удалить оборванный/отрезанный кусок бумаги. Местоположение режущей кромки, конечно, может изменяться, например, чтобы быть на уровне или вплоть до 1 см ниже и напротив валика 5.
Первая зона 14 обнаружения, как показано на фиг.1 и 2, показана в качестве до некоторой степени языкоподобной и наклонена вниз и вперед от выпускного отверстия под углом x°, предпочтительно между от 20° до 30° относительно вертикальной оси Y, например 27,5°. Как будет более подробно пояснено ниже, когда часть тела возможного пользователя проникает в эту первую зону 14 обнаружения, сенсорная система обнаруживает присутствие пользователя и побуждает сенсорную систему осуществлять изменение с первой частоты сканирования на вторую частоту сканирования, которая выше, чем первая частота сканирования. Сенсорная система, в таком случае, также заставляет электродвигатель M вращаться при расценивании пользователя (благодаря принимаемым сигналам) в качестве являющегося присутствующим в зоне дозирования. Определение пользователя, находящегося в позиции, требующей дозирования полотенца, пояснено ниже.
Несмотря на то что предпочтительная форма компоновки излучателей/приемников является преимущественной, также может применяться использование только одного излучателя и одного приемника или более чем 2 излучателей и 3 приемников. Конфигурация или поле, охватываемое чувствительными элементами, однако, будет соответственно изменяться, а 2 излучателя и три чувствительных элемента были найдены преимущественными по балансу между полученной областью охвата и требуемым энергопотреблением.
В альтернативном варианте осуществления изобретения, показанном на фиг.3, дополнительный чувствительный элемент 19, вынесенный из корпуса 2 дозатора и при функционировании присоединенный беспроводным или проводным соединением 20 к сенсорной системе (схематично показанной под 22) и ее системе управления в корпусе дозатора, может использоваться для формирования первой зоны 18 обнаружения, которая дальше от дозатора, чем зона 17 обнаружения (зона 17 обнаружения в этом случае подобна по форме первой зоне 14 обнаружения на фиг.1 и 2). В качестве альтернативы или дополнительно, добавочный чувствительный элемент может быть размещен на передней части, например, передней поверхности, корпуса дозатора и быть обращенным по ходу движения от любой стены или тому подобного, на которой смонтирован дозатор, чтобы предоставить возможность большей дальности обнаружения спереди дозатора, такой как чувствительный элемент 21, показанный схематично, который также присоединен к сенсорной системе 22. Чувствительный элемент 19 и/или 21, например, может быть выполнен с возможностью обнаруживать присутствие возможных пользователей вплоть до расстояния, большего, чем первая зона обнаружения, например расстояния в более чем 50 см, предпочтительно более чем 100 см, более предпочтительно более чем 200 см, а еще более предпочтительно более чем 300 см, или даже дальше от корпуса 2 дозатора.
Излучатели 10, 12 сенсорной системы скомпонованы с помощью подходящей схемы управления, которая может управлять схемой, как по сути известно в данной области техники, чтобы испускать импульсное ИК-излучение в узкой полосе частот приблизительно 15 кГц. Однако могла бы быть выбрана другая частота ИК-излучения. Приемники (чувствительные элементы) 9, 11, 13 выполнены с возможностью детектировать испускаемое ИК-излучение, которое отражается от объектов (неподвижных или движущихся) обратно на приемники. Для того чтобы детектировать ИК-излучение, которое берет начало главным образом и почти полностью от испускаемого ИК-излучения, даже вплоть до условий очень яркого освещения (10000 люкс или более), предпочтительнее чем от всех источников и частот ИК-излучения, обусловленных фоновыми воздействиями, ИК-приемникам необходимо настраиваться на частоту излучателей. Таким образом, ИК-приемники снабжены схемой обнаружения, которая подавляет ИК-излучение вне ожидаемого частотного диапазона отраженных волн и усиливает ИК-излучение на уровне диапазона 15 кГц. В этом отношении, несмотря на то, что диапазон обнаружения частот как выше, так и ниже диапазона полосы испускаемых частот между с 2 до 10 кГц (может действовать в большинстве ситуаций) может быть найдено более подходящим использовать частотный диапазон (полосу частот), которая лежит около 3 кГц или выше, а также ниже центральной частоты испускаемого ИК-излучения. Таким образом, приемники настраиваются (или, другими словами, «синхронизируются») по испускаемому ИК-излучению (на центральной частоте в 15 кГц), предоставляя возможность детектироваться ИК-излучению в диапазоне от 12 до 18 кГц (например, посредством использования проходного полосового фильтра, настроенного на с 12 до 18 кГц). Частоты вне такой полосы таким образом подавляются в большой степени, тогда как частоты в пределах полосы от 12 до 18 кГц усиливаются с максимальным усилением, находящимся на центральной частоте в 15 кГц, например, вплоть до приблизительно 53 дБ.
Посредством работы с модулированной частотой в излучателях и приемниках воздействия, например, яркого солнечного света, которые в противном случае могут вызывать насыщенность принятого ИК-сигнала в сравнении с любым отраженным сигналом, по существу, устраняются с предоставлением возможности устройству работать в условиях освещения фоновой подсветки вплоть до приблизительно 10000 люкс.
Фиг.4 показывает последовательность отдельных циклов сканирования (то есть испускание импульсного ИК-излучения) на первой частоте сканирования, имеющей время между отдельными циклами сканирования t1, второй частоте сканирования, имеющей время между отдельными циклами сканирования t2, которое короче, чем t1 (то есть является большей частотой сканирования, чем t1), и третьей частоте сканирования, имеющей время между отдельными циклами сканирования t3, где t3 больше, чем t1 и t2. Время между отдельными циклами сканирования измеряется в качестве времени между началом одного одиночного цикла сканирования до момента времени запуска следующего отдельного цикла сканирования. Каждый из отдельных циклов сканирования здесь показан в качестве имеющего одну и ту же интенсивность импульса (то есть, никакая регулировка не производится между отдельными циклами сканирования для учета предыдущих принятых отраженных сканирований, которая может иметь результатом разную излучательную мощность, подаваемую на ИК-излучатели). Показано дополнительное время t4, которое является предварительно определенным временным интервалом или предварительно определенным количеством импульсов, разведенных на время t1 (первая частота сканирования), которому необходимо истекать до того, как система изменит частоту сканирования до третьей самой медленной частоты сканирования с временным интервалом t3. Длительность импульса каждого отдельного импульса обычно постоянна.
Время t1 установлено на постоянном уровне, чтобы находиться между от 0,15 до 1,0 секунды, предпочтительно от 0,15 до 0,4 секунды, то есть из условия, чтобы отдельный импульс сканирования отделялся равным временем t1. Время t1, однако, может изменяться, а точно подходящая частота для оптимизации устройства ради сбережения мощности аккумулятора и время реакции до дозирования были найдены находящимся около t1=0,17 секунд. Вторая частота сканирования является всегда более быстрой, чем первая частота сканирования, а t2 установлено, чтобы предпочтительно находиться между от 0,05 до 0,2 секунд, предпочтительно между от 0,08 и 0,12 секунд, между циклами сканирования. Время t2, однако, может изменяться, чтобы быть другим подходящим значением, но предпочтительно находится между от 30% до 70% t1. Время t3 может быть установлено примерно между 0,3 и 0,6 секундами, хотя также возможно более длительное время t3, такое как 1 секунда или даже продолжительнее. Однако запуск времени работы излучательной схемы (в частности, посредством использования запускающей RC-цепи, использующей постоянную времени RC, чтобы вызывать разряд тока по отношению к микропроцессору для инициирования операции синхронизации) является наиболее подходящим, если t3 установлено, чтобы удваивать продолжительность t1. Таким образом, t3 может быть установлено в 0,34 секунды в случае, когда t1 составляет 0,17 секунд. Начальный момент t1 может быть сделан изменяемым, например, посредством переменного резистора, управляемого снаружи устройства, хотя, типично, это может быть заводской настройкой, с тем чтобы избежать непреднамеренного изменения времени t1, каковое является неподобающим в определенных ситуациях.
Время t4, типично, может выбираться, чтобы быть порядка между от 30 секунд до 10 минут, а также может настраиваться переменным образом в устройстве в зависимости от типа использования и окружающей среды, которая обычно встречается там, где должно располагаться устройство. Однако подходящее значение для оптимизированной работы было найдено являющимся приблизительно 300 секундами, хотя также может быть большим там, где требуется сберегать дополнительную энергию.
Хотя не показано, будет очевидно, что дополнительные временные периоды также могут устанавливаться в устройстве с промежуточными временными периодами (то есть промежуточными между значениями t1 и значениями t2 или промежуточными между t2 и t3 и т.д.) или даже большими временными периодами, в зависимости от рабочих условий, хотя было показано использование трех разных частот сканирования, чтобы учесть большинство ситуаций с хорошими эксплуатационными показателями, исходя из времени реакции и сбережения энергии. Например, дополнительный временной период, более продолжительный, чем t4, например 30 минут, происходящий во время действия циклов сканирования с интервалом t3, мог бы использоваться с тем, чтобы изменять временной период между циклами сканирования, чтобы был более длительным, чем t3 (например, 10 секунд между отдельными циклами сканирования). Такая ситуация может быть полезной, когда дозатор не может использоваться жестко в течение периодов ночного времени. Причина для этого станет яснее по прочтению последующего описания работы.
Как может быть видно на фиг.4, после четырех циклов S1-S4 сканирования с временным интервалом t1 частота сканирования изменяется до второй более быстрой частоты сканирования с интервалом t2 и остается на второй частоте сканирования в течение двух дальнейших циклов сканирования S5 и S6. Причина для этого изменения будет пояснена ниже со ссылкой на фиг.5.
Фиг.5 показывает пример возможного уровня (принимаемой интенсивности сигнала) принятых сигналов R1-R7, вызванных в ответ на испускание импульсов S1-S7 сканирования.
Приблизительный уровень фонового ИК-излучения указан в качестве принимаемого уровня сигнала Q0. Этот уровень Q0, конечно, может изменяться, и, как дополнительно показано ниже, это, однако, может быть учтено. Для простоты пояснения, однако, в последующем примере допущено, что Q0 остается, по существу, постоянным.
Когда испускается S1 и нет объекта, который не учтен в последнем фоновом значении принятого сигнала, фоновый уровень, принятый в R1, будет приблизительно на уровне Q0. Подобным образом, в следующем цикле S2 сканирования уровень принимаемого ИК-излучения, также близок к Q0 и в силу этого не вызывает изменения первой частоты сканирования. В цикле S3 сканирования уровень R3 принятого сигнала, однако, находится выше фонового уровня, но всего лишь в самой минимальной степени (например, менее чем на предварительно определенное значение, например менее чем на 10%, выше уровня фонового ИК-излучения), и в силу этого сохраняется первая частота сканирования. Такие небольшие изменения (ниже предварительно определенного уровня) выше или ниже Q0 могут происходить вследствие временных изменений уровней влажности или лиц, перемещающихся на большем расстоянии от дозатора, либо паразитного ИК-излучения, обусловленного изменениями условий солнечного света или температурных условий вокруг дозатора.
В цикле S4 сканирования уровень принятого сигнала достиг или превысил предварительно определенное значение, например на 10% выше фонового ИК-излучения, а сенсорная система и ее устройство управления таким образом предполагают, что вероятный пользователь (например, руки или все тело пользователя) перемещаются ближе к дозатору, для того чтобы извлечь изделие, такое как бумажное полотенце. Для того чтобы быть способным быстрее реагировать, когда предполагается, что пользователь желает, чтобы дозировалось полотенце (то есть когда уровень принятого сигнала достиг или превзошел предварительно определенное значение, например, на 10% выше фонового ИК-излучения), частота сканирования соответственно возрастает до второй частоты сканирования и таким образом выдает следующий импульс сканирования с более коротким временем t2 после предыд