Почти прозрачная или прозрачная схема многоканального кодера/декодера

Иллюстрации

Показать все

Изобретение относится к схемам многоканального кодировани, и, в частности, к схемам параметрического кодирования. Схема многоканального кодера/декодера дополнительно предпочтительно формирует остаточный сигнал (16) волновой формы. Этот остаточный сигнал (18) передается с одним или более многоканальных параметров (14) в декодер. Технический результат, достигаемый при реализации изобретения, состоит в том, что в отличие от чисто параметрического многоканального декодера предлагаемый декодер формирует многоканальный выходной сигнал, имеющий более оптимальное выходное качество благодаря дополнительному остаточному сигналу. 13 н. и 16 з.п. ф-лы, 14 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к схемам многоканального кодирования и, в частности, к схемам параметрического многоканального кодирования.

Уровень техники

Сегодня две методики доминируют для использования стереоизбыточности и нерелевантности, содержащихся в стереофонических звуковых сигналах. Стереофоническое кодирование с выделением центрального и бокового канала (M/S) [1] в первую очередь направлено на уменьшение избыточности и основано на том факте, что поскольку зачастую два канала достаточно коррелированны, лучше кодировать сумму и разность между ними. В таком случае большее (относительно) число битов может быть расходовано на суммирующий сигнал большой мощности, чем на боковой (или разностный) сигнал. Стереофоническое кодирование по интенсивности [2, 3], с другой стороны, добивается уменьшения избыточности посредством замены, в каждом поддиапазоне, двух сигналов на суммирующий сигнал и азимутальный угол. В декодере азимутальный параметр используется для того, чтобы управлять пространственным расположением слухового события, представляемого посредством суммирующего сигнала поддиапазона. Кодирование с выделением центрального и разностного канала и по интенсивности используются в значительной степени в существующих стандартах аудиокодирования [4].

Проблема M/S-подхода касательно использования избыточности заключается в том, что если два компонента не совпадают по фазе (один задерживается относительно другого), эффективность M/S-кодирования значительно снижается. Это концептуальная проблема, поскольку временные задержки часто встречаются в реальных аудиосигналах. Например, пространственный порог слышимости базируется во многом на разности времен сигналов (особенно на низких частотах) [5]. В аудиозаписях задержки времен могут возникать как из настроек стереофонического микрофона, так и из искусственной пост-обработки (звуковых эффектов). При кодировании с разнесением центрального и разностного канала специализированное решение зачастую используется для вопроса задержки времен. M/S-кодирование часто используется, когда мощность разностного сигнала меньше постоянного множителя мощности суммирующего сигнала [1]. Проблема выравнивания лучше разрешается в [6], где один из компонентов сигнала прогнозируется из другого. Фильтры прогнозирования выводятся на покадровой основе в кодере и передаются как дополнительная информация. В [7] рассматривается обратная адаптивная альтернатива. Отметим, что прирост производительности очень сильно зависит от типа сигнала, но для определенных типов сигналов достигается существенный прирост в сравнении с M/S-стереокодированием.

В последнее время значительное внимание уделялось параметрическому стереокодированию [8-11]. На основе основного монокодера (одноканального) эти параметрические схемы извлекают стереокомпонент (многоканальный) и кодируют его отдельно на низкой скорости передачи битов. Это можно рассматривать как обобщение стереокодирования по интенсивности. Способы параметрического стереокодирования, в частности, пригодны в диапазоне аудиокодирования с низкой скоростью передачи битов, где они приводят к существенному повышению качества расходования только небольшой части общего битового бюджета для стереокомпонента. Параметрические способы также являются привлекательными, поскольку они расширяемы для многоканального случая (более двух каналов) и могут предоставлять обратную совместимость. Объемное MP3-звучание [12] является одним подобным примером, где многоканальные данные кодируются и передаются во вспомогательном поле потока данных. Это позволяет приемным устройствам без многоканальных возможностей декодировать обычный стереосигнал, тогда как приемные устройства с поддержкой объемного звучания могут использовать многоканальный звук. Параметрические способы зачастую основываются на извлечении и кодировании различных психоакустических меток, главным образом, межканальных уровневых разностей (ICLD) и межканальных временных разностей (ICTD). В [11] сообщается, что параметр когерентности важен для результата естественного звучания. Тем не менее, параметрические способы ограничены в том смысле, что при более высоких скоростях передачи битов кодеры не могут достигать прозрачного качества вследствие внутреннего ограничения моделирования.

Проблемы, связанные с параметрическими многоканальными кодерами, заключаются в том, что их достижимое значение качества ограничено порогом, который значительно ниже их прозрачного качества. Параметрический порог качества показан как 1100 на фиг.11. Как можно видеть из схематичной кривой, представляющей зависимость "качество/скорость передачи битов" улучшенного BCC-монокодера (1102), качество не может пересекать параметрический порог 1100 качества независимо от скорости передачи битов. Это означает, что при увеличенной скорости передачи битов качество этого параметрического многоканального кодера не может увеличиваться в любом случае.

Улучшенный BCC-монокодер является примером используемых в настоящее время стереокодеров или многоканальных кодеров, в которых выполняется стереофоническое понижающее микширование или многоканальное понижающее микширование. Дополнительно, извлекаются параметры, описывающие межканальные уровневые взаимосвязи, межканальные временные взаимосвязи, межканальные взаимосвязи когерентности и т.д.

Параметры отличаются от волновой формы сигнала, такого как боковой сигнал кодера с выделением центрального и разностного канала, поскольку боковой сигнал описывает разность между двумя каналами в формате волновой формы в сравнении с параметрическим представлением, которое описывает сходства и различия между двумя каналами посредством задания определенного параметра вместо представления волновой формы по выборкам. Хотя параметры требуют небольшого числа битов для передачи от кодера в декодер, описания волновой формы, т.е. остаточные сигналы, извлекаемые в виде волновой формы, требуют большего числа битов и предоставляют возможность, в принципе, прозрачного восстановления.

Фиг.11 иллюстрирует типичную зависимость "качество/скорость передачи битов" этого традиционного основанного на волновой форме стереофонического кодера (1104). Из фиг.11 становится очевидным, что посредством все большего увеличения скорости передачи в битах качество традиционного стереофонического кодера, такого как стереофонический кодер с выделением центрального и разностного канала, возрастает все в большей степени до тех пор, пока качество не достигнет прозрачного качества. Предусмотрен тип "переходной скорости передачи битов", при которой характеристическая кривая 1102 для параметрического многоканального кодера и кривая 1104 для традиционного основанного на волновой форме сигнала пересекают друг друга.

Ниже этой переходной скорости передачи битов параметрический многоканальный кодер гораздо более оптимален, чем традиционный стереофонический кодер. Когда рассматривается одинаковая скорость передачи битов для обоих кодеров, параметрический многоканальный кодер предоставляет качество, которое выше качества традиционного основанного на волновой форме стереофонического кодера на разность 1108 качества. Иными словами, когда необходимо иметь определенное качество 1110, это качество может быть достигнуто с помощью параметрического кодера посредством скорости передачи битов, которая уменьшена на разностную скорость 1112 передачи битов в сравнении с традиционным основанным на волновой форме стереофоническим кодером.

Выше этой переходной скорости передачи битов ситуация полностью отличается. Поскольку параметрический кодер находится при максимальном пороге 1100 качества параметрического кодера, лучшее качество может быть получено посредством использования традиционного основанного на волновой форме стереофонического кодера с помощью такого же числа битов, что и в параметрическом кодере.

Сущность изобретения

Цель настоящего изобретения заключается в том, чтобы предоставить схему кодирования/декодирования, предоставляющую более высокое качество и меньшую скорость передачи битов по сравнению с используемыми схемами многоканального кодирования.

В соответствии с первым аспектом настоящего изобретения эта цель достигается посредством многоканального кодера для кодирования исходного многоканального сигнала, имеющего, по меньшей мере, два канала, содержащего: поставщик параметров для предоставления одного или более параметров, при этом один или более параметров сформированы таким образом, что восстановленный многоканальный сигнал может быть сформирован с помощью одного или более каналов понижающего микширования, извлеченных из многоканального сигнала, и одного или более параметров; остаточный кодер для формирования закодированного остаточного сигнала на основе исходного многоканального сигнала, одного или более каналов понижающего микширования или одного или более параметров, так чтобы восстановленный многоканальный сигнал, когда сформирован с помощью остаточного сигнала, был в большей степени аналогичен исходному многоканальному сигналу, чем когда сформирован без использования остаточного сигнала; и формирователь потоков данных для формирования потока данных, имеющего остаточный сигнал и один или более параметров.

В соответствии со вторым аспектом настоящего изобретения эта цель достигается посредством многоканального декодера для декодирования закодированного многоканального сигнала, имеющего один или более каналов понижающего микширования, один или более параметров и закодированный остаточный сигнал, содержащего: остаточный декодер для формирования декодированного остаточного сигнала на основе закодированного остаточного сигнала; и многоканальный декодер для формирования первого восстановленного многоканального сигнала с помощью одного или более каналов понижающего микширования и одного или более параметров, при этом многоканальный декодер дополнительно функционирует для формирования второго восстановленного многоканального сигнала с помощью одного или более каналов понижающего микширования и декодированного остаточного сигнала вместо первого восстановленного многоканального сигнала или в дополнение к первому многоканальному сигналу, причем второй восстановленный многоканальный сигнал в большей степени аналогичен исходному многоканальному сигналу, чем первый восстановленный многоканальный сигнал.

В соответствии с третьим аспектом настоящего изобретения эта цель достигается посредством многоканального кодера для кодирования исходного многоканального сигнала, имеющего, по меньшей мере, два канала, содержащего: блок выравнивания по времени для выравнивания первого канала и второго канала из, по меньшей мере, двух каналов с помощью параметра выравнивания; блок понижающего микширования для формирования канала понижающего микширования с помощью выровненных каналов; блок вычисления усиления для вычисления параметра усиления, не равного единице, для взвешивания выровненного канала, так чтобы разность между выровненными каналами была уменьшена в сравнении со значением усиления в единицу; и формирователь потоков данных для формирования потока данных, имеющего информацию канала понижающего микширования, информацию параметра выравнивания и информацию параметра усиления.

В соответствии с четвертым аспектом настоящего изобретения эта цель достигается посредством многоканального декодера для декодирования закодированного многоканального сигнала, имеющего информацию одного или более каналов понижающего микширования, информацию параметра усиления и информацию параметра выравнивания, содержащего: декодер каналов понижающего микширования для формирования декодированного сигнала понижающего микширования; и процессор для обработки декодированного канала понижающего микширования с помощью параметра усиления, чтобы получить первый декодированный выходной канал, и для обработки декодированного канала понижающего микширования с помощью параметра усиления и для того, чтобы рассогласовать с помощью параметра выравнивания, чтобы получить второй декодированный выходной канал.

Дополнительные аспекты настоящего изобретения включают в себя соответствующие способы, потоки данных/файлы и вычислительные программы.

Настоящее изобретение основано на обнаружении того, что проблемы, связанные с традиционными параметрическими кодерами и кодерами на основании волновой формы, разрешаются посредством комбинирования параметрического кодирования и кодирования на основе волновой формы. Такой изобретаемый кодер формирует масштабируемый поток данных, имеющий, в качестве первого улучшающего уровня, закодированное представление параметров и имеющий, в качестве второго улучшающего уровня, закодированный остаточный сигнал, которым предпочтительно является сигнал в виде волновой формы. Как правило, дополнительный остаточный сигнал, который не предоставляется в чисто параметрическом многоканальном кодере, позволяет повышать достижимое качество, в частности, между переходной скоростью передачи битов на фиг.11 и максимальным прозрачным качеством. Как можно видеть на фиг.11, даже ниже переходной скорости передачи битов алгоритм изобретаемого кодера превосходит чистый параметрический многоканальный кодер в отношении качества при сравнимых скоростях передачи битов. Тем не менее, в сравнении с полностью основанным на волновой форме традиционным стереофоническим кодером, изобретаемая комбинированная параметрическая/основанная на волновой форме схема кодирования/декодирования является гораздо более эффективной по битам. Иными словами, изобретаемые устройства оптимально комбинируют преимущества параметрического кодирования и основанного на волновой форме кодирования, так что даже выше переходной скорости передачи битов изобретаемый кодер извлекает выгоду из параметрической концепции, но превосходит традиционный параметрический кодер.

В зависимости от конкретных вариантов осуществления, преимущества настоящего изобретения превосходят параметрический кодер предшествующего уровня техники или традиционный основанный на волновой форме многоканальный кодер в большей или меньшей степени. Более усовершенствованные варианты осуществления предоставляют более оптимальную характеристику качества/скорости передачи битов, тогда как низкоуровневые варианты осуществления настоящего изобретения требуют меньшей вычислительной мощности на стороне кодера и/или декодера, но благодаря дополнительным закодированным остаточным сигналам обеспечивают более высокое качество, чем чистый параметрический кодер, поскольку качество чистого параметрического кодера ограничено пороговым качеством 1100 на фиг.11.

Предлагаемая схема кодирования/декодирования имеет преимущество в том, то она позволяет плавно перейти от чистого параметрического кодирования к аппроксимирующему волновую форму или совершенному прозрачному кодированию на основе волновой формы.

Предпочтительно параметрическое стереофоническое кодирование и стереофоническое кодирование с выделением центрального и разностного каналов комбинируются в схему, которая имеет возможность стремиться к прозрачному качеству. В этой предпочтительной стереосхеме с выделением центрального и разностного каналов корреляция между компонентами сигналов, т.е. левым каналом и правым каналом, используется более эффективно.

В общем, идея изобретения может быть применена в нескольких вариантах осуществления к параметрическому многоканальному кодеру. В одном варианте осуществления остаточный сигнал извлекается из исходного сигнала без использования информации параметров, также доступной в кодере. Этот вариант осуществления предпочтителен в случаях, когда вычислительная мощность и, возможно, энергопотребление процессора являются важными вопросами. Такой случай может возникать в "карманных" устройствах, имеющих ограниченные возможности по мощности, таких как мобильные телефоны, "наладонники" и т.д. Остаточный сигнал извлекается только из исходного сигнала и не базируется на понижающем микшировании или параметрах. Следовательно, на стороне декодера первый восстановленный многоканальный сигнал, который формируется с помощью канала понижающего микширования и параметров, не используется для формирования второго восстановленного многоканального сигнала.

Тем не менее, имеется некоторая избыточность в параметрах, с одной стороны, и в остаточном сигнале, с другой стороны. Снижение избыточности может быть достигнуто посредством других систем кодера/декодера, которые для вычисления закодированного остаточного сигнала используют информацию параметров, доступную в кодере, и, необязательно, канал понижающего микширования, который также может быть доступен в кодере.

В зависимости от конкретной ситуации, остаточный кодер может быть устройством анализа посредством синтеза, вычисляющим полный восстановленный многоканальный сигнал с помощью канала понижающего микширования и информации параметров. Затем на основе восстановленного сигнала может быть сформирован разностный сигнал для каждого канала, так что получается многоканальное представление ошибок, которое может быть обработано различными способами. Одним способом должно быть то, чтобы применять другую схему параметрического многоканального кодирования к многоканальному представлению ошибок. Другой возможностью должно быть то, чтобы осуществлять схему матрицирования для понижающего микширования многоканального представления ошибок. Еще одной возможностью должно быть то, чтобы удалять сигналы ошибки из левого и правого каналов объемного звучания, чтобы кодировать только сигнал ошибки центрального канала или, в дополнение, также кодировать сигнал ошибки левого канала и сигнал ошибки правого канала.

Таким образом, предусмотрено множество возможностей для реализации остаточного процессора на основе представления ошибок.

Вышеупомянутый вариант осуществления предоставляет большую гибкость для масштабируемого кодирования остаточного сигнала. Тем не менее, он является достаточно ресурсоемким в отношении вычислительной мощности, поскольку полное многоканальное восстановление выполняется в кодере, и представление ошибок для каждого канала многоканального сигнала должно быть сформировано и введено в остаточный процессор. На стороне декодера необходимо сначала вычислить первый восстановленный многоканальный сигнал, а затем на основе декодированного остаточного сигнала, который является любым представлением сигнала ошибки, должен быть сформирован второй восстановленный сигнал. Таким образом, вне зависимости от того факта, должен или нет быть выведен первый восстановленный сигнал, он должен быть вычислен на стороне декодера.

В другом предпочтительном варианте осуществления изобретения, подход анализа посредством синтеза на стороне кодера и вычисление первого восстановленного многоканального сигнала вне зависимости от того, должен или нет он быть выведен, заменен на прямое вычисление остаточного сигнала на стороне кодера. Оно основано на взвешенном исходном канале, который зависит от многоканального параметра, или основано на типе модифицированного понижающего микширования, которое также зависит от параметра выравнивания. В этой схеме дополнительная информация, т.е. остаточный сигнал, вычисляется неитеративно с помощью параметров и исходных сигналов, но без помощи одного или более каналов понижающего микширования.

Эта схема очень эффективная на стороне кодера и декодера. Когда остаточный сигнал не передается или выведен из масштабированного потока данных вследствие требований по пропускной способности, декодер в соответствии с изобретением автоматически формирует первый восстановленный многоканальный сигнал на основе канала понижающего микширования и параметров усиления и выравнивания, тогда как, когда вводится остаточный сигнал, не равный нулю, многоканальный блок восстановления не вычисляет первый восстановленный многоканальный сигнал, а вычисляет только второй восстановленный многоканальный сигнал. Таким образом, эта схема кодера/декодера выгодна в том, что она предоставляет более эффективное вычисление на стороне кодера, а также на стороне декодера, и использует представление параметров для уменьшения избыточности в остаточном сигнале, так что достигается высокоэффективная по вычислительной мощности и скорости передачи битов схема кодирования/декодирования.

Краткое описание чертежей

Предпочтительные варианты осуществления настоящего изобретения подробно описываются далее со ссылками на прилагаемые чертежи, из которых:

Фиг.1 - это блок-схема общего представления многоканального кодера в соответствии с изобретением;

Фиг.2 - это блок-схема общего представления многоканального декодера;

Фиг.3 - это блок-схема варианта осуществления на стороне кодера с низкой вычислительной мощностью;

Фиг.4 - это блок-схема варианта осуществления декодера для системы кодера по фиг.3;

Фиг.5 - это блок-схема варианта осуществления кодера, основанного на анализе посредством синтеза;

Фиг.6 - это блок-схема варианта осуществления декодера, соответствующего варианту осуществления кодера по фиг.5;

Фиг.7 - это общая блок-схема варианта осуществления прямого кодера, имеющего уменьшенную избыточность в закодированном остаточном сигнале;

Фиг.8 - это предпочтительный вариант осуществления декодера, соответствующего кодеру по фиг.7;

Фиг.9a - это предпочтительный вариант осуществления схемы кодера/декодера на основе концепции фиг.7 и фиг.8;

Фиг.9b - это предпочтительный вариант осуществления для варианта осуществления по фиг.9a, когда нет остаточного сигнала, а передаются только параметры выравнивания и усиления;

Фиг.9c - это набор уравнений, используемых на стороне кодера на фиг.9a и фиг.9b;

Фиг.9d - это набор уравнений, используемых на стороне декодера на фиг.9a и фиг.9b;

Фиг.10 - это вариант осуществления на основе гребенки фильтров анализа/гребенки фильтров синтеза для схемы по фиг.9a-9d; и

Фиг.11 иллюстрирует сравнение типичной производительности параметрических и традиционных основанных на волновой форме кодеров и кодера в соответствии с изобретением.

Подробное описание предпочтительных вариантов осуществления изобретения

Фиг.1 иллюстрирует предпочтительный вариант осуществления многоканального кодера для кодирования исходного многоканального сигнала, имеющего, по меньшей мере, два канала. Первым каналом может быть левый канал 10a, а вторым каналом может быть правый канал 10b в стереоокружении. Хотя варианты осуществления описываются в контексте стереосхемы, расширение до многоканальной схемы является прямым, поскольку многоканальное представление, имеющее, например, пять каналов, содержит несколько пар первого канала и второго канала. В контексте схемы объемного звучания 5.1 первым каналом может быть передний левый канал, а вторым каналом может быть передний правый канал. Альтернативно, первым каналом может быть передний левый канал, а вторым каналом может быть центральный канал. Альтернативно, первым каналом может быть центральный канал, а вторым каналом может быть передний правый канал. Альтернативно, первым каналом может быть задний левый канал (левый канал объемного звучания), а вторым каналом может быть задний правый канал (правый канал объемного звучания).

Предлагаемый кодер может включать в себя блок 12 понижающего микширования для формирования одного или более каналов понижающего микширования. В стереоокружении блок 12 понижающего микширования формирует один канал понижающего микширования. Тем не менее, в многоканальном окружении блок 12 понижающего микширования может формировать несколько каналов понижающего микширования. Тем не менее, в многоканальном окружении 5.1 блок 13 понижающего микширования предпочтительно формирует два канала понижающего микширования. Как правило, число каналов понижающего микширования меньше числа каналов в исходном многоканальном сигнале.

Предлагаемый многоканальный кодер также включает в себя поставщик 14 параметров для предоставления одного или более параметров, причем один или более параметров формируются таким образом, что восстановленный многоканальный сигнал может быть сформирован с помощью одного или более каналов понижающего микширования, извлеченных из многоканального сигнала и одного или более параметров.

Существенно, что многоканальный кодер в соответствии с изобретением дополнительно включает в себя остаточный кодер 16 для формирования закодированного остаточного сигнала. Закодированный остаточный сигнал формируется на основе исходного многоканального сигнала, одного или более каналов понижающего микширования или одного или более параметров. В общем, закодированный остаточный сигнал формируется таким образом, чтобы восстановленный многоканальный сигнал, когда сформирован с помощью остаточного сигнала, в большей степени был аналогичен исходному многоканальному сигналу, чем когда сформирован без остаточного сигнала. Таким образом, закодированный остаточный сигнал предоставляет возможность того, что декодер формирует восстановленный многоканальный сигнал, имеющий более высокое качество, чем порог 1100 качества, показанный на фиг.11. Один или более параметров и закодированный остаточный сигнал вводятся в формирователь 18 потоков данных, который формирует поток данных, имеющий остаточный сигнал и один или более параметров. Предпочтительно, поток данных, выводимый посредством формирователя 18 потоков данных, является масштабированным потоком данных, имеющим первый улучшающий уровень, включающий в себя информацию по одному или более параметрам, и второй улучшающий уровень, включающий в себя информацию по закодированному остаточному сигналу. Как известно в данной области техники, различные уровни масштабирования в масштабированном потоке данных могут декодироваться отдельно, так что низкоуровневое устройство, такое как чистый параметрический кодер, находится в такой позиции, чтобы декодировать поток данных посредством простого игнорирования второго улучшающего уровня.

В одном варианте осуществления настоящего изобретения масштабированный поток данных также включает в себя, в качестве базового уровня, один или более каналов понижающего микширования. Тем не менее, настоящее изобретение также применимо в окружении, в котором пользователь уже обладает каналом понижающего микширования. Эта ситуация может возникать тогда, когда каналом понижающего микширования является моно- или стереофонический сигнал, который пользователь уже принял посредством другого канала передачи или посредством того же канала передачи в сравнении с приемом первого улучшающего уровня и второго улучшающего уровня. Когда имеется отдельная передача канала(ов) понижающего микширования и первого и второго улучшающих уровней, кодер необязательно должен включать в себя блок 12 понижающего микширования. Эта ситуация показана пунктирной линией блока понижающего микширования.

Дополнительно, поставщик 14 параметров необязательно должен вычислять параметры на основе первого и второго исходных каналов. В ситуациях, когда параметры для определенного сигнала канала уже существуют, достаточно предоставить уже сформированные параметры в кодер по фиг.1, с тем чтобы эти параметры предоставлялись в формирователь 18 потоков данных и в остаточный кодер, чтобы необязательно быть использованными для вычисления остаточного сигнала, а также чтобы быть введенными в масштабированный поток данных. Тем не менее, предпочтительно, остаточный кодер дополнительно использует параметры, как показано пунктирной соединительной линией 19.

В предпочтительном варианте осуществления настоящего изобретения остаточный кодер 16 может контролироваться посредством отдельного входного сигнала управления скоростью передачи в битах. В этом случае остаточный кодер содержит определенный кодер с потерями, такой как квантователь, имеющий управляемый размер шага квантователя. Когда большой размер шага квантователя передается посредством блока управления скоростью передачи битов, закодированный остаточный сигнал имеет меньший диапазон значений (наибольший индекс квантования, выведенный посредством квантователя) в сравнении со случаем, когда меньший размер шага квантователя передается посредством блока управления скоростью передачи битов. Большой размер шага квантователя приводит к меньшему требованию по битам для закодированного остаточного сигнала, а следовательно, приводит к масштабированному потоку данных, имеющему сниженную скорость передачи битов в сравнении со случаем, когда квантователь в остаточном кодере 16 имеет меньший размер шага квантователя, приводящий к закодированному остаточному сигналу, требующему большее число битов.

Собственно говоря, вышеприведенные замечания применимы к масштабированному квантованию. Тем не менее, вообще говоря, предпочтительно использовать кодер, имеющий управляемое разрешение, который основан на методике векторного квантования. Когда разрешение высокое, большее число битов требуется для кодирования остаточного сигнала в сравнении со случаем, в котором разрешение низкое.

Фиг.2 иллюстрирует предпочтительный вариант осуществления изобретаемого многоканального декодера, который может быть использован в связи с кодером по фиг.1. В частности, фиг.2 иллюстрирует многоканальный декодер для декодирования закодированного многоканального сигнала, имеющего один или более каналов понижающего микширования, один или более параметров и закодированный остаточный сигнал. Вся эта информация, т.е. канал понижающего микширования, параметры и закодированные остаточные сигналы, включается в масштабированный поток 20 данных, вводимый в анализатор потоков данных, который извлекает закодированный остаточный сигнал из масштабированного потока 20 данных и перенаправляет закодированный остаточный сигнал в остаточный декодер 22. Аналогично, один или более предпочтительно закодированных каналов понижающего микширования предоставляются в декодер 24 понижающего микширования. Дополнительно, предпочтительно закодированные один или более параметров предоставляются в декодер 23 параметров, чтобы предоставить один или более параметров в декодированной форме. Информация, выводимая посредством блоков 22, 23 и 24, вводится в многоканальный декодер 25 для формирования первого восстановленного многоканального сигнала 26 или второго восстановленного многоканального сигнала 27. Первый восстановленный многоканальный сигнал формируется посредством многоканального декодера 25 с использованием одного или более каналов понижающего микширования и одного или более параметров, но без использования остаточного сигнала. Тем не менее, второй восстановленный многоканальный сигнал 27 формируется с помощью одного или более каналов понижающего микширования и декодированного остаточного сигнала. Поскольку остаточный сигнал включает в себя дополнительную информацию и, предпочтительно, информацию волновой формы, второй восстановленный многоканальный сигнал 27 в большей степени аналогичен исходному многоканальному сигналу (такому как каналы 10a и 10b на фиг.1), чем первый восстановленный многоканальный сигнал.

В зависимости от конкретной реализации многоканального декодера 25, многоканальный декодер 25 выводит либо первый восстановленный сигнал 26, либо второй восстановленный многоканальный сигнал 27. Альтернативно, многоканальный декодер 25 вычисляет первый восстановленный многоканальный сигнал в дополнение ко второму восстановленному многоканальному сигналу. Разумеется, во всех реализациях многоканальный декодер 25 выводит только первый восстановленный многоканальный сигнал, когда масштабированный поток данных включает в себя закодированный остаточный сигнал. Тем не менее, когда масштабированный поток данных - это процессы на пути от кодера к декодеру посредством отсечения второго улучшающего уровня, многоканальный декодер 25 выводит только первый восстановленный многоканальный сигнал. Это отсечение первого и второго улучшающего уровня может выполняться, когда был канал передачи на пути между кодером и декодером, который имел очень ограниченные ресурсы по полосе пропускания, так что передача масштабированного потока данных была возможна только без второго улучшающего уровня.

Фиг.3 и фиг.4 иллюстрируют один вариант осуществления изобретаемой концепции, который требует только меньшей вычислительной мощности на стороне кодера (фиг.3), а также на стороне декодера (фиг.4). Кодер по фиг.3 включает в себя стереофонический кодер 30 по интенсивности, который выводит монофонический сигнал понижающего микширования, с одной стороны, и параметрическую информацию стереонаправления интенсивности, с другой стороны. Монофоническое понижающее микширование, которое предпочтительно формируется посредством добавления первого и второго входного канала, вводится в блок 31 уменьшения скорости передачи данных. Для моноканала понижающего микширования блок 31 уменьшения скорости передачи данных может включать в себя любые из известных аудиокодеров, такие как MP3-кодер, AAC-кодер или любой другой аудиокодер моносигналов. Для параметрической информации направления блок 31 уменьшения скорости передачи данных может включать в себя любые из известных кодеров параметрической информации, например, разностный кодер, квантователь и/или кодер по энтропии, такой как кодер Хаффмана или арифметический кодер. Таким образом, блоки 30 и 31 на фиг.3 предоставляют функциональности, схематично проиллюстрированные посредством блоков 12 и 14 кодера по фиг.1.

Остаточный кодер 16 включает в себя блок 32 вычисления бокового сигнала и применяемый после него блок 33 уменьшения скорости передачи данных. Блок 32 вычисления бокового сигнала выполняет вычисление бокового сигнала, известное из стереокодеров с выделением центрального и разностного канала предшествующего уровня. Одним предпочтительным примером является вычисление разности по выборкам между первым каналом 10a и вторым каналом 10b, чтобы получить боковой сигнал волновой формы, который затем вводится в блок 33 уменьшения скорости передачи данных для сжатия по скорости передачи данных. Блок 33 уменьшения скорости передачи данных может включать в себя те же элементы, что и указанные выше относительно блока 31 уменьшения скорости передачи данных. На выходе блока 33 получается закодированный остаточный сигнал, который вводится в формирователь 18 потоков данных, так что получается предпочтительно масштабированный поток данных.

Поток данных, выводимый посредством блока 18, теперь включает в себя, в дополнение к монофоническому понижающему микшированию, параметрическую информацию стереонаправления интенсивности, а также закодированный остаточный сигнал волновой формы.

Блок 31 уменьшения скорости передачи данных может управляться посредством входного сигнала управления скоростью передачи битов, как уже описано в связи с фиг.1. В другом варианте осуществления блок 33 уменьшения скорости передачи данных выполнен с возможностью формирования масштабированного выходного потока данных, который имеет на своем базовом уровне остаток, закодированный с помощью небольшого числа битов на выборку, и который имеет на своем улучшающем уровне остаток, закодированный с помощью среднего числа битов на выборку, и который имеет на своем следующем улучшающем уровне остаток, закодированный с помощью также большего числа битов на выборку. Для базового уровня вывода блока уменьшения скорости передачи данных можно, например, использовать 0,5 битов на выборку. Для первого улучшающего уровня можно использовать, например, 4 бита на выборку, а для второго улучшающего уровня можно использовать, например, 16 битов на выборку.

Соо