Проводящие чернила и способ их получения

Иллюстрации

Показать все

Изобретение относится к композициям для проводящих чернил, находящим широкое применение в электронной технике. Описывается композиция для проводящих чернил, содержащая металлокомплексное соединение, полученное взаимодействием по меньшей мере одного металла или соединения металла формулы (1) с соединением на основе карбамата аммония или карбоната аммония формулы (2), (3) или (4), и по меньшей мере одну целевую добавку. Описывается также способ получения металлосодержащей пленки нанесением указанной композиции для проводящих чернил и ее обработки окислением, восстановлением, термообработкой, обработки ИК-излучением, УФ-излучением, обработки электронными пучками или обработки лазером. Предложенная композиция обладает повышенной стабильностью и растворимостью, а ее покрытие на различных подложках легко поддается обжигу даже при низкой температуре от 80 до 300°С с получением однородной тонкой пленки или рисунка с хорошей проводимостью. 2 н. и 36 з.п. ф-лы, 10 ил., 1 табл.

Реферат

Область техники

Настоящее изобретение относится к композиции для проводящих чернил, содержащей металлокомплексное соединение, имеющее особую структуру, и добавку, и к способу ее получения.

Уровень техники

В последнее время проводящие чернила привлекают внимание, поскольку они подходят для получения металлических пленок или образования рисунка и печати с помощью электродов в области бессвинцовых (Pb) электрических/электронных цепей, низкоомной металлической электропроводки, печатных плат (PCB), гибких печатных плат (FPC), антенн для радиочастотных маркировочных (RFID) меток, для защиты от электромагнитных помех (EMI), в области плазменных панелей (PDP), жидкокристаллических дисплеев (TFT-LCD), органических светоизлучающих диодов (OLED), гибких дисплеев и органических тонкопленочных транзисторов (OTFT).

Японская выложенная патентная заявка № 2004-221006 (5 августа 2004) и японская выложенная патентная заявка № 2004-273205 (30 сентября 2004) описывают проводящие чернила в виде пасты, полученной из наночастиц, порошка или чешуек металла, или металлического сплава, с использованием связующей смолы или растворителя. В публикации Chem. Mater., 15, 2208 (2003), японской выложенной патентной заявке № Hei 11-319538 (24 ноября 1999), японской выложенной патентной заявке № Hei 2004-256757 (10 сентября 2004) и патенте США № 4762560 (9 августа 1988) раскрывается способ взаимодействия таких металлических соединений, как нитрат серебра, тетрахлораурат водорода и сульфат меди, с другими соединениями в водном растворе или в органическом растворителе с образованием коллоидов или наночастиц. Однако эти способы являются неэкономными и малостабильными и требуют сложных процессов. Кроме того, высокая температура обжига делает их неподходящими для многих подложек.

Карбоксилат хорошо известен как лиганд, который образует комплексы, в частности, металлоорганические комплексы (Prog. Inorg. Chem., 10, p. 233 (1968)). Обычно, поскольку карбоксилатные комплексы металлов плохо растворимы в органических растворителях (J. Chem. Soc. (A), p. 514 (1971); патент США № 5534312 (9 июля 1996)) и разлагаются при высокой температуре, их применение ограничено, несмотря на легкость получения. Несколько способов было предложено для решения этой проблемы в J. Inorg. Nucl. Chem., 40, p. 1599 (1978); Ang. Chem., Int. Ed. Engl., 31, p. 770 (1992); Eur. J. Solid State Inorg. Chem., 32, p. 25 (1995); J. Chem. Cryst., 26, p. 99 (1996); Chem. Vapor Deposition, 1, 111 (2001); Chem. Mater., 16, 2021 (2004); патенте США № 5705661 (6 января 1998), японской выложенной патентной заявке № 2002-329419 (15 ноября 2002) и корейской патентной публикации № 2003-0085357 (5 ноября 2003). Все они представляют способы применения карбоксилатного соединения с длинной алкильной цепью или применения аминового соединения или фосфинового соединения.

Авторы настоящего изобретения представили стабильные и высокорастворимые комплексные соединения и способы их получения в корейских патентных заявках № 2005-11475 и 2005-11478. В частности, в корейских заявках № 2005-18364 и 2005-23013 они представили стабильные и прозрачные композиции для проводящих чернил с отличной растворимостью и хорошей электропроводностью, содержание металла в которых и толщину пленки можно легко регулировать, и способы формирования рисунков металлизации с использованием композиций, легкие даже при низкой температуре. Однако требуются разнообразные проводящие чернила для получения высококачественных специализированных продуктов или для соответствия ситуациям, когда необходимы особые свойства.

Согласно энциклопедии Ullman's Encyclopedia of Ind. Chem., Vol. A24, 107 (1993) серебро является драгоценным металлом, который плохо окисляется и имеет хорошую электро- и теплопроводность и каталитическую и антибактериальную активность, и поэтому серебро и соединения серебра широко используются в промышленности, в сплавах серебра, покрытии металлов, лекарствах, фотографии, для электрических и электронных продуктов, в волокнах, моющих средствах, бытовой технике и т.д. Кроме того, соединения серебра могут быть использованы в качестве катализатора в синтезе органических соединений и полимеров. В частности, в последнее время серебро применяется в новых областях, где требуются рисунки металлизации или электроды, включая бессвинцовые электрические/электронные цепи, низкоомную металлическую электропроводку, PCB, FPC, антенны для RFID-меток, защиту от электромагнитных помех, PDP, TFT-LCD, OLED, гибкие дисплеи и OTFT.

В последнее время проводятся исследования по замене алюминия серебром, которое имеет лучшие характеристики отражения и проводимости, в отражающих пленках для жидкокристаллических дисплеев отражательного или полупрозрачного типа, как раскрыто в японской выложенной патентной заявке № 2002-129259 (9 мая 2002), японской выложенной патентной заявке № 2004-176115 (24 июня 2004) и японской выложенной патентной заявке № 2004-231982 (19 августа 2004).

Однако соединения, полученные из серебра, ограничены и отличаются недостаточной стабильностью и растворимостью. Кроме того, они имеют температуру разложения 200°C или выше, которая является слишком высокой для получения рисунка металлизации с хорошей проводимостью, и они разлагаются медленно.

Авторы настоящего изобретения последовательно работали над решением этих проблем и пришли к осуществлению настоящего изобретения. Настоящее изобретение предоставляет композицию для проводящих чернил, обладающую очень высокой стабильностью и растворимостью, позволяющую легко получать тонкие пленки и легко поддающуюся обжигу даже при низкой температуре, давая тем самым возможность получить однородную и аккуратную пленку или рисунок с хорошей проводимостью, независимо от конкретной используемой подложки, и способ ее получения.

Описание изобретение

Целью настоящего изобретения является разработка композиции для проводящих чернил, содержащей металлокомплексное соединение, имеющее особую структуру, и добавку, и способа ее получения.

Другой целью настоящего изобретения является разработка композиции для проводящих чернил, дающей возможность легкого контроля содержания металла и толщины пленки, и способа ее получения.

Еще одной целью настоящего изобретения является разработка композиции для проводящих чернил, которую можно обжигать даже при низкой температуре (200°C или ниже) и которая позволяет легко получить однородную и аккуратную пленку или микрорисунок с хорошей проводимостью, и способа ее получения.

Еще одной целью настоящего изобретения является разработка композиции для проводящих чернил, имеющей отличную стабильность и растворимость и позволяющей легко получить пленку, независимо от конкретной используемой подложки, и способа ее получения.

Для достижения этих целей авторы настоящего изобретения изобрели композицию для проводящих чернил, содержащую металлокомплексное соединение, полученное взаимодействием по меньшей мере одного металла или соединения металла, представленного формулой 1 ниже, с по меньшей мере одним соединением на основе карбамата аммония или карбоната аммония, представленным формулой 2, 3 или 4 ниже, и добавку, и способ ее получения:

M n X (1)

В формуле 1 M означает металл или металлический сплав, n является целым числом от 1 до 10, и X отсутствует или является по меньшей мере одним заместителем, выбранным из группы, состоящей из водорода, аммония, кислорода, серы, галогена, циано, цианата, карбоната, нитрата, нитрита, сульфата, фосфата, тиоцианата, хлората, перхлората, тетрафторбората, ацетилацетоната, меркапто, амида, алкоксида, карбоксилата и их производных.

И в формулах 2-4 каждый из R1, R2, R3, R4, R5 и R6 независимо выбран из водорода; замещенного или незамещенного C1-C30 алифатического алкила, циклоалифатического алкила, арила или аралкила; полимерного соединения; гетероциклического соединения и их производных, причем R1 и R2 или R4 и R5 могут быть соединены друг с другом с образованием алкиленового кольца с гетероатомом или без него. Хотя настоящее изобретение этим не ограничивается, предпочтительно, чтобы R1 и R4 представляли собой C1-C14 алифатический алкил, а каждый из R3, R4, R5 и R6 представлял собой соответственно водород или C1-C14 алифатический алкил.

Неограничивающими частными примерами соединений, представленных формулой 1, являются металлы, такие как Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac и Th, или их сплавы, где n равно 1, а X отсутствует, и металлические соединения, такие как оксид меди, оксид цинка, оксид ванадия, сульфид никеля, хлорид палладия, карбонат меди, хлорид железа, хлорид золота, хлорид никеля, хлорид кобальта, нитрат висмута, ацетилацетонат ванадия, ацетат кобальта, лактат олова, оксалат марганца, ацетат золота, оксалат палладия, 2-этилгексаноат меди, стеарат железа, формиат никеля, молибдат аммония, цитрат цинка, ацетат висмута, цианид меди, карбонат кобальта, хлорид платины, хлораурат водорода, тетрабутоксититан, диметоксицирконийдихлорид, изопропоксид алюминия, тетрафторборат олова, метоксид тантала, додецилмеркаптоаурат, ацетилацетонат индия и их производные.

Предпочтительно, металлом или соединением металла, представленным формулой 1, является серебро (Ag) или соединение серебра, причем n является целым числом от 1 до 4, и X является по меньшей мере одним компонентом, выбранным из группы, состоящей из кислорода, серы, галогена, циано, цианата, карбоната, нитрата, нитрита, сульфата, фосфата, тиоцианата, хлората, перхлората, тетрафторбората, ацетилацетоната, карбоксилата и их производных. Неограничивающими примерами таких соединений серебра являются оксид серебра, тиоцианат серебра, цианид серебра, цианат серебра, карбонат серебра, нитрат серебра, нитрит серебра, сульфат серебра, фосфат серебра, перхлорат серебра, тетрафторборат серебра, ацетилацетонат серебра, ацетат серебра, лактат серебра, оксалат серебра и их производные. Сплавы серебра могут быть получены из по меньшей мере одного металла, выбранного из Au, Cu, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Si, As, Hg, Sm, Eu, Th, Mg, Ca, Sr и Ba, но конкретно не ограничены ими.

Неограничивающими частными примерами R1, R2, R3, R4, R5 и R6 в формулах 2-4 являются водород, метил, этил, пропил, изопропил, бутил, изобутил, амил, гексил, этилгексил, гептил, октил, изооктил, нонил, децил, додецил, гексадецил, октадецил, докодецил, циклопропил, циклопентил, циклогексил, аллил, гидрокси, метокси, метоксиэтил, метоксипропил, цианоэтил, этокси, бутокси, гексилокси, метоксиэтоксиэтил, метоксиэтоксиэтоксиэтил, гексаметиленимин, морфолин, пиперидин, пиперазин, этилендиамин, пропилендиамин, гексаметилендиамин, триэтилендиамин, пиррол, имидазол, пиридин, карбоксиметил, триметоксисилилпропил, триэтоксисилилпропил, фенил, метоксифенил, цианофенил, фенокси, толил, бензил, их производные, полимерные соединения, такие как полиаллиламин и полиэтиленимин и их производные.

Частными примерами соединения на основе карбамата аммония, представленного формулой 2, являются карбамат аммония, этилкарбамат этиламмония, изопропилкарбамат изопропиламмония, н-бутилкарбамат н-бутиламмония, изобутилкарбамат изобутиламмония, трет-бутилкарбамат трет-бутиламмония, 2-этилгексилкарбамат 2-этилгексиламмония, октадецилкарбамат октадециламмония, 2-метоксиэтилкарбамат 2-метоксиэтиламмония, 2-цианоэтилкарбамат 2-цианоэтиламмония, дибутилкарбамат дибутиламмония, диоктадецилкарбамат диоктадециламмония, метилдецилкарбамат метилдециламмония, гексаметилениминкарбамат гексаметилениминия, морфолинкарбамат морфолиния, этилгексилкарбамат пиридиния, изопропилкарбамат триэтилендиаминия, бензилкарбамат бензиламмония, триэтоксисилилпропилкарбамат триэтоксисилилпропиламмония и т.д. Частные примеры соединения на основе карбоната аммония, представленного формулой 3, являются карбонат аммония, этилкарбонат этиламмония, изопропилкарбонат изопропиламмония, н-бутилкарбонат н-бутиламмония, изобутилкарбонат изобутиламмония, трет-бутилкарбонат трет-бутиламмония, 2-этилгексилкарбонат 2-этилгексиламмония, 2-метоксиэтилкарбонат 2-метоксиэтиламмония, 2-цианоэтилкарбонат 2-цианоэтиламмония, октадецилкарбонат октадециламмония, дибутилкарбонат дибутиламмония, диоктадецилкарбонат диоктадециламмония, метилдецилкарбонат метилдециламмония, гексаметилениминкарбонат гексаметилениминаммония, морфолинкарбонат морфолиния, бензилкарбонат бензиламмония, триэтоксисилилпропилкарбонат триэтоксисилилпропиламмония, изопропилкарбонат триэтилендиаминия и т.д. И частными примерами соединения на основе карбоната, представленного формулой 4, являются бикарбонат аммония, бикарбонат изопропиламмония, бикарбонат трет-бутиламмония, бикарбонат 2-этилгексиламмония, бикарбонат 2-метоксиэтиламмония, бикарбонат 2-цианоэтиламмония, бикарбонат диоктадециламмония, бикарбонат пиридиния, бикарбонат триэтилендиаминия и их производные.

Способы получения соединения на основе карбамата аммония или карбоната аммония, представленного формулами 2-4, конкретно не ограничиваются. Например, соединение на основе карбамата аммония может быть получено из первичного амина, вторичного амина, третичного амина или их смеси и диоксида углерода, как описано в патенте США № 4542214 (17 сентября 1985); J. Am. Chem. Soc., 123, p. 10393 (2001); Langmuir, 18, p. 71247 (2002). Соединение на основе карбамата аммония получается, если использовать 0,5 моля воды на 1 моль амина, а соединение на основе бикарбоната аммония получается, если использовать 1 моль воды или больше. Получение можно проводить при нормальном давлении или повышенном давлении, без растворителя или в присутствии таких растворителей, как спирты, например, метанол, этанол, изопропанол и бутанол, гликоли, такие как этиленгликоль и глицерин, ацетаты, такие как этилацетат, бутилацетат и карбитолацетат, простые эфиры, такие как диэтиловый эфир, тетрагидрофуран и диоксан, кетоны, такие как метилэтилкетон и ацетон, углеводороды, такие как гексан и гептан, ароматические растворители, такие как бензол и толуол, и галоген-замещенные растворители, такие как хлороформ, метиленхлорид и тетрахлорид углерода. Диоксид углерода можно барботировать в газовой фазе или использовать в виде сухого льда. Альтернативно, получение можно провести в сверхкритической фазе. При получении производного на основе карбамата аммония и производного на основе карбоната аммония, используемых в настоящем изобретении, могут применяться любые другие известные способы, если только конечная структура будет той же. То есть растворитель, температура реакции, концентрация, катализатор и т.д. при получении конкретно не ограничиваются. Не ограничивается также конкретно выход.

Вместе с диоксидом углерода может быть использовано композитное аммониевое соединение, полученное взаимодействием аминового соединения с трехатомной молекулой. Например, вместе с аммониевым соединением по настоящему изобретению может быть использован аддукт, полученный взаимодействием аминового соединения, такого как пропиламин, дециламин и октадециламин, с диоксидом азота, диоксидом серы или сероуглеродом (см. Langmuir, 19, p. 1017 (2003) и Langmuir, 19, p. 8168 (2003)). Или композитное соединение на основе карбоната или карбамата аммония можно получить напрямую при реакции с амином, используя трехатомную молекулу и диоксид углерода. Кроме того, может быть использовано соединение, полученное взаимодействием аминового соединения с соединением бора, таким как борная кислота и бороновая кислота, и такое аммониевое соединение, как сульфамат аммония, сульфат аммония, гидросульфат аммония, сульфит аммония и их смесь.

Соединение на основе карбамата аммония или карбоната аммония подвергают взаимодействию с металлом или соединением металла с получением металлокомплексного соединения. Например, по меньшей мере один металл или соединение металла, представленное формулой 1, и по меньшей мере одно соединение на основе карбамата аммония или карбоната аммония, представленное формулами 2, 3 или 4, вводят в реакцию в атмосфере азота при нормальном или повышенном давлении, без растворителя или в присутствии такого растворителя, как вода, спирты, такие как метанол, этанол, изопропанол и бутанол, гликоли, такие как этиленгликоль и глицерин, ацетаты, такие как этилацетат, бутилацетат и карбитолацетат, простые эфиры, такие как диэтиловый эфир, тетрагидрофуран и диоксан, кетоны, такие как метилэтилкетон и ацетон, углеводороды, такие как гексан и гептан, ароматические растворители, такие как бензол и толуол, и галоген-замещенные растворители, такие как хлороформ, метиленхлорид и тетрахлорид углерода, или их смесь. Альтернативно, металлокомплексное соединение можно получить, приготавливая раствор, содержащий металл или соединение металла, представленное формулой 1, и по меньшей мере одно аминовое соединение, и подвергая раствор взаимодействию с диоксидом углерода. Эту реакцию также можно провести при нормальном или повышенном давлении без растворителя или в присутствии растворителя. Однако способ получения металлокомплексного соединения конкретно не ограничивается, и могут применяться любые известные способы, если только конечная структура будет той же. То есть растворитель, температура реакции, концентрация, катализатор и т.д. конкретно не ограничиваются. Также конкретно не ограничивается выход.

Композиция для проводящих чернил по настоящему изобретению содержит металлокомплексное соединение и добавку. Добавка, содержащаяся в чернильной композиции по настоящему изобретению, может быть таким известным соединением, как проводник, предшественник металла, окислитель, стабилизатор, растворитель, диспергатор, связующая смола, восстановитель, поверхностно-активное вещество, смачиватель, тиксотропная добавка и выравнивающее средство. Добавка конкретно не ограничивается, и в целях настоящего изобретения может быть использована любая известная добавка.

Тип, размер или форма проводника или предшественника металла, используемых в настоящем изобретении в качестве добавки, конкретно не ограничиваются. Для проводника может быть использован по меньшей мере один металл, выбранный из группы, состоящей из переходных металлов, таких как Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os и Ir, таких металлов, как Al, Ga, Ge, In, Sn, Sb, Pb и Bi, лантанидов, таких как Sm и Eu, и актинидов, таких как Ac и Th, их сплавов или их оксидных сплавов. Кроме того, могут быть использованы проводящая сажа, графит, углеродные нанотрубки и такие проводящие полимеры, как полиацетилен, полипиррол, полианилин, политиофен и их производные.

Предшественник металла также конкретно не ограничивается. А именно, в целях настоящего изобретения может быть использован любой предшественник металла и, более предпочтительно, наделенный проводимостью путем термообработки, окислительной или восстановительной обработки, обработки ИК, УФ, электронным пучком или лазером и т.д. Например, предшественник металла может быть металлоорганическим соединением или солью металла и, как правило, представлен формулой 1, где M означает по меньшей мере один металл, выбранный из Ag, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac и Th или их сплава, n является целым числом от 1 до 10, и X означает по меньшей мере один заместитель, выбранный из водорода, аммония, кислорода, серы, галогена, циано, цианата, карбоната, нитрата, нитрита, сульфата, фосфата, тиоцианата, хлората, перхлората, тетрафторбората, ацетилацетоната, меркапто, амида, алкоксида, карбоксилата и их производных.

В частности, можно использовать по меньшей мере один карбоксилат металла, такой как ацетат золота, ацетат серебра, оксалат палладия, 2-этилгексаноат серебра, 2-этилгексаноат меди, стеарат железа, формиат никеля и цитрат цинка, и такое соединение металла, как нитрат серебра, цианид меди, карбонат кобальта, хлорид платины, тетрахлораурат водорода, тетрабутоксититан, диметоксицирконийдихлорид, изопропоксид алюминия, тетрафторборат олова, оксид ванадия, оксид индия-олова, метоксид тантала, ацетат висмута, додецилмеркаптоаурат и ацетилацетонат индия.

Проводник или предшественник металла может иметь сферическую, линейную или плоскую форму, или их комбинацию. Они могут быть в виде частиц, включая наночастицы, порошок, чешуйки, коллоид, гибрид, пасту, золь, раствор или их комбинацию. Размер или содержание проводника или предшественника металла конкретно не ограничиваются, если только они не оказывают отрицательного влияния на свойства чернил. Предпочтительно, проводник или предшественник металла имеет размер меньше или равный 50 микрон, учитывая толщину пленки после обжига, более предпочтительно от 1 нм до 25 микрон. Предпочтительно, чтобы они не использовались в избытке, чтобы температура обжига не повышалась слишком сильно, или чтобы не оказывать отрицательного влияния на покрытие или образование рисунка. Как правило, они применяются в количестве 1-90 вес.%, предпочтительно 10-70 вес.%, на 100 вес.% всей чернильной композиции.

Окислитель можно использовать в качестве добавки при получении металлокомплексного соединения. Окислитель может быть окисляющим газом, таким как воздух, кислород и озон, пероксидом, таким как пероксид водорода (H2O2), Na2O2, KO2, NaBO3, K2S2O8, (NH4)2S2O8, Na2S2O8, H2SO5, KHSO5, (CH3)3CO2H и (C6H5CO2)2, пероксикислотой, такой как HCO3H, CH3CO3H, CF3CO3H, C6H5CO3H, м-ClC6H5CO3H, общеизвестной окисляющей неорганической кислотой, такой как азотная кислота, серная кислота, I2, FeCl3, Fe(NO3)3, Fe2(SO4)3, K3Fe(CN)6, (NH4)2Fe(SO4)2, Ce(NH4)4(SO4)4, NaIO4, KMnO4 и K2CrO4, металлом или неметаллическим соединением. Окислитель можно использовать самостоятельно или в комбинации. В процессе получения может проводиться нагревание, охлаждение, электролиз, обработка ультразвуком, обработка ультракороткими волнами, высокочастотная обработка, плазменная обработка, ИК-обработка или УФ-обработка.

Стабилизатор может содержать, например, по меньшей мере одно из аминовых соединений, таких как первичный амин, вторичный амин и третичный амин, описанное выше соединение на основе карбамата аммония, карбоната аммония или бикарбоната аммония, фосфорное соединение, такое как фосфин и фосфит, или соединение серы, такое как тиол и сульфид. В частности, аминовым соединением может быть метиламин, этиламин, н-пропиламин, изопропиламин, н-бутиламин, изобутиламин, изоамиламин, н-гексиламин, 2-этилгексиламин, н-гептиламин, н-октиламин, изооктиламин, нониламин, дециламин, додециламин, гексадециламин, октадециламин, докодециламин, циклопропиламин, циклопентиламин, циклогексиламин, аллиламин, гидроксиамин, гидроксид аммония, метоксиамин, 2-этаноламин, метоксиэтиламин, 2-гидроксипропиламин, метоксипропиламин, цианоэтиламин, этоксиамин, н-бутоксиамин, 2-гексилоксиамин, метоксиэтоксиэтиламин, метоксиэтоксиэтоксиэтиламин, диэтиламин, дипропиламин, диэтаноламин, гексаметиленимин, морфолин, пиперидин, пиперазин, этилендиамин, пропилендиамин, гексаметилендиамин, триэтилендиамин, 2,2-(этилендиокси)бисэтиламин, триэтиламин, триэтаноламин, пиррол, имидазол, пиридин, диметилацеталь аминоацетальдегида, 3-аминопропилтриметоксисилан, 3-аминопропилтриэтоксисилан, анилин, анизидин, аминобензонитрил, бензиламин, их производные, или такие полимерные соединения, как полиаллиламин и полиэтиленимин или их производные. Частными примерами аммониевых соединений являются соединения на основе карбамата аммония, такие как карбамат аммония, этилкарбамат этиламмония, изопропилкарбамат изопропиламмония, н-бутилкарбамат н-бутиламмония, изобутилкарбамат изобутиламмония, трет-бутилкарбамат трет-бутиламмония, 2-этилгексилкарбамат 2-этилгексиламмония, октадецилкарбамат октадециламмония, 2-метоксиэтилкарбамат 2-метоксиэтиламмония, 2-цианоэтилкарбамат 2-цианоэтиламмония, дибутилкарбамат дибутиламмония, диоктадецилкарбамат диоктадециламмония, метилдецилкарбамат метилдециламмония, гексаметилениминкарбамат гексаметилениминия, морфолинкарбамат морфолиния, этилгексилкарбамат пиридиния, изопропилкарбамат триэтилендиаминия, бензилкарбамат бензиламмония, триэтоксисилилпропилкарбамат триэтоксисилилпропиламмония и их производные, такие соединения на основе карбоната аммония, как карбонат аммония, этилкарбонат этиламмония, изопропилкарбонат изопропиламмония, н-бутилкарбонат н-бутиламмония, изобутилкарбонат изобутиламмония, трет-бутилкарбонат трет-бутиламмония, 2-этилгексилкарбонат 2-этилгексиламмония, 2-метоксиэтилкарбонат 2-метоксиэтиламмония, 2-цианоэтилкарбонат 2-цианоэтиламмония, октадецилкарбонат октадециламмония, дибутилкарбонат дибутиламмония, диоктадецилкарбонат диоктадециламмония, метилдецилкарбонат метилдециламмония, гексаметилениминкарбонат гексаметилениминия, морфолинкарбонат морфолиния, бензилкарбонат бензиламмония, триэтоксисилилпропилкарбонат триэтоксисилилпропиламмония, изопропилкарбонат триэтилендиаминия и их производные, и такие соединения на основе бикарбоната аммония, как бикарбонат аммония, бикарбонат изопропиламмония, бикарбонат трет-бутиламмония, бикарбонат 2-этилгексиламмония, бикарбонат 2-метоксиэтиламмония, бикарбонат 2-цианоэтиламмония, бикарбонат диоктадециламмония, бикарбонат пиридиния, бикарбонат триэтилендиаминия и их производные. Фосфорным соединением может быть соединение, представленное общей формулой R3P или (RO)3P, где R означает C1-C20 алкил или арил. Типичными примерами такого фосфорного соединения являются трибутилфосфин, трифенилфосфин, триэтилфосфит и трифенилфосфит. А соединением серы может быть бутантиол, н-гексантиол, диэтилсульфид, тетрагидротиофен и т.д. Содержание стабилизатора конкретно не ограничивается, если только оно не оказывает отрицательного влияния на свойства чернил. Однако предпочтительно, чтобы его содержание составляло 0,1-90%, более предпочтительно 1-50% и наиболее предпочтительно 5-30% на 100% металла или соединения металла, в мольном отношении. Вне этого диапазона проводимость пленки может ухудшиться, что приведет к падению стабильности при хранении. Падение стабильности при хранении приведет к проблемам с качеством пленки. Кроме того, пленка, полученная нанесением чернильной композиции и обжигом, может быть неоднородной или неаккуратной, и может произойти растрескивание, если содержание стабилизатора будет находиться вне вышеуказанного диапазона.

Для регулирования вязкости чернил или для облегчения образования пленки может потребоваться растворитель. С этой целью могут быть использованы вода, спирт, такой как метанол, этанол, изопропанол, 1-метоксипропанол, бутанол, этилгексиловый спирт и терпинеол, гликоль, такой как этиленгликоль и глицерин, ацетат, такой как этилацетат, бутилацетат, метоксипропилацетат, карбитолацетат и этилкарбитолацетат, простой эфир, такой как метилцеллозольв, бутилцеллозольв, диэтиловый эфир, тетрагидрофуран и диоксан; кетон, такой как метилэтилкетон, ацетон, диметилформамид и 1-метил-2-пирролидон, углеводород, такой как гексан, гептан, додекан, парафиновое масло и уайт-спирит, ароматический растворитель, такой как бензол, толуол и ксилол, галоген-замещенный растворитель, такой как хлороформ, метиленхлорид и тетрахлорид углерода, ацетонитрил, диметилсульфоксид или их смесь.

Диспергатор используется для эффективного диспергирования проводника в виде частиц или чешуек. Для этой цели можно использовать диспергаторы серии 4000 фирмы EFKA, серии Disperbyk фирмы BYK, серии Solsperse фирмы Avecia, серии TEGO Dispers фирмы Degussa, серии Disperse-AYD фирмы Elementis, серии JONCRYL фирмы Johnson Polymer и т.д.

Связующей смолой может быть по меньшей мере одна из следующих смол: акриловая смола, такая как полиакриловая кислота и полиакриловый эфир, целлюлозная смола, такая как этилцеллюлоза, сложный эфир целлюлозы и нитрат целлюлозы, алифатическая или сополимерная полиэфирная смола, виниловая смола, такая как поливинилбутираль, поливинилацетат и поливинилпирролидон, полиамидная смола, полиуретановая смола, смола на основе простого эфира, полимочевина, алкидная смола, силиконовая смола, фторсодержащая смола, олефиновая смола, такая как полиэтилен и полистирол, термопластичная смола, такая как кумаронинденовая смола и канифоль, эпоксидная смола, ненасыщенная полиэфирная или винилэфирная смола, диаллилфталатная смола, фенольная смола, оксетановая смола, оксазиновая смола, бисмалеимидная смола, модифицированная силиконовая смола, такая как эпоксидно-силиконовая и силикон-полиэфирная смола, термореактивная смола, такая как меламиновая, акриловая смола, отвержденная УФ-облучением или облучением электронным пучком, этилен-пропиленовый каучук (EPR), стирол-бутадиеновый каучук (SBR) или натуральный полимер, такой как крахмал и желатин. Помимо этих органических связующих смол, может быть использовано такое неорганическое связующее, как органическое стекло и стеклокерамический припой, силановое связующее, такое как триметоксипропилсилан и винилтриэтоксисилан, или связующее вещество на основе титана, циркония или алюминия.

Поверхностно-активным веществом (ПАВ) может быть анионное ПАВ, такое как лаурилсульфат натрия, неионное ПАВ, такое как нонилфеноксиполиэтоксиэтанол и FSN производства Dupont, катионное ПАВ, такое как лаурилбензиламмонийхлорид, или амфотерное ПАВ, такое как лаурилбетаин и кокобетаин.

Смачивателем или смачивателем-диспергатором может быть полиэтиленгликоль, серия Surfynol производства Air Product или серия TEGO Wet производства Degussa. И тиксотропной добавкой или выравнивающим средством может быть серия BYK производства BYK, серия Glide производства Degussa, серия EFKA 3000 производства EFKA, серия DSX производства Cognis и т.д.

Восстановитель может быть добавлен для облегчения обжига. Например, можно использовать гидразин, гидразид уксусной кислоты, боргидрид натрия или калия, тринатрийцитрат, аминовое соединение, такое как метилдиэтаноламин и диметиламинборан, металлическую соль, такую как дихлорид железа и сульфат железа, водород, йодистый водород, моноксид углерода, альдегидное соединение, такое как формальдегид и ацетальдегид, органическое соединение, такое как глюкоза, аскорбиновая кислота, салициловая кислота, дубильная кислота, пирогаллол и гидрохинон и т.д.

Альтернативно, композицию для проводящих чернил по настоящему изобретению можно получить путем приготовления смешанного раствора металла или соединения металла, представленного формулой 1, с избытком по меньшей мере одного из аминового соединения, соединения на основе карбамата аммония или карбоната аммония, добавляя по требованию проводник, предшественник металла, диспергатор, связующее или добавку, а затем подвергая раствор взаимодействию с диоксидом углерода. Эту реакцию также можно проводить при нормальном или повышенном давлении без растворителя или в присутствии растворителя.

Металлокомплексное соединение согласно настоящему изобретению может быть выражено следующей формулой 5:

MAm (5)

где A означает соединение, представленное формулами 2-4, и 0,5≤m≤5,5.

Чернильная композиция, полученная в соответствии с настоящим изобретением, имеет отличную стабильность и поэтому может быть легко преобразована в пленку или рисунок, используя разнообразные подложки, путем покрытия или печати. Например, ее можно наносить в виде покрытия или напрямую печатать на такой подложке, как металл, стекло, кремниевая пластина, керамика, пластмассовая пленка, такая как полиэфирная или полиимидная, клеенка, волокно, дерево и бумага. Подложку можно использовать после промывки водой, удаления жира или специальной предварительной обработки. Примерами способов такой предварительной обработки являются плазменная обработка, обработка пучком ионов или коронным разрядом, окисление или восстановление, нагревание, травление, УФ-обработка, грунтовка с использованием вышеупомянутых связующего или добавки и т.д. Образование пленки или печать можно проводить методом центрифугирования, покрытием валиками, методом напыления, покрытием погружением, покрытием поливом, покрытием с применением ножевого устройства, поливом с дозированием, струйной печатью, офсетной печатью, трафаретной печатью, тампопечатью, глубокой печатью, флексографией, ротаторной печатью, тиснением, ксерографией, литографией и т.д., учитывая физические свойства чернил.

Вязкость чернил по настоящему изобретению конкретно не ограничивается, пока она не влияет отрицательно на формирование пленки или печать. Хотя вязкость может изменяться в зависимости от способа получения и конкретного вида чернил, предпочтительна вязкость в диапазоне от 0,1 до 1000000 сП, более предпочтительно в диапазоне от 1 до 500000 сП. Вязкость чернил становится важным фактором, когда формирование пленки или рисунка осуществляется струйной печатью. В таком случае благоприятна вязкость в диапазоне от 0,1 до 50 сП, предпочтительно в диапазоне от 1 до 20 сП, более предпочтительно в диапазоне 2-15 сП. Если вязкость меньше, то проводимость может быть недостаточной из-за недостаточной толщины пленки. Наоборот, если вязкость больше, чернила могут плохо течь.

Полученная таким путем пленка или рисунок могут быть дополнительно обработаны окислением или восстановлением, термообработкой, обработкой ИК, УФ, электронным пучком или лазером и т.д. для формирования рисунка металла или оксида металла. Термообработку можно проводить в атмосфере инертного газа или в воздухе, азоте или моноксиде углерода, или в смеси газов, содержащей водород и воздух или другой инертный газ, в зависимости от потребности. Термообработку обычно проводят при 80-500°C, предпочтительно при 90-300°C, более предпочтительно при 100-250°C, для лучших физических характеристик пленки. В целях однородности пленки термообработку можно проводить при разных температурах. Например, термообработку можно проводить при 80-150°C в течение 1-30 минут и затем при 150-300°C в течение 1-30 минут.

Настоящее изобретение предоставляет разнообразные композиции для проводящих чернил, содержащие металлокомплексное соединение, полученное взаимодействием по меньшей мере одного металла или соединения металла, представленного формулой 1, с по меньшей мере одним соединением на основе карбамата аммония или карбоната аммония, представленным формулой 2, 3 или 4, и добавку.

Чернильная композиция по настоящему изобретению имеет очень высокую стабильность и растворимость, позволяет легко образовать пленку и легко обжигается даже при низкой температуре (200°C или меньше), с получением пленки или рисунка с хорошей электропроводностью. Чернильная композиция по настоящему изобретению может быть нанесена в виде покрытия или напрямую напечатана на разнообразных подложках, включая металл, стекло, кремниевую пластину, керамику, пленку из пластмассы, такой как полиэфир или полиимид, клеенку, волокно, дерево и бумагу.

В зависимости от физических свойств чернил могут применяться разные способы формирования пленки или печати, такие как покрытие, полученное методом центрифугирования, покрытие валиками, покрытие напылением, покрытие погружением, покрытие поливом, покрытие, наносимое ножевым и дозирующим устройством, струйная печать, офсетная печать, трафаретная печать, тампопечать, глубокая печать, флексография, ротаторная печать, тиснение, ксерография, литография и т.д.

Использование чернильной композиции по настоящему изобретению позволяет образовать однородную пленку, имеющую отличную проводимость и адгезивность. Кроме того, пленка почти не растрескивается.

Кроме того, чернильная композиция по настоящему изобретению может применяться для защиты материалов от электромагнитных помех, для проводящих адгезивов, низкоомной проводки, PCB, FPC, антенн для RFID-меток, в солнечных элементах, аккумуляторах или топливных элементах и электродах или для проводки в PDP, TFT-LCD, OLED, гибких дисплеях и OTFT.

Краткое описание чертежей

Фиг.1 является TGA (термогра