Управляемый оптический мультиплексор ввода-вывода

Иллюстрации

Показать все

Изобретение относится к волоконно-оптическим системам связи со спектральным уплотнением каналов, в частности к управляемым и реконфигурируемым оптическим мультиплексорам ввода/вывода каналов. Технический результат заключается в осуществлении ввода/вывода желаемого канала из оптического сигнала путем управления спектральными характеристиками фильтрующих ступеней мультиплексора. Изобретение представляет собой способ управляемого селективного ввода/вывода канала в волоконно-оптической системе связи со спектральным уплотнением 2N каналов, оптические частоты которых могут перестраиваться, но при этом спектральный интервал Δν между соседними каналами постоянный, с помощью управляемых оптических мультиплексоров (70, 80, 90) ввода/вывода, включающих многоступенчатые структуры соединенных различным образом оптических фильтров ({75-i}, {85-i}, {95-i}), имеющих устройства для управляемой настройки их коэффициентов передачи. В качестве оптических фильтров использованы несимметричные однокаскадные (20), двухкаскадные (40) и/или многокаскадные (60) интерферометры Маха-Цендера. 4 н. и 18 з.п. ф-лы, 1 табл., 9 ил.

Реферат

Область техники

Изобретение относится к волоконно-оптическим системам связи (далее ВОСС) со спектральным уплотнением каналов, в частности к способам управляемого ввода/вывода каналов, к управляемым и реконфигурируемым оптическим мультиплексорам ввода/вывода каналов (далее соответственно t-OADM и ROADM), и может использоваться как в системах плотного спектрального уплотнения (далее DWDM), так и умеренного спектрального уплотнения (далее CWDM).

Предшествующий уровень техники

В настоящее время для увеличения пропускной способности магистральных, городских и локальных волоконно-оптических систем связи широко используются технологии спектрального уплотнения каналов. Различают плотное спектральное уплотнение - DWDM и умеренное спектральное уплотнение - CWDM. При этом технологии DWDM используются, в основном, в протяженных магистральных линиях связи, а технологии CWDM - в городских и локальных системах связи.

Технологии DWDM характеризуются предельно высокой пропускной способностью, но являются весьма дорогостоящими. Стандарт на сетку длин волн, введенный Международным Телекоммуникационным Комитетом (далее - Стандарт ITU), предусматривает спектральный интервал между каналами 200, 100, 50 или 25 ГГц (интервал в длинах волн 1,6, 0,8, 0,4 и 0,2 нм соответственно); уже используются системы с еще более высоким (12,5 ГГц) уплотнением каналов.

По сравнению с технологиями DWDM число каналов в системах CWDM, которые могут быть пропущены по одному световоду, значительно меньше, а рекомендованный ITU спектральный интервал между каналами составляет 20 нм. Техника CWDM значительно проще в использовании и дешевле.

В узловых точках ВОСС для ввода/вывода каналов обычно используются оптические мультиплексоры ввода-вывода (далее OADM). Они позволяют вывести из линии один или несколько каналов и одновременно ввести сигнал на тех же длинах волн с новой информацией. Это позволяет существенно повысить эффективность использования систем связи.

OADM c фиксированными частотами каналов позволяют ввести/вывести только ограниченное число каналов. Систематически возрастающие требования к пропускной способности систем связи и использование новых подходов требуют большей гибкости для подобных устройств.

Применение динамически реконфигурируемых или управляемых оптических мультиплексоров ввода-вывода (соответственно ROADM или t-OADM) снимает эти ограничения, позволяя ввести/вывести требуемые каналы в любое время; к тому же t-OADM может использоваться также в системах спектрального уплотнения, где сами длины волн каналов могут перестраиваться. Таким образом, ROADM и POADM обеспечивают возможность оперативного управления трафиком ВОСС, повышая еще больше пропускную способность системы связи.

Хорошо известная специалистам в области оптических систем конструкция ROADM представляет собой устройство, состоящее из дискретных компонентов и включающее демультиплексор, оптические переключатели и мультиплексор. Пару демультиплексор-мультиплексор могут представлять многоступенчатые структуры на интерференционных фильтрах, устройства на дифракционных решетках или в планарном исполнении на так называемых упорядоченных жгутах (AWG). Оптические переключатели, используемые для ввода, вывода и пропускания каналов - как правило, электромеханические микропереключатели.

Однако такое устройство является дорогим, особенно, если количество каналов в системе связи является большим. Оно характеризуется большими вносимыми потерями и деградацией качества оптического сигнала. Кроме того, оптические переключатели недостаточно устойчивы к воздействию окружающей среды, например температуры, вибрации и другим факторам.

Основным функциональным элементом t-OADM является перестраиваемый оптический фильтр - селективное устройство, в котором центральная частота (длина волны) спектральной полосы может динамически перестраиваться. Известно много перестраиваемых оптических фильтров, но большинство из них в силу тех или иных причин плохо приспособлены для использовании в t-OADM.

Например, перестраиваемый акустооптический фильтр имеет сильную поляризационную зависимость, которая создает много практических проблем. Брэгговский фильтр перестраивается механически или с помощью температуры, поэтому скорость перестройки сравнительно мала, около миллисекунды. Перестраиваемый фильтр на основе интерферометров Фабри-Перо также мало приемлем, так как если он перестраивается в широком диапазоне, то его спектральная полоса недостаточно узкая, если же спектральная полоса узкая, то он может перестраиваться только в ограниченном диапазоне.

Перестраиваемый оптический фильтр на основе несимметричного интерферометра Маха-Цендера (далее - однокаскадный ИМЦ) характеризуется низкими вносимыми оптическими потерями и низкой поляризационной зависимостью. Снабженный электрооптическим устройством фазового сдвига он может обеспечить максимально быструю перестройку.

Специалистам в области волоконно-оптических систем связи известно, что многоступенчатая структура на базе однокаскадных ИМЦ, имеющая число ступеней 8 или 9, характеризуется высокой избирательностью и является достаточной, чтобы перекрыть полную спектральную полосу, используемую в системах спектрального уплотнения. Поэтому такой перестраиваемый фильтр из всех вышеперечисленных является наиболее подходящим для использования в t-OADM и ROADM.

Известен перестраиваемый оптический мультиплексор ввода-вывода (US 6795654 В2), имеющий входной порт, выводной порт и выходной порт и включающий устройства, обеспечивающие ввод сигнала, содержащего несколько каналов, связанную со входным портом многоступенчатую структуру оптических фильтров, каждый из которых пропускает через себя нечетные или четные каналы и отражает четные и нечетные каналы соответственно, устройство, обеспечивающее пропускание отраженных каналов в выходной порт и пропускаемого всеми фильтрами канала (выводимого канала) в выводной порт. При этом оптический фильтр в каждой ступени содержит волоконный интерферометр Маха-Цендера, имеющий элемент фазового сдвига и зеркало для отражения каналов, не пропускаемых интерферометром Маха-Цендера. Устройства, обеспечивающие пропускание отраженных каналов в выходной порт и ввод добавляемого нового канала через порт ввода, в результате чего вновь вводимый канал пропускается в выходной порт, могут содержать циркуляторы.

С использованием такого перестраиваемого мультиплексора осуществляют известный способ селективного ввода и вывода задаваемого канала (US 6795654 В2), заключающийся в селективном пропускании четных или нечетных каналов и отражении соответственно нечетных или четных каналов, причем эту операцию повторяют столько раз, сколько требуется для отражения всех каналов, кроме задаваемого, выводе задаваемого канала в порт вывода, объединении отраженных каналов в выходном порте, вводе дополнительного канала через порт ввода и объединении его с каналами, направленными в выходной порт.

Схема одного из вариантов такого мультиплексора - устройства 10 - приведена на Фиг.1. Мультиплексор 10 имеет входной порт 11, выходной порт 12, выводной порт 13, порт 14 ввода и включает три однокаскадных ИМЦ: 15-1, 15-2 и 15-3, сформированных с помощью трех пар волоконно-оптических разветвителей {16-1, 16-2}, {16-3, 16-4} и {16-5, 16-6} и, в качестве интерференционных плеч, соединяющих их световодов {17-1, 17-2}, {17-3, 17-4} и {17-5, 17-6}. Разность длин плеч в трех интерферометрах последовательно возрастает в два раза при переходе к следующему интерферометру.

Каждый из трех указанных однокаскадных ИМЦ 15-1, 15-2 и 15-3 избирательно пропускает нечетные или четные каналы и, с помощью волоконно-оптических рефлекторов 15-1-1, 15-2-1 и 15-3-1, отражает и направляет обратно четные или нечетные каналы соответственно. Используются два циркулятора: циркуляторг 18-1, связанный с входным 11 и выходным 12 портами, для ввода каналов в устройство и пропускания отраженных зеркалами каналов в выходной порт.12, и циркулятор 18-2 - для пропускания выбранных каналов в выводной порт 13 и ввода новых каналов через порт 14 вместо выведенных каналов.

Трехступенчатая структура обеспечивает вывод одного канала при поступлении на вход 8-ми каналов и ввод нового канала взамен выведенного. Управляемые элементы 15-1-2, 15-2-2 и 15-3-2 фазового сдвига, установленные в одном из плеч каждого из трех интерферометров 15-1, 15-2 и 15-3 соответственно, используют для управляемой перестройки спектральных характеристик указанных однокаскадных ИМЦ 15-1,15-2 и 15-3 и, таким образом, для ввода/вывода любого из 8-ми каналов.

Согласно патенту (US 6795654 В2), в других предлагаемых вариантах предложено однокаскадные ИМЦ выполнять с помощью «дискретных» элементов: светоделителей, зеркал-призм, поляризаторов или усовершенствованных фильтров Лайота. Как альтернативу зеркалам 15-1-1, 15-2-1 и 15-3-1 и циркуляторам 18-1 и 18-2 можно использовать также для пропускания каналов в выходной порт 12 дополнительную структуру оптических фильтров на однокаскадных ИМЦ.

Рассмотренное выше известное устройство позволяет вводить и выводить любой канал из восьми каналов, на которых работает оптическая сеть. Однако известное устройство имеет существенные недостатки.

Специалистам в области оптических систем связи известно, что описанная выше структура, содержащая большое число оптических элементов, - однокаскадные ИМЦ в волоконном или дискретном вариантах, рефлекторы и циркуляторы, - является весьма громоздкой и не может быть надежной и устойчивой в реальных условиях, так как однокаскадные ИМЦ очень чувствительны к условиям окружающей среды, к температуре, вибрациям и другим воздействиям. Поэтому для реализации устройств подобного назначения необходим другой подход - подход с использованием интегрально-оптических технологий.

Известно также, что спектральные характеристики однокаскадных ИМЦ имеют не идеальную форму - неплоские вершины и медленно спадающие края спектральных полос, что при использовании их в системах спектрального уплотнения с большой плотностью каналов может быть причиной перекрытия каналов и плохой изоляции каналов. Кроме того, однокаскадные ИМЦ вносят значительную дисперсию в каналы, которая при большой скорости передачи может приводить к увеличению длительности импульсов и тем самым к снижению пропускной способности оптической системы связи.

Известно, что значительно лучшие спектральные характеристики и меньшую вносимую дисперсию имеют двухкаскадные несимметричные ИМЦ или многокаскадные несимметричные ИМЦ (далее - двухкаскадные и многокаскадные ИМЦ), но эти устройства не являются обратимыми и поэтому не могут использоваться в описанном выше мультиплексоре 10 ввода/вывода.

Для обеспечения возможности интегрально-оптического выполнения управляемого оптического мультиплексора ввода-вывода следует сократить количество используемых оптических элементов и исключить циркуляторы и рефлекторы, так как они несовместимы с интегрально-оптической технологией. Снижение количества используемых оптических элементов целесообразно также с точки зрения уменьшения стоимости устройства.

Таким образом, создание способа управляемого ввода/вывода и управляемого оптического мультиплексора ввода-вывода, более простого в конструктивном решении, удовлетворяющего существующим требованиям по изоляции каналов и вносимой дисперсии и пригодного для интегрально-оптического выполнения, является актуальной проблемой. При этом желательно, чтобы устройство имело дополнительные функциональные возможности, было максимально динамичным и достаточно гибким, то есть обеспечивало в различных применениях наилучшее соотношение между техническими характеристиками и стоимостью.

Раскрытие изобретения

При создании изобретения была поставлена задача создания способа и устройства ввода/вывода желаемого канала из оптического сигнала с помощью селекции каналов оптического сигнала путем управления спектральными характеристиками фильтрующих ступеней мультиплексора с обеспечением последующего вывода желаемого канала, пропускания нежелательных каналов, ввода нового сигнала.

Поставленная задача была решена разработкой согласно изобретению способа управляемого, селективного ввода/вывода канала в волоконно-оптической системе связи со спектральным уплотнением 2N каналов, оптические частоты которых могут перестраиваться, но при этом спектральный интервал Δν между соседними каналами постоянный, в котором:

(a) подают из оптической сети многоканальный оптический сигнал в N-ступенчатую структуру, в которой каждая ступень содержит оптический фильтр, имеющий один вход или два входа и два выхода, выполненный с возможностью управляемой настройки коэффициентов передачи и характеризующийся в n-ой ступени, при n=1, 2, …, N, частотным интервалом Δνn=2n-1Δν между соседними экстремумами в зависимостях коэффициентов передачи от частоты, и при этом оптический фильтр в каждой ступени, кроме первой, одним входом и одним из выходов соединен соответственно с одним из выходов и одним входом оптического фильтра предыдущей ступени, при этом один вход оптического фильтра первой ступени является входным портом N-ступенчатой структуры, а один из выходов оптического фильтра последней ступени является портом вывода в N-ступенчатой структуре;

(b) выбирают канал, подлежащий вводу/выводу;

(c) настраивают оптический фильтр каждой ступени таким образом, чтобы коэффициент передачи оптического фильтра со входа на выход, используемые в соединениях оптических фильтров, описанных в а), имел максимальное значение на частоте выбранного канала;

(d) пропускают многоканальный оптический сигнал через N-ступенчатую структуру и получают выбранный канал на выходе оптического фильтра последней ступени, являющемся портом вывода в N-ступенчатой структуре;

(е) осуществляют ввод нового канала на оптической частоте выведенного канала, объединяют новый канал и все каналы, кроме выведенного, и возвращают объединенные каналы в оптическую сеть.

При этом согласно изобретению целесообразно, чтобы при использовании оптических фильтров, имеющих два входа, ввод нового канала осуществляли через порт ввода N-ступенчатой структуры, соединенный со входом оптического фильтра последней ступени, не используемого в соединениях оптических фильтров, описанных в а), объединение нового канала и всех каналов, кроме выведенного, осуществляли путем соединения выхода оптического фильтра каждой ступени, кроме первой, не используемого в соединениях оптических фильтров, описанных в а), со входом оптического фильтра предыдущей ступени, не используемого в соединениях оптических фильтров, описанных в а), и возвращение объединенных каналов в оптическую сеть производили через выход оптического фильтра первой ступени, не использованный в соединениях фильтров, описанных в а).

Кроме того, согласно изобретению целесообразно, чтобы при использовании оптических фильтров, имеющих один вход, ввод нового канала осуществляли через один из входов оптического сумматора, имеющего N+1 входов и один выход, объединение нового канала и всех каналов, кроме выведенного, осуществляли путем соединения выхода оптического фильтра каждой ступени, не используемого в соединениях фильтров, описанных в а), с одним из входов указанного сумматора, при этом через выход сумматора объединенные каналы возвращали в оптическую сеть.

Поставленная задача была также решена разработкой управляемого оптического мультиплексора ввода/вывода для волоконно-оптической системы связи со спектральным уплотнением 2N каналов, оптические частоты которых могут перестраиваться, но при этом спектральный интервал Δν между соседними каналами постоянный, согласно изобретению имеющего один входной порт, один выходной порт, один порт вывода, один порт ввода и включающего:

- N-ступенчатую структуру, содержащую в каждой ступени один оптический фильтр, выполненный с возможностью управляемой перестройки коэффициентов передачи, характеризующийся в n-ой ступени, при n=1, 2, …, N, частотным интервалом Δνn=2n-1Δν между соседними экстремумами в зависимостях коэффициентов передачи от частоты и имеющий два входа и два выхода;

- контроллер для управления перестройкой коэффициентов передачи указанных оптических фильтров.

При этом согласно изобретению целесообразно, чтобы в мультиплексор ввода/вывода в указанной N-ступенчатой структуре:

- оптический фильтр каждой ступени, кроме первой, одним из входов и одним из выходов был соединен соответственно с одним из выходов и одним из входов оптического фильтра предыдущей ступени;

- оптический фильтр первой ступени другим входом был соединен с входным портом;

- оптический фильтр первой ступени другим одним выходом был соединен с выходным портом;

- оптический фильтр последней ступени другим выходом был соединен с портом вывода;

- оптический фильтр последней ступени еще другим входом был соединен с портом ввода.

При этом согласно изобретению целесообразно, чтобы в мультиплексоре ввода/вывода оптическими фильтрами ступеней N-ступенчатой структуры являлись однокаскадные и/или двухкаскадные несимметричные интерферометры Маха-Цендера.

Поставленная задача была также решена разработкой управляемого оптического мультиплексора ввода/вывода для волоконно-оптической системы связи со спектральным уплотнением 2N каналов, оптические частоты которых могут перестраиваться, но при этом спектральный интервал Δν между соседними каналами постоянный, согласно изобретению имеющего один входной порт, один выходной порт, один порт вывода, один порт ввода и включающего:

- N-ступенчатую структуру, содержащую в каждой ступени один оптический фильтр, выполненный с возможностью управляемой перестройки коэффициентов передачи, характеризующийся в n-ой ступени, при n-1, 2, …, N, частотным интервалом Δνn=2n-1Δν между соседними экстремумами в зависимостях коэффициентов передачи от частоты и имеющий один вход и два выхода;

- оптический сумматор, имеющий N+1 входов и один выход, соединенный с выходным портом;

- контроллер для управления перестройкой коэффициентов передачи указанных оптических фильтров.

При этом согласно изобретению целесообразно, чтобы в мультиплексоре ввода/вывода в указанной N-ступенчатой структуре:

- оптический фильтр каждой ступени, кроме последней ступени, одним из выходов был соединен со входом оптического фильтра последующей ступени, а другим выходом соединен с одним из входов оптического сумматора;

- оптический фильтр первой ступени своим входом соединен с входным портом;

- оптический фильтр последней ступени одним выходом соединен с еще одним входом оптического сумматора, а другим выходом соединен с портом вывода;

- оптический сумматор еще одним входом соединен с портом ввода.

При этом согласно изобретению целесообразно, чтобы оптическими фильтрами N-ступенчатой структуры являлись многокаскадные несимметричные интерферометры Маха-Цендера.

Поставленная задача была также решена разработкой управляемого оптического мультиплексора ввода/вывода для волоконно-оптической системы связи со спектральным уплотнением 2N каналов, оптические частоты которых могут перестраиваться, но при этом спектральный интервал Δν между соседними каналами постоянный, согласно изобретению имеющего один входной порт, один выходной порт, один порт вывода, один порт ввода и включающего:

- соединенные, между собой первую и вторую многоступенчатые структуры, содержащие в каждой своей ступени один оптический фильтр, выполненный с возможностью управляемой настройки своих коэффициентов передачи, при этом первая структура имеет N1 ступеней, вторая структура имеет N2 ступеней и N1+N2=N;

- оптический сумматор, имеющий N1+1 входов и один выход;

- контроллер для управления перестройкой спектральных характеристик оптических фильтров первой и второй многоступенчатых структур.

При этом согласно изобретению целесообразно, чтобы в мультиплексоре ввода/вывода:

- оптический фильтр в первой многоступенчатой структуре имел один вход и два выхода и характеризовался в n1-ой ступени при n1=1, 2, …, N1 частотным интервалом Δνn1=2n1-1Δν между соседними экстремумами в зависимостях коэффициентов передачи от частоты;

- оптический фильтр во второй многоступенчатой структуре имел два входа и два выхода и характеризовался в n2-ой ступени при n2=1, 2, …, N2 частотным интервалом Δνn2=2n2+N1-1Δν между соседними экстремумами в зависимостях коэффициентов передачи от частоты.

При этом согласно изобретению целесообразно, чтобы в мультиплексоре ввода/вывода:

- в первой многоступенчатой структуре оптический фильтр каждой ступени, кроме последней, одним выходом был соединен со входом оптического фильтра последующей ступени, а другим выходом был соединен с одним из входов оптического сумматора;

- в первой многоступенчатой структуре оптический фильтр последней ступени одним выходом был соединен с одним из входов оптического сумматора, а другим выходом был соединен с одним из входов оптического фильтра первой ступени второй многоступенчатой структуры;

- во второй многоступенчатой структуре оптический фильтр каждой ступени, кроме первой, одним из входов и одним из выходов был соединен соответственно с одним из выходов и одним из входов оптического фильтра предыдущей ступени;

- во второй многоступенчатой структуре оптический фильтр первой ступени структуры другим выходом был соединен с другим входом оптического сумматора;

- в первой многоступенчатой структуре оптический фильтр первой ступени другим входом был соединен с входным портом;

- во второй многоступенчатой структуре оптический фильтр последней ступени одним из выходов был соединен с портом вывода;

- во второй многоступенчатой структуре оптический фильтр последней ступени другим входом был соединен с портом ввода;

- оптический сумматор выходом был соединен с выходным портом.

При этом согласно изобретению целесообразно, чтобы в мультиплексоре ввода/вывода оптическими фильтрами первой многоступенчатой структуры являлись многокаскадные несимметричные интерферометры Маха-Цендера, а оптическими фильтрами второй многоступенчатой структуры являлись однокаскадные и/или двухкаскадные несимметричные интерферометры Маха-Цендера.

При этом согласно изобретению целесообразно, чтобы для управления настройкой коэффициентов передачи оптические фильтры содержали электрооптические или термооптические устройства фазового сдвига.

При этом согласно изобретению целесообразно, чтобы мультиплексоры ввода/вывода были выполнены по интегрально-оптической технологии на одном чипе.

Кроме того, согласно изобретению целесообразно, чтобы в мультиплексорах ввода/вывода входной порт, выходной порт, порт вывода и порт ввода были выполнены с помощью световодов.

Таким образом, рассмотренная выше проблема создания управляемого оптического мультиплексора ввода-вывода (t-OADM) решена настоящим изобретением, в котором используется многоступенчатая структура оптических фильтров. В качестве оптических фильтров могут использоваться однокаскадные, двухкаскадные и многокаскадные ИМЦ, содержащие устройства фазового сдвига и имеющие один или два входных порта и не менее двух выходных портов.

В способе управляемого селективного ввода/вывода одного канала из многоканального оптического сигнала согласно настоящему изобретению и во всех вариантах управляемого оптического мультиплексора ввода-вывода согласно настоящему изобретению оптический фильтр каждой ступени, кроме фильтра первой ступени, одним из входов и одним из выходов соединен соответственно с одним из выходов и одним из выходов оптического фильтра предыдущей ступени.

При пропускании многоканального оптического сигнала через всю многоступенчатую структуру в каждом фильтре производится разделение каналов на две группы: одна - содержащая нечетные; другая - четные каналы, при этом в одной из групп содержится канал, подлежащий вводу/выводу. Спектральные характеристики оптических фильтров настраиваются таким образом, что в группе, направляемой к следующей ступени, всегда оказывается выбранный канал; как результат, на выход фильтра последней ступени приходит только один канал - выбираемый канал ввода/вывода. Все остальные каналы, вместе с вновь введенным каналом, объединяются и направляются в выходной порт.

В одном из вариантов t-OADM согласно настоящему изобретению, в котором могут использоваться оптические фильтры, имеющие два входа и два выхода, объединение нового канала и всех каналов, кроме выведенного, осуществляют путем соединения еще одного выхода оптического фильтра каждой ступени, кроме первой ступени, с другим, ранее не используемым входом оптического фильтра предыдущей ступени, а возвращение объединенных каналов в оптическую сеть производят через ранее не использованный другой выход оптического фильтра первой ступени.

В другом варианте t-OADM согласно настоящему изобретению, в котором используются оптические фильтры, имеющие один вход и два выхода, объединение вводимого канала и пропускаемых каналов производится с помощью оптического сумматора, входы которого соединяются со вторыми выходами всех фильтров, а также с портом ввода.

В третьем варианте управляемого оптического мультиплексора ввода/вывода согласно изобретению могут использоваться совместно оптические фильтры, имеющие один вход и два выхода, и оптические фильтры, имеющие два входа и два выхода, и при этом мультиплексор выполнен из двух многокаскадных структур, одна из которых соответствует первому варианту t-OADM, а вторая - второму варианту t-OADM. Объединение пропускаемых каналов в каждой из двух структур производится аналогично объединению, используемому в первых двух вариантах устройства, а ввод нового канала - как в первом варианте.

При этом согласно изобретению в качестве оптических фильтров, имеющих два входа и два выхода, используются однокаскадные и/или двухкаскадные несимметричные интерферометры Маха-Цендера, в качестве оптических фильтров, имеющих один вход и два выхода, используются многокаскадные несимметричные интерферометры Маха-Цендера, а для управления настройкой коэффициентов передачи оптические фильтры содержат электрооптические или термооптические устройства фазового сдвига.

Кроме того, является существенным, чтобы согласно изобретению предлагаемые мультиплексоры были выполнены по интегрально-оптической технологии на одном чипе.

Краткое описание чертежей.

В дальнейшем изобретение поясняется описанием примеров осуществления способа управляемого селективного ввода/вывода канала в волоконно-оптической системе связи со спектральным уплотнением 2N каналов, оптические частоты которых могут перестраиваться, но при этом спектральный интервал Δν между соседними каналами постоянный согласно изобретению, с помощью управляемых оптических мультиплексоров ввода/вывода согласно изобретению, и прилагаемыми чертежами, на которых показаны:

Фиг.1 - схема известного управляемого оптического мультиплексора ввода/вывода;

Фиг.2а - схема известного однокаскадного интерферометра Маха-Цендера;

Фиг.2b - условное изображение однокаскадного ИМЦ, показанного на Фиг.2а;

Фиг.3 - зависимости коэффициентов передачи от оптической частоты для однокаскадного ИМЦ, показанного на Фиг.2а;

Фиг.4а - схема известного двухкаскадного ИМЦ;

Фиг.4b - условное изображение двухкаскадного ИМЦ, показанного на Фиг.4а;,

Фиг.5 - зависимости коэффициентов передачи от оптической частоты для двухкаскадного ИМЦ, показанного на Фиг.4а;

Фиг.6а - схема известного многокаскадного фильтра, включающего три двухкаскадных ИМЦ;

Фиг.6b - условное изображение многокаскадного фильтра, показанного на Фиг.6а;

Фиг.7 - схема управляемого оптического мультиплексора ввода/вывода согласно изобретению, содержащего однокаскадные ИМЦ, с иллюстрацией работы при подаче на входной порт оптического сигнала, содержащего 8 CWDM-каналов;

Фиг.8 - схема управляемого мультиплексора ввода/вывода согласно изобретению, содержащего многокаскадные ИМЦ, с иллюстрацией работы при подаче на входной порт оптического сигнала, содержащего 64 DWDM-канала;

Фиг.9 - схема управляемого мультиплексора ввода/вывода согласно изобретению, содержащего однокаскадные, двухкаскадные и многокаскадные ИМЦ, с иллюстрацией работы при подаче на вход оптического сигнала, содержащего 64 DWDM-канала.

Наилучший вариант осуществления изобретения

Согласно изобретению основным элементом управляемого мультиплексора ввода/вывода является известное и часто используемое в оптике устройство несимметричный интерферометр Маха-Цендера или, как условились его называть, однокаскадный ИМЦ (M. Born, E.Wolf. "The Optic Base", Pergamon Press, Oxford, Fifth Oxford, Fifth Edition, 1975, pp.312-316; М.Борн и Э.Вольф. Основы оптики. Пер. под ред. Г.П.Мотулевича. М., Наука, 1970, с.342-346).

Однокаскадный ИМЦ представляет собой интерферометр с двумя одномодовыми плечами и парой разветвителей на двух концах. Термин «несимметричный» означает, что длины плеч ИМЦ заведомо неравные. Отличия в длине, температуре или других параметрах плеч интерферометра вызывают фазовый сдвиг для проходящих по плечам волн, который проявляется при интерференции выводимых волн.

Варианты выполнения однокаскадного ИМЦ с помощью волоконно-оптических разветвителей, светоделителей, зеркал-призм, поляризаторов и других элементов рассмотрены выше при описании известного. управляемого оптического мультиплексора ввода/вывода (US 6795654 В2).

На Фиг.2а приведено схематичное изображение волноводного варианта однокаскадного ИМЦ 20, его условное изображение для целей описания настоящего изобретения приведено на Фиг.2а. Устройство 20 размещено на одной подложке 21, где однокаскадный ИМЦ 22 образован разветвителями 23 и 24 и двумя плечами 22-1 и 22-2, сформированными волноводами неравной длины 11 и 12 соответственно. Коэффициенты связи k1 и k2, соответственно разветвителей 23 и 24, равны и делят оптическую мощность в соотношении 50/50. Однокаскадный ИМЦ 22 имеет выводы с одной стороны, а и b, и выводы с другой стороны, c и d.

При этом однокаскадный ИМЦ 22 содержит в плече 22-2 устройство фазового сдвига 25, которое вносит дополнительный фазовый сдвиг φ в фазу пробегающей волны и является управляемым элементом, используемым для настройки спектральных характеристик ИМЦ.

Величина фазового сдвига φ регулируется с помощью термооптического или электрооптического эффекта с помощью изменения величины электрического тока или напряжения. Соответственно устройство фазового сдвига 25 может быть изготовлено с использованием термооптического материала, например силикона, или электрооптического материала, например ниобата лития (LiNbO3) или арсенида галлия. Подобные устройства фазового сдвига известны в технике спектрального уплотнения как инструмент для настройки спектральных характеристик оптических фильтров на основе ИМЦ, а также используются в других устройствах - модуляторах и переключателях.

При вводе через первый вход а излучения единичной мощности интенсивность света на двух выходах c и d может быть выражена с помощью коэффициентов передачи Kac(ν,φ) и Kad(ν,φ):

где D=2πnΔLν/c - фазовая задержка, обусловленная разной оптической длиной плеч 22-1 и 22-2; ΔL=11-12; n - показатель преломления материала; ν - оптическая частота и с - скорость света в пустоте.

При возбуждении через второй вход b интенсивность света на тех же выходах с и d может быть представлена с помощью коэффициентов передачи Kbc(ν,φ) и Kbd(ν,φ):

Рассматриваемые на каком-либо интервале частот ν (или длин волны λ) коэффициенты передачи (1)÷(4) становятся спектральными характеристиками однокаскадного ИМЦ. Как можно видеть, указанные спектральные характеристики (1)÷(4) являются периодическими функциями частоты света ν и длины волны λ и разности длин плеч ΔL, показателя преломления n и фазового сдвига φ.

Для работоспособности однокаскадного ИМЦ существенны следующие его свойства:

- расстояния между соседними экстремумами Δν и Δλ в спектральных характеристиках (1)÷(4) в единицах оптической частоты и в единицах длин волн соответственно равны:

- коэффициенты передачи (1)÷(4), соответствующие переходу оптического излучения с одного из входов, a или b, на первый c и второй d выходы, отличаются по фазе на π;

- коэффициенты передачи при замене двух индексов не изменяются, то есть

Kad(ν,φ)=Kbc(ν,φ) и Kac(ν,φ)=Kbd(ν,φ);

- изменяя величину фазового сдвига φ, можно изменять спектральные характеристики (1)÷(4), сдвигая их по оси частот (или длин волн); это приводит, в частности, при изменении фазового сдвига на δφ=±π, к инверсии сигналов на выходах;

- коэффициенты передачи не изменяются при изменении направления передачи сигнала, то есть однокаскадный ИМЦ является обратимым устройством.

В свою очередь, из этих свойств следует, что при поступлении на вход однокаскадного ИМЦ оптического сигнала, содержащего несколько каналов, частоты (или длины волн) которых совпадают с положением экстремумов в зависимостях коэффициентов передачи от частоты (или длины волн), сигналы разделяются на две группы, которые выводятся на разные выходы. Одна группа содержит нечетные каналы, другая группа - четные каналы, и в обеих группах спектральный интервал между каналами становится в два раза больше, чем на входе однокаскадного ИМЦ. При поступлении этого же оптического сигнала на другой вход, четные и нечетные каналы на выходах меняются местами.

Так как однокаскадный ИМЦ является обратимым устройством, то в другой ситуации, когда на один вход подаются нечетные каналы, а на другой вход подаются четные каналы, то обе группы каналов объединяются в один оптический поток с более плотным размещением каналов.

Устройства, выполняющие функцию разделения каналов на нечетные и четные каналы и обратную функцию объединения нечетных и четных каналов в один поток, в иностранной литературе называют интерливерами; в отечественной литературе нет термина для устройств аналогичного назначения, в настоящем тексте они называются оптическими фильтрами.

Расстояние между соседними экстремумами Δν (или Δλ) в спектральных характеристиках для реального однокаскадного ИМЦ должно формироваться на стадии его изготовления путем подбора соответствующих разности длин плеч ΔL и показателя преломления n. Управляемая же перестройка положения экстремальных значений коэффициентов передачи относительно задаваемых частот {νi} (или длин волн {λi}) должна производиться с помощью соответствующей регулировки фазового сдвига φ при использований однокаскадного ИМЦ в качестве оптического фильтра в составе какого-либо конкретного устройства.

На Фиг.3 показаны коэффициенты передачи Kac(ν,φ) и Kad(ν,φ) для некоторого однокаскадного ИМЦ как функции оптической частоты, который при соответствующих значениях фазовой задержки D и фазовом сдвиге φ имеет расстояние между соседними экстремумами 50 ГГц и может быть, таким образом, использован для разделения четных и нечетных каналов с интервалом между соседними по частоте каналами 50 ГГц. Сплошными линиями показана спектральная зависимость коэффициента передачи Kac(ν,φ), в соответствии с которой одна группа каналов - нечетные каналы - выводится на выход с, пунктирными линиями показана спектральная зависимость коэффициента передачи Kad(ν,φ), ответственная за вывод другой группы каналов - четных каналов - на выход d.

Как можно видеть на Фиг.3, недостаток данного оптического фильтра - неплоские вершины и медленно спадающие края спектральных полос, что при малом спектральном интервале между каналами может с