Способ регистрации микроциркуляции крови
Изобретение относится к медицине, а именно к функциональной диагностике. Для регистрации микроциркуляции крови определяют колебания сосудистого тонуса до и после функциональной нагрузки. Обработку данных проводят с помощью математического вейвлет-анализа. Температуру регистрируют на ногтевой фаланге ладонной поверхности указательного пальца пациента с частотой измерений не менее 1 Гц в течение 10 минут. Затем в течение 3 минут во время дыхательной или холодовой пробы и в течение 10 минут после нее непрерывно с помощью термодатчика. Способ повышает точность регистрации активных факторов контроля микроциркуляции крови. 4 табл.
Реферат
Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для оценки эндотелиального, нейрогенного и миогенного механизмов регуляции микроциркуляции крови.
Для исследования микроциркуляции используют запись колебаний кожного кровотока с помощью лазерного доплеровского флоуметра ЛАКК-01, определяют уровень микроциркуляции (количественный показатель), сосудистый тонус, эффективность микроциркуляции, уровень нейрогенно-гуморальной регуляции микроциркуляторного русла, уровень воздействия сердечного ритма на капиллярное русло, индекс микроциркуляции (качественный показатель уровня микроциркуляции), резерв капиллярного кровотока. С помощью дыхательной или холодовой пробы определяется адаптационный резерв кровотока. Обработка полученного сигнала основана на математическом методе вейвлет-анализа (Лазерная доплеровская флоуметрия микроциркуляции крови/ Под ред. А.И.Крупаткина, В.В.Сидорова: Руководство для врачей. - М.: ОАО «Издательство «Медицина», 2005. - 256 с.).
К недостаткам способа следует отнести необходимость редкой и дорогостоящей аппаратуры, большое количество помех, связанных с перемещением световода относительно зондируемой поверхности. Такие помехи существенно снижают точность анализа низкочастотных колебаний, соответствующих активным механизмам регуляции тонуса сосудов.
Технический результат: повышение точности и упрощение способа регистрации активных факторов контроля микроциркуляции крови.
Результат достигается путем регистрации колебаний сосудистого тонуса до и после функциональной нагрузки и обработки данных с помощью математического анализа. Регистрируют температуру ногтевой фаланги ладонной поверхности указательного пальца пациента в течение 10 минут, далее в течение 3 минут во время дыхательной или холодовой пробы и еще в течение 10 минут после нее непрерывно с помощью термодатчика (например, прибор «Термодат», выпускаемый НПП «Системы контроля», г.Пермь, Россия, сертификат RU.C. 32.001.А N18321). Измерения проводятся с частотой не менее 1 Гц, обработка полученного сигнала осуществляется с помощью специальной компьютерной программы с применением математического метода вейвлет-анализа и получением вейвлет-спектрограмм. Низкоамплитудные температурные колебания на поверхности кожи возникают вследствие периодического изменения тонуса поверхностных сосудов (Frequency analysis of skin temperature and its application for clinical diagnosis/ K.Mabuchi, T.Chinzei, Y.Nasu, T.Yonezawa, I.Fujimasa, K.Atsumi// Biomed. Thermol. - 1989. - Vol.9. - P.30-33). Корреляционный анализ, основанный на вейвлет-преобразовании, позволяет изучать не только спектральный состав нестационарных сигналов, но и степень коррелированности двух сигналов отдельно на каждом временном масштабе. Используя этот метод, была установлена статистически значимая корреляция между колебаниями температуры кожи и колебаниями кровотока, регистрируемыми доплеровским флоуметром (Podtaev S. Wavelet-based correlations of skin temperature and blood flow oscillations/ S.Podtaev, M.Morozov, P.Frick //. Cardiovasc. Eng. - 2008. - Vol.8. - N3. - P.185-189).
Полученная зависимость температуры с зоны регистрации от времени анализируется с помощью специально написанной программы методом с использованием метода непрерывного вейвлет-преобразования.
Способ осуществляется следующим образом.
Регистрируют температуру ногтевой фаланги ладонной поверхности указательного пальца пациента в течение 10 минут, далее в течение 3 минут во время дыхательной или холодовой пробы и еще в течение 10 минут после нее непрерывно с помощью термодатчика и прибора для регистрации температуры (например, прибор «Термодат», выпускаемый НПП «Системы контроля», г.Пермь). Измерения проводятся с частотой не менее 1 Гц. Полученная зависимость температуры с зоны регистрации от времени поступает в компьютер, где проводят ее спектральный анализ с помощью специально написанной программы методом непрерывного вейвлет-преобразования по формуле
где W[a,b) - вейвлет-образ температурной зависимости, обозначенной как f(t); a - масштаб колебания: величина обратная частоте и имеющая размерность времени; b - аналог времени в вейвлет-пространстве; ψ(х) - анализирующий вейвлет. Символ "*" означает комплексное сопряжение.
Далее, на основе вейвлет-образа исходной зависимости строят интегральные вейвлет-спектры по формуле
где М(а) - интегральный вейвлет-спектр, построенный на отрезке времени от f1 до f2.
Интегральный вейвлет-спектр описывает распределение энергии пульсаций по масштабам, то есть является аналогом Фурье-спектра.
Интегральные спектры строятся для трех временных интервалов измерения температуры: до, во время и после функциональной пробы. На интегральном спектре выделяют физиологически значимые диапазоны, ответственные за эндотелиальный (0,0095-0,02 Гц), нейрогенный (0,02-0,06 Гц) и миогенный (0,06-0,2 Гц) механизмы регуляции.
Примеры конкретного выполнения:
Пример 1. Пациентка Н., 24 лет
На ногтевую фалангу ладонной поверхности указательного пальца пациентки наложен термодатчик. Термодатчик подключен к прибору «Термодат». В течение 10 минут зарегистрирована фоновая величина температурных колебаний с частотой измерений не менее 1 Гц. Затем регистрация продолжена в течение 3 минут во время дыхательной пробы и еще в течение 10 минут после нее непрерывно. Полученная запись температурных колебаний проанализирована с помощью компьютерной программы. На интегральном спектре выделены диапазоны, ответственные за эндотелиальный (0,095-0,02 Гц), нейрогенный (0,02-0,06 Гц) и миогенный (0,06-0,2 Гц) механизмы регуляции (табл.1).
Таблица 1 | |||
Диапазоны | Временные интервалы | ||
До пробы | Во время пробы | После пробы | |
эндотелиальный | 1685 | 91 | 10140 |
нейрогенный | 380 | 9 | 1462 |
миогенный | 4 | 2 | 22 |
Пример 2. Пациентка П., 23 лет
На ногтевую фалангу ладонной поверхности указательного пальца пациентки наложен термодатчик. Термодатчик подключен к прибору «Термодат». В течение 10 минут зарегистрирована фоновая величина температурных колебаний с частотой измерений не менее 1 Гц. Затем регистрация продолжена в течение 3 минут во время дыхательной пробы и еще в течение 10 минут после нее непрерывно. Полученная запись температурных колебаний проанализирована с помощью компьютерной программы. На интегральном спектре выделены диапазоны, ответственные за эндотелиальный (0,095-0,02 Гц), нейрогенный (0,02-0,06 Гц) и миогенный (0,06-0,2 Гц) механизмы регуляции (табл.2).
Таблица 2 | |||
Диапазоны | Временные интервалы | ||
До пробы | Во время пробы | После пробы | |
эндотелиальный | 1416 | 23 | |
нейрогенный | 211 | 4 | 2012 |
миогенный | 8 | 5 | 7 |
Пример 3. Пациентка Н., 23 лет
На ногтевую фалангу ладонной поверхности указательного пальца пациентки наложен термодатчик. Термодатчик подключен к прибору «Термодат». В течение 10 минут зарегистрирована фоновая величина температурных колебаний с частотой измерений не менее 1 Гц. Затем регистрация продолжена в течение 3 минут во время холодовой пробы и еще в течение 10 минут после нее непрерывно. Полученная запись температурных колебаний проанализирована с помощью компьютерной программы. На интегральном спектре выделены диапазоны, ответственные за эндотелиальный (0,095-0,02 Гц), нейрогенный (0,02-0,06 Гц) и миогенный (0,06-0,2 Гц) механизмы регуляции (табл.3).
Таблица 3 | |||
Диапазоны | Временные интервалы | ||
До пробы | Во время пробы | После пробы | |
эндотелиальный | 1178 | 66 | 288 |
нейрогенный | 294 | 12 | 44 |
миогенный | 30 | 10 | 15 |
Пример 4. Пациентка Н., 23 лет
На ногтевую фалангу ладонной поверхности указательного пальца пациентки наложен термодатчик. Термодатчик подключен к прибору «Термодат». В течение 10 минут зарегистрирована фоновая величина температурных колебаний с частотой измерений не менее 1 Гц. Затем регистрация продолжена в течение 3 минут во время холодовой пробы и еще в течение 10 минут после нее непрерывно. Полученная запись температурных колебаний проанализирована с помощью компьютерной программы. На интегральном спектре выделены диапазоны, ответственные за эндотелиальный (0,095-0,02 Гц), нейрогенный (0,02-0,06 Гц) и миогенный (0,06-0,2 Гц) механизмы регуляции (табл.4).
Таблица 4 | |||
Диапазоны | Временные интервалы | ||
До пробы | Во время пробы | После пробы | |
эндотелиальный | 967 | 78 | 288 |
нейрогенный | 215 | 8 | 41 |
миогенный | 22 | 9 | 14 |
Преимуществами предлагаемого способа являются: возможность регистрации факторов контроля микроциркуляции крови (эндотелиальный, нейрогенный и миогенный механизмы регуляции), повышение чувствительности за счет исключения помех при регистрации температуры, удобство и высокая скорость выполнения, уменьшение артефактов за счет надежности крепления термодатчика к поверхности кожи, низкая себестоимость, т.к. исключается необходимость использования дорогостоящей аппаратуры и возможность одновременной регистрации сигналов с нескольких участков кожи при использовании многоканальных систем измерения температуры.
Способ регистрации микроциркуляции крови путем определения колебаний сосудистого тонуса до и после функциональной нагрузки и обработки данных с помощью математического вейвлет-анализа, отличающийся тем, что регистрируют температуру на ногтевой фаланге ладонной поверхности указательного пальца пациента с частотой измерений не менее 1 Гц в течение 10 мин, далее в течение 3 мин, во время дыхательной или холодовой пробы и в течение 10 мин после нее непрерывно с помощью термодатчика.