Способ очистки водных растворов от мышьяка и сопутствующих тяжелых металлов
Изобретение относится к способам очистки сточных вод и других водных кислых растворов, содержащих мышьяк и тяжелые металлы - хром, марганец, железо, никель, медь, цинк, стронций, кадмий, свинец, и может быть использовано в химической, металлургической, машиностроительной и других отраслях промышленности, имеющих токсичные воды, содержащие указанные металлы в концентрации, превышающей значения ПДК. Для осуществления способа обработку водных растворов проводят в две стадии с удалением образующегося осадка после каждой стадии, при этом на первой стадии осаждение проводят ионами железа, затем окислителем с последующим доведением рН до 6,5-7,0, а на второй стадии - ионами трехвалентного железа с последующим доведением рН до 10,0-10,5. Изобретение обеспечивает повышение эффективности вывода из сточных вод мышьяка и сопутствующих ему металлов в виде нерастворимых соединений и доведение концентраций металлов и мышьяка в очищенной воде до значений ниже их значений ПДК. 2 табл.
Реферат
Изобретение относится к очистке промышленных сточных вод от соединений мышьяка и сопутствующих тяжелых металлов, к которым относятся: хром, марганец, никель, цинк, стронций, кадмий, свинец. Данное изобретение может быть использовано в различных технологических процессах в химической, металлургической и машиностроительной отраслях промышленности.
Известен способ вывода мышьяка из производства в виде арсената кальция, включающий осаждение растворенного мышьяка известковым молоком (Чижиков Д.М. Металлургия тяжелых металлов // Удаление олова, мышьяка и сурьмы щелочным рафинированием. - М.-Л.: Изд. Академии наук СССР, 1948, гл.18, с.265 и 266). Недостатком данного способа является то, что после осаждения мышьяка в маточном растворе его остается еще достаточное количество, мышьяк в растворенном виде поступает в подземные грунтовые воды и неблагоприятно воздействует на окружающую среду.
Известен способ вывода мышьяка из мышьяксодержащих материалов путем осаждения растворенного мышьяка в нейтральной среде осадителем, в качестве которого используют сульфат железа +3 в весовом соотношении 3,5-5,5:1 к растворенному мышьяку, а для перевода ионов Fe+2 в Fe+3, As+3 в As+5 используют какой-либо окислитель, например пиролюзит (Патент RU №2226562, кл. С22В 30/04 C02F 1/62, 2004). Данный патент принят за прототип. В результате в виде осадка получают арсенат железа +3, который нерастворим в воде и может храниться, не загрязняя окружающей среды. В растворе после осаждения мышьяка оставалось 0,33 г/л; извлечение мышьяка составляло - 97,18%.
Недостатком способа, принятого за прототип, является очистка водных растворов только от соединений мышьяка, соединения тяжелых металлов остаются в растворе.
Задачей предлагаемого изобретения является очистка водных растворов или сточных вод не только от мышьяка, но и от целого ряда сопутствующих мышьяку металлов, концентрация которых в сточной воде превышает предельно допустимые концентрации (ПДК) - хром, марганец, никель, цинк, стронций, кадмий, свинец.
Поставленная задача решается тем, что в способе очистки водных растворов от мышьяка и сопутствующих тяжелых металлов, включающем последовательное осаждение труднорастворимых соединений ионами железа в присутствии окислителя, обработку очищаемых водных растворов проводят в две стадии с удалением образующегося осадка после каждой стадии, при этом на первой стадии рН обрабатываемого раствора равен 6,5-7,0, а на второй стадии - 10-10,5.
Предлагаемый способ очистки водных растворов осуществляют следующим образом. Исходный раствор доводят до нейтральной рН с помощью дешевых реагентов: каустической или кальцинированной содой (или их смесью). Можно использовать оборотные реагенты или же отходы производства, которые при сливании дадут нейтральную рН. Осаждение мышьяка и всех сопутствующих металлов проводят ионами железа +3; исходным реагентом может быть отработанный раствор железа +2 в весовом отношении 2-5:1 ко всем растворенным соединениям металлов, сопутствующих мышьяку. Для перевода ионов мышьяка +3 в мышьяк +5, и железа +2 в железо +3 можно использовать любой окислитель или проводить оксидирование раствора кислородом воздуха методом аэрации.
В результате окислительно-восстановительных процессов в растворе появляются ионы с различными степенями окисления, такие как Fe+2, Fe+3, As+3, As+5, Cr+2, Cr+3, Cr+6, Mn+2, Mn+3, неизменными остаются ионы Ni+2, Zn+2, Sr+2, Cd+2, Pb+2. Взаимодействие этих элементов друг с другом в нейтральной и щелочной среде приводит к образованию нерастворимых соединений, в частности арсенатов железа и других металлов, хроматов свинца, кадмия, стронция, цинка, марганца, оксидов и гидроксидов вышеперечисленных элементов, имеющих крайне низкие произведения растворимости.
На первой стадии полностью осаждаются соединения мышьяка, хрома, стронция.
На второй стадии можно использовать любую соль железа +3, например хлорид железа (+3), без дополнительного окисления раствора.
На второй стадии окончательно осаждаются соединения марганца, никеля, кадмия, цинка, свинца.
В результате предложенного способа происходит очистка водных растворов (сточных вод) от мышьяка и тяжелых металлов до концентраций ниже их значений ПДК. Контроль концентраций осаждаемых металлов и мышьяка в процессе отделения проводят масс-спектрометрическим методом.
Сущность предлагаемого изобретения поясняется примерами.
Пример 1.
1-ая стадия очистки.
К раствору (сточные воды производства мышьяка и мышьяксодержащих соединений, имеющие рН<6) мышьяка с сопутствующими металлами (концентрации приведены в табл.1) добавляют раствор FeSO4 в весовом соотношении 5:1 (массы Fe ко всем металлам). Затем при непрерывном перемешивании добавляют MnO2 по стехиометрии для окисления As+3 в As+5 и Fe+2 в Fe+3. Затем добавлением Na2CO3 доводят рН до 6,5-7,0. Выдерживают очищаемый раствор в течение 1-3 суток, фильтрацией отделяют осадок. Далее обрабатывают фильтрат.
2-ая стадия очистки.
К фильтрату добавляют FeCl3 в весовом соотношении 2:1 ко всей массе удаляемых металлов, добавляют раствор NaOH до рН 10,0-10,4, выдерживают 1-3 дня и фильтруют от образовавшегося осадка.
Содержание мышьяка и сопутствующих металлов на разных стадиях очистки сточных вод сведено в табл.1
Таблица 1 | |||||
Исходные концентрации элементов и на 1 и 2 стадиях очистки (степень очистки, %) | |||||
Элемент | ПДК рыб. хоз., мг/л | ПДКв, мг/л | Исходн. конц, мг/л | 1-ая стадия очистки, мг/л (ст. оч., %) | 2-ая стадия очистки, мг/л (ст. оч., %) |
мышьяк | 0,05 | 0,01 | 4,86 | 0,007 (99,86) | 0,007 (99,86) |
марганец | 0,01 | 0,1 | 0,10 | 0,03 (70) | 0,002 (98) |
никель | 0,01 | 0,02 | 1,12 | 0,80 (28,6) | 0,008 (99,29) |
цинк | 0,01 | 1,0 | 0,48 | 0,05 (89,58) | 0,007 (98,54) |
стронций | 0,4 | 7,0 | 0,46 | 0,02 (95,65) | 0,002 (99,57) |
кадмий | 0,005 | 0,001 | 0,55 | 0,35 (36,36) | 0,002 (99,64) |
свинец | 0,006 | 0,01 | 0,69 | 0,02 (97,1) | 0,001 (99,86) |
хром | 0,02 | 0,05 | 2,16 | 0,01 (99,54) | 0,01 (99,54) |
Извлечение мышьяка из раствора составило 99,86%,
Пример 2.
1-ая стадия очистки.
К раствору (сточные воды производства мышьяка и мышьяксодержащих соединений, имеющие рН<6) мышьяка с сопутствующими металлами (концентрации приведены в табл.2) добавляют сточные воды производства химической обработки стальных изделий, содержащие кислые растворы ионов железа без других тяжелых металлов, в весовом соотношении 3:1 (массы Fe ко всем элементам). Затем при непрерывном перемешивании добавляют концентрированный р-р Н2О2 по стехиометрии (примерно 1% от объема сточной воды) для окисления As+3 в As+5 и Fe+2 в Fe+3. Затем добавлением Na2CO3 доводят рН до 6,5-7,0. Выдерживают очищаемый раствор в течение 1-3 суток, фильтрацией (можно декантацией) отделяют осадок. Далее обрабатывают фильтрат.
2-ая стадия очистки.
К фильтрату при интенсивном перемешивании (чтобы происходило насыщение раствора кислородом воздуха) добавляют FeSO4 в весовом соотношении 2:1 ко всей массе удаляемых металлов, добавляют раствор NaOH до рН 10,0-10,4, выдерживают 1-3 дня и сливают с образовавшегося осадка. Содержание мышьяка и сопутствующих металлов на разных стадиях очистки сточных вод сведено в табл.2
Таблица 2 | |||||
Исходные концентрации элементов и на 1 и 2 стадиях очистки (степень очистки, %) | |||||
Элемент | ПДК рыб. хоз., мг/л | ПДКв, мг/л | Исходн. конц, мг/л | 1-ая стадия очистки, мг/л (ст. оч., %) | 2-ая стадия очистки, мг/л (ст. оч., %) |
мышьяк | 0,05 | 0,01 | 5,34 | 0,008 (99,85) | 0,008 (99,85) |
марганец | 0,01 | 0,1 | 0,11 | 0,03 (72,73) | 0,002 (98,18) |
никель | 0,01 | 0,02 | 1,08 | 0,77 (28,7) | 0,007 (99,35) |
цинк | 0,01 | 1,0 | 0,48 | 0,03 (93,75) | 0,006 (98,75) |
стронций | 0,4 | 7,0 | 0,42 | 0,006 (98.57) | 0,002 (99,52) |
кадмий | 0,005 | 0,001 | 0,48 | 0,31 (35,42) | 0,002 (99,58) |
свинец | 0,006 | 0,01 | 0,79 | 0,02 (97,47) | 0,001 (99,87) |
хром | 0,02 | 0,05 | 2,57 | 0,01 (99,61) | 0,01 (99,61) |
Пример 3.
1-ая стадия очистки.
К раствору (сточные воды производства мышьяка и мышьяксодержащих соединений, имеющие рН≤6) мышьяка с сопутствующими металлами (концентрации приведены в табл.2) добавляют раствор ионов железа +3 в весовом соотношении 3:1 (массы Fe ко всем элементам). Затем при непрерывном перемешивании добавляют концентрированный р-р H2O2 по стехиометрии (примерно 1% от объема сточной воды) для окисления As+3 в As+5. Затем добавлением Na2CO3 доводят рН до 6,5-7,0. Выдерживают очищаемый раствор в течение 1-3 суток, фильтрацией (можно декантацией) отделяют осадок. Далее обрабатывают фильтрат.
2-ая стадия очистки.
К фильтрату при интенсивном перемешивании (чтобы происходило насыщение раствора кислородом воздуха) добавляют FeSO4 в весовом соотношении 2:1 ко всей массе удаляемых металлов, добавляют раствор NaOH до рН 10,5 затем выдерживают 1-3 дня и сливают с образовавшегося осадка.
Исходные концентрации, а также концентрации элементов на 1-ой и 2-ой стадиях очистки, соответственно, оказывались идентичными второму примеру (табл.2).
Извлечение мышьяка из раствора составило 99,85%, что выше, чем у прототипа, и наряду с этим предложенный способ позволяет извлекать сопутствующие тяжелые металлы до 98,18-99,87%.
В настоящем изобретении можно использовать для извлечения мышьяка и сопутствующих тяжелых металлов отработанный раствор промышленного производства, который содержит ионы железа. Тем самым происходит одновременная утилизация двух отходов.
Поскольку большинство производств, связанных с добычей, переработкой и выделением мышьяка не могут обходиться без образования различных отходов, в том числе и водных, настоящее изобретение может иметь широкое применение.
Способ очистки водных растворов от мышьяка и сопутствующих тяжелых металлов: хрома, марганца, никеля, цинка, стронция, кадмия, свинца - осаждением труднорастворимых соединений ионами железа в присутствии окислителя, отличающийся тем, что обработку водных растворов проводят в две стадии с удалением образующегося осадка после каждой стадии, при этом на первой стадии осаждение проводят ионами железа, затем окислителем с последующим доведением рН до 6,5-7,0, а на второй стадии - ионами трехвалентного железа с последующим доведением рН до 10,0-10,5.