Чередование каналов управления ofdma

Иллюстрации

Показать все

Настоящее изобретение относится к устройству и способу для чередования передач в каналах управления с произвольным доступом системы беспроводной связи множественного доступа с ортогональным частотным разделением сигналов (OFDMA). Технический результат изобретения заключается в том, что устройство беспроводной связи, осуществляющее передачу по отдельным каналам управления OFDMA на множество обслуживающих секторов, может работать в условиях ограничения линии связи. Устройство беспроводной связи может чередовать передачи между множеством обслуживающих секторов. Устройство беспроводной связи может чередовать передачи, используя количество чередований, равное количеству отдельных каналов управления, по которым запланирована передача. В другом варианте осуществления устройство беспроводной связи разбивает множество запланированных передач каналов управления на два или более наборов и может чередовать эти наборы. В еще одном варианте осуществления устройство беспроводной связи может зарезервировать первое чередование для передач каналов управления для связи с обслуживающим сектором и может реализовать временное мультиплексирование остальных передач каналов управления по второму чередованию. 6 н. и 20 з.п. ф-лы, 7 ил.

Реферат

Притязание на приоритет согласно Своду законов США 35 U.S.C. §119

Настоящая заявка претендует на приоритет предварительной заявки США № 60/691436, «FH-OFDMA REVERSE-LINK CONTROL CHANNEL INTERLACING FOR HANDOFF», поданной 16 июня 2005 года, права на которую принадлежат правопреемнику настоящего изобретения и содержание которой специально включено сюда по ссылке.

Предшествующий уровень техники

Системы беспроводной связи могут быть сконфигурированы для поддержки связи различных типов. Например, система беспроводной связи может поддерживать связи типа «один - множество», «множество - один» и «один к одному». Кроме того, связь может быть однонаправленной или двунаправленной. Таким образом, система беспроводной связи, которая поддерживает двунаправленную связь с передачами типа «один - множество» в первом направлении, может поддерживать связь типа «множество - один» в противоположном направлении.

В системе двунаправленной связи линии связи могут распределяться либо могут назначаться случайным образом. В случае произвольного назначения система связи может выделить один или несколько каналов с произвольным доступом для запроса линий связи и для передачи служебной информации, относящейся к назначенным линиям связи.

Система беспроводной связи, такая как система связи множественного доступа с ортогональным частотным разделением каналов (OFDMA), может распределять каналы как по времени, так и по частоте. Передатчик в системе OFDM может быть ограничен конкретной мощностью или диапазоном мощности. Таким образом, использование служебных каналов в дополнение к каналам данных может отрицательно сказаться на величине энергии, доступной для поддержки канала данных. Однако использование указанных служебных каналов может оказаться важным для работы системы. В частности, мобильному устройству может понадобиться осуществлять связь через множество каналов, чтобы согласовывать эстафетную передачу обслуживания между обслуживающими станциями. Желательно минимизировать влияние поддержки множества линий связи на множество каналов с произвольным доступом.

Сущность изобретения

Описаны устройство и способы для чередования передач в каналах управления с произвольным доступом системы беспроводной связи множественного доступа с ортогональным частотным разделением каналов (OFDMA). Устройство беспроводной связи, осуществляющее связь через отдельные каналы управления OFDMА с множеством обслуживающих секторов, может работать в условиях ограничений на линии связи. Устройство беспроводной связи может чередовать передачи между множеством обслуживающих секторов. Устройство беспроводной связи может чередовать передачи по каналу управления, используя один или несколько доступных ресурсов. Например, устройство беспроводной связи может чередовать множество передач по каналу управления по времени, по частоте, коду или некоторой их комбинации. Устройство беспроводной связи может конфигурировать передачи по каналу управления так, чтобы чередования были относительно ортогональны друг другу. Например, устройство беспроводной связи может чередовать множество передач по каналу управления по относительно ортогональным моментам времени, частотам, кодам или некоторой комбинации ортогональных ресурсов или комбинации неортогональных ресурсов с одним или несколькими ортогональными ресурсами.

Устройство беспроводной связи может чередовать передачи по каналу управления, используя количество чередований, равное количеству отдельных каналов управления, по которым планируются передачи. В другом варианте осуществления устройство беспроводной связи разделяет множество запланированных передач по каналу управления на два или более наборов и может чередовать эти наборы. В еще одном варианте осуществления устройство беспроводной связи может зарезервировать первое чередование для передач по каналу управления, обеспечивающих связь с обслуживающим сектором, и может осуществлять временное мультиплексирование остальных передач по каналу управления, используя одно или несколько других чередований.

Аспекты раскрытого здесь изобретения включают в себя способ конфигурирования передачи по множеству каналов управления, назначенных беспроводному устройству, причем способ включает в себя определение множества чередований каналов управления и чередование передач для каждого из упомянутого множества каналов управления посредством упомянутого множества чередований каналов управления.

Аспекты раскрытого здесь изобретения включают в себя способ конфигурирования передач по множеству каналов управления, назначенных беспроводному устройству, который включает в себя прием первого назначения каналов управления, соответствующего первому сектору, прием второго назначения каналов управления, соответствующего второму сектору, и чередование управляющих сообщений по первому и второму каналам управления.

Аспекты раскрытого здесь изобретения включают в себя способ конфигурирования передач по множеству каналов управления, назначенных беспроводному устройству, который включает в себя: определение условия эстафетной передачи обслуживания, определение назначения каналов управления обслуживающего сектора, определение по меньшей мере одного назначения каналов управления необслуживающего сектора, определение чередования каналов управления, селективное конфигурирование управляющего сообщения для одного из назначений каналов управления обслуживающего сектора или упомянутого по меньшей мере одного назначения каналов управления необслуживающего сектора и передачу управляющего сообщения.

Аспекты раскрытого здесь изобретения включают в себя устройство, сконфигурированное для осуществления связи по множеству назначенных каналов управления. Устройство включает в себя: модуль управления для обслуживающего сектора, сконфигурированный для избирательного конфигурирования первого управляющего сообщения для логического канала управления, соответствующего обслуживающему сектору; модуль управления для необслуживающего сектора, сконфигурированный для избирательного конфигурирования второго управляющего сообщения для логического канала управления, соответствующего необслуживающему сектору; и контроллер чередования, сконфигурированный для определения чередования каналов управления и управления одним из модуля управления для обслуживающего сектора и модуля управления для необслуживающего сектора на основе чередования каналов управления.

Аспекты раскрытого здесь изобретения включают в себя устройство, сконфигурированное для осуществления связи по множеству назначенных каналов управления. Устройство включает в себя: средство определения количества назначений каналов управления, соответствующих множеству каналов управления; средство определения временных характеристик чередования каналов управления и средство для конфигурирования по меньшей мере одного сообщения канала управления, соответствующего одному или нескольким назначениям каналов управления, на основе временных характеристик чередования каналов управления и количества назначений каналов управления.

Аспекты раскрытого здесь изобретения включают в себя машиночитаемый носитель, закодированный компьютерной программой для осуществления этапов определения множества чередований каналов управления и выполнения чередования передач для каждого из упомянутого множества каналов управления посредством упомянутого множества чередований каналов управления.

Аспекты раскрытого здесь изобретения включают в себя машиночитаемый носитель, закодированный компьютерной программой для осуществления этапов определения условия эстафетной передачи обслуживания, определения назначения каналов управления обслуживающего сектора, определения по меньшей мере одного назначения каналов управления необслуживающего сектора, определения чередования каналов управления и селективного конфигурирования управляющего сообщения для одного из назначений каналов управления обслуживающего сектора и упомянутого по меньшей мере одного назначения каналов управления необслуживающего сектора.

Перечень фигур чертежей

Признаки, цели и преимущества раскрытых здесь вариантов изобретения станут более очевидными из последующего подробного описания, взятого вместе с сопроводительными чертежами, на которых подобные элементы снабжены одинаковыми ссылочными позициями и где:

фиг.1 - упрощенная функциональная блок-схема варианта системы множественного доступа согласно одному варианту осуществления изобретения;

фиг.2 - упрощенная функциональная блок-схема варианта осуществления передатчика и приемника в системе беспроводной связи множественного доступа;

фиг.3 - упрощенная функциональная блок-схема варианта осуществления передатчика, реализующего чередование каналов управления;

фиг.4А-4Е - упрощенные временные диаграммы логических каналов управления для различных вариантов осуществления чередования каналов управления;

фиг.5 - упрощенная блок-схема последовательности операций варианта осуществления способа чередования каналов управления;

фиг.6 - упрощенная блок-схема последовательности операций варианта осуществления способа чередования каналов управления;

фиг.7 - упрощенная функциональная блок-схема варианта осуществления передатчика, реализующего чередование каналов управления.

Подробное описание вариантов изобретения

На фиг.1 представлена упрощенная функциональная блок-схема варианта осуществления системы 100 беспроводной связи множественного доступа. Система 100 беспроводной связи множественного доступа включает в себя множество сот, например соты 102, 104 и 106. В варианте осуществления по фиг.1 каждая сота 102, 104 и 106 может включать в себя точку 150 доступа, которая содержит множество секторов.

Множество секторов сформировано по группам антенн, каждая из которых отвечает за связь с терминалами доступа в некоторой части соты. В соте 102 каждая из антенных групп 112, 114 и 116 соответствует отдельному сектору. Например, сота 102 разделена на три сектора 102а-102с. Первая антенна 112 обслуживает первый сектор 102а, вторая антенна 114 обслуживает второй сектор 102b, а третья антенна 116 обслуживает третий сектор 102с. В соте 104 каждая из антенных групп 118, 120 и 122 соответствует отдельному сектору. В соте 106 каждая из антенных групп 124, 126 и 128 также соответствует отдельному сектору.

Каждая сота сконфигурирована для поддержки или, иными словами, обслуживания нескольких терминалов доступа, которые находятся на связи с одним или несколькими секторами соответствующей точки доступа. Например, терминалы 130 и 132 доступа находятся на связи с точкой 142 доступа, терминалы 134 и 136 доступа находятся на связи с точкой 144 доступа, а терминалы 138 и 140 доступа находятся на связи с точкой 146 доступа. Хотя здесь показано, что каждая из точек 142, 144 и 146 доступа находится на связи с двумя терминалами доступа, каждая точка 142, 144 и 146 доступа не ограничена связью с двумя терминалами доступа, а может поддерживать любое количество терминалов доступа вплоть до некоторого предела, который может представлять собой некоторый физический предел или предел, накладываемый стандартом связи.

Используемый здесь термин «точка доступа» может относиться к стационарной станции, используемой для связи с терминалами, причем она также может называться базовой станцией (и включать в себя некоторые или все ее функциональные возможности), узлом В или некоторым другим термином. Терминал доступа (AT) также может называться пользовательским терминалом (и включать в себя некоторые или все функциональные возможности пользовательского оборудования (UE)), устройством беспроводной связи, терминалом, мобильной станцией или некоторым другим термином.

Как видно из фиг.1, каждый терминал 130, 132, 134, 136, 138 и 140 доступа находится в разных частях соответствующей соты, отличаясь по местоположению от других терминалов доступа в той же соте. Кроме того, каждый терминал доступа может находиться на разном расстоянии от соответствующих антенных групп, с которыми он осуществляет связь. Оба этих фактора приводят к ситуациям, когда, вдобавок к факторам окружающей среды и другим условиям в данной соте, между каждым терминалом доступа и соответствующей антенной группой, с которой он осуществляет связь, имеют место разные канальные условия.

Каждый терминал доступа, например терминал 130, как правило, отличается уникальными канальными характеристиками, не наблюдаемыми в любом другом терминале доступа по причине различных канальных условий. Кроме того, канальные характеристики изменяются во времени, а также изменяются с изменением местоположения.

Терминал доступа, например терминал 130, может осуществлять связь с антенной 116 точки 142 доступа, соответствующей обслуживающему сектору, для компенсации различных канальных условий. Точка 142 доступа, соответствующая обслуживающему сектору, назначает переменную скорость передачи данных частично на основе канальных характеристик, наблюдаемых в терминале 130 доступа.

Точка 142 доступа обслуживающего сектора может передавать информацию со скоростью передачи данных, превышающей номинальную скорость передачи данных, при благоприятных канальных характеристиках, наблюдаемых в терминале 130 доступа, и может передавать информацию со скоростью передачи данных ниже номинальной при ухудшенных канальных характеристиках, наблюдаемых в терминале 130 данных.

Терминал 130 доступа может передавать в точку 142 доступа обслуживающего сектора информацию обратной связи для поддержки точки 142 доступа. Например, терминал 10 доступа может передавать в точку 142 доступа обслуживающего сектора канальную характеристику, например показатель качества канала (CQI), обеспечивая индикацию качества канала. Точка 142 доступа может определить скорость передачи данных для последующей информации, передаваемой на терминал 130 доступа, частично на основе значения CQI.

Терминал 130 доступа передает информацию о CQI в точку 142 доступа обслуживающего сектора по каналу управления. Терминал 130 доступа может также послать в точку 142 доступа обслуживающего сектора другую управляющую информацию. Другая управляющая информация, которая может быть включена в управляющие сообщения, может содержать, но не только, запросы (REQ) на назначение каналов данных, подтверждения (ACK) в ответ на успешный прием информации, переданной терминалом 142 доступа, и другую управляющую информацию.

Канал управления может быть заранее определенным каналом обратной линии связи, который выделен для управляющей информации. В альтернативном варианте канал управления может использовать ресурсы совместно с другим каналом. Совместно используемые ресурсы могут включать в себя, например, время, частоту, коды и т.п. или некоторый другой ресурс либо комбинацию ресурсов. Используемый здесь термин «обратная линия связи» относится к линии связи от терминала доступа к точке доступа.

В варианте осуществления, где системой 100 беспроводной связи множественного доступа является система множественного доступа с ортогональным частотным разделением каналов (OFDMА), канал управления может представлять собой заранее определенную конфигурацию поднесущих в обратной линии связи. Канал управления может также иметь заранее определенные временные характеристики относительно опорного синхронизирующего сигнала. Например, канал данных обратной линии связи может быть скомпонован в виде блоков символов OFDM, где в качестве слота задано заранее определенное количество смежных символов. Например, слот может содержать 16 символов OFDM. Канал управления может быть определен таким образом, чтобы он появлялся в течение заранее определенного интервала времени в упомянутом слоте, например в течение первой половины слота.

Если в системе 100 беспроводной связи множественного доступа используется скачкообразная перестройка частоты (FH), то каналы данных и управления могут назначаться как логические каналы (иногда их называют портами скачкообразной перестройки), и эти логические каналы могут быть отображены в физические каналы в соответствии с заранее определенным алгоритмом скачкообразной перестройки частоты. Таким образом, в системе OFDMА со скачкообразной перестройкой частоты физических поднесущих, назначаемые логическим каналам, изменяются во времени. Например, алгоритм скачкообразной перестройки частоты может периодически обновлять отображение логического канала в физическую поднесущую, например, с каждым символом OFDM, каждым слотом, или после некоторого другого заранее определенного количества символов OFDM.

При определенных условиях у терминала доступа может возникнуть необходимость или желание передать сообщения канала управления на более чем один сектор и возможно, что эти сообщения будут соответствовать более чем одной точке доступа. Такому терминалу доступа назначается отдельный канал управления для каждого сектора. Например, терминалу доступа, передающему управляющие сообщения двум отдельным секторам, назначают два отдельных канала управления.

Типовой ситуацией, когда терминал доступа передает сообщения управляющего канала на множество приемников, является режим эстафетной передачи обслуживания. Во время эстафетной передачи обслуживания терминал доступа осуществляет связь с точкой доступа обслуживающего сектора и с одной или несколькими точками доступа, соответствующими каждому сектору-кандидату, по каналу управления. В некоторых ситуациях точка доступа, соответствующая обслуживающему сектору, будет совпадать с точкой доступа, соответствующей сектору-кандидату. В других ситуациях терминал доступа может осуществлять связь с множеством отдельных точек доступа, где два сектора не соответствуют одной и той же точке доступа. В некоторых других ситуациях терминал доступа может осуществлять связь с множеством точек доступа, соответствующих множеству секторов, где по меньшей мере два сектора соответствуют одной и той же точке доступа. В каждой из указанных ситуаций точке доступа назначают отдельный канал управления для обслуживающего сектора и каждого сектора-кандидата, и точка доступа передает сообщения канала управления с использованием каждого из назначенных каналов связи.

Как обсуждалось ранее, в ситуации эстафетной передачи обслуживания между множеством секторов точка доступа передает сообщения канала управления в одну или несколько точек доступа, обслуживающих множество секторов. Необходимость передачи дополнительных управляющих сообщений уменьшает мощность передачи, имеющуюся у терминала доступа для передачи данных. Одним из путей уменьшения мощности передачи, требуемой для передачи управляющих сообщений от терминалов доступа в точки доступа, соответствующие множеству секторов, является чередование передачи этих сообщений по назначениям каналов управления. Терминал доступа может чередовать сообщения канала управления в соответствии с заранее определенным процессом чередования каналов управления. Терминал доступа может чередовать передачи управляющих сообщений по времени, частоте или их комбинации, причем эти чередования могут быть фиксированными или динамическими с изменениями логических или физических ресурсов, группируемых вместе.

В ситуации, когда терминалу доступа назначено два канала управления, соответствующих, например, обслуживающему сектору и сектору-кандидату, этот терминал доступа может передавать сообщения управляющего канала, используя два чередования. В первом варианте осуществления с двумя чередованиями каналов управления, когда терминалу доступа назначен второй сектор для передачи каналов управления, назначенное чередование каналов управления выполняется противоположным образом по сравнению с обслуживающим сектором. Например, терминал доступа передает управляющую информацию на свой обслуживающий сектор по одной схеме чередования управления, а на необслуживающий сектор по второй схеме чередования управления. В любой момент времени в этом варианте терминал доступа посылает управляющую информацию только на один сектор, что уменьшает требуемую мощность передачи.

Если терминалу доступа необходимо послать управляющую информацию на обслуживающий сектор и два других сектора, то тогда имеется несколько возможных продолжений вышеописанного варианта осуществления. Первый вариант осуществления включает введение дополнительных чередований. Для трех секторов будет три чередования каналов управления.

Второй вариант осуществления включает в себя группирование управляющих сообщений. В случае трех секторов управляющие сообщения для двух секторов будут посылаться с одним чередованием, в то время как управляющая информация для третьего сектора будет посылаться по второму чередованию. Этот вариант осуществления обеспечивает некоторое уменьшение мощности передачи, правда, при этом увеличиваются задержки при приеме сигналов управления.

Третий вариант осуществления включает в себя создание так называемых «субчередований» для сообщений канала управления, посылаемых в необслуживающие секторы. В этом случае канал управления на обслуживающий сектор выбирают по первому чередованию, а каналы управления для необслуживающих секторов выбирают по второму чередованию. Однако при этом терминал доступа в любой момент времени посылает управляющую информацию по второму чередованию только на один необслуживающий сектор.

Когда эстафетная передача обслуживания завершена, выполняется новое назначение каналов управления для поддержки асимметрии с каналами управления нового обслуживающего сектора по одной схеме чередования и каналами управления необслуживающего сектора по другой схеме чередования. Это создает канал управления с пониженной задержкой для обслуживающего сектора, что поддерживает преимущества многопользовательского разнесенного приема, но при этом получается канал управления с большей задержкой для необслуживающих секторов, который используется для запросов данных о качестве канала обратной линии связи и эстафетной передачи обслуживания. Каналы управления необслуживающих секторов, передаваемые в любой момент времени по одному с чередованием, противоположным чередованию для обслуживающего сектора, могут циклически повторяться, либо терминал доступа может решить, в какой сектор передавать управляющую информацию, не придерживаясь предопределенного порядка, на основе имеющейся информации, например требуемого запроса на эстафетную передачу обслуживания.

Вышеуказанные варианты осуществления могут быть реализованы с использованием процессора 420 или 460 передачи (TX), процессора 430 или 470 и памяти 432 или 472, как показано на фиг.2. Упомянутые процессы могут быть выполнены на любом процессоре, контроллере или другом обрабатывающем устройстве и могут быть запомнены в виде машиночитаемых команд на машиночитаемом носителе в виде исходного кода, объектного кода или в иной форме.

На фиг.2 представлена упрощенная функциональная блок-схема варианта передатчика и приемника в беспроводной системе связи множественного доступа. В системе 410 передатчика трафик данных для нескольких потоков данных направляется от источника 412 данных в процессор 414 данных передачи (TX). В одном варианте осуществления каждый поток данных передается через соответствующую передающую антенну. Процессор 414 данных TX форматирует, кодирует и выполняет перемежение данных трафика для каждого потока данных на основе конкретной схемы кодирования, выбранной для этого потока данных, чтобы обеспечить кодированные данные. В некоторых вариантах осуществления процессор 414 данных TX придает символам потоков данных веса, формирующие луч, на основе пользователя, которому передаются символы, и антенны, с которой передается символ. В некоторых вариантах осуществления веса, формирующие луч, могут создаваться на основе информации о канальной характеристике, которая указывает состояние трактов передачи между точкой доступа и терминалом доступа. Информация о канальной характеристике может быть создана с использованием информации CQI или канальных оценок, обеспеченных пользователем. Кроме того, в случаях запланированных передач процессор 414 данных TX выбирает формат пакета на основе ранговой информации, переданной от пользователя.

Кодированные данные для каждого потока данных могут быть мультиплексированы с контрольными данными с использованием технологий OFDM. Контрольные данные, как правило, представляют собой известную конфигурацию данных, которая обрабатывается известным образом и может быть использована в системе приемника для оценки канальной характеристики. Затем мультиплексированные контрольные и кодированные данные для каждого потока данных модулируются (то есть выполняется их символьное отображение) на основе конкретной схемы модуляции (например, BPSK (двоичная фазовая манипуляция), QPSK (фазовая манипуляция с четвертичными сигналами), M-PSK (фазовая манипуляция с М-ричными сигналами) или M-QAM (квадратурная амплитудная модуляция с М-ричными сигналами), выбранной для этого потока данных, чтобы обеспечить символы модуляции. Скорость передачи данных, кодирование и модуляция для каждого потока данных могут быть определены с помощью команд, обеспеченных процессором 430. В некоторых вариантах осуществления количество параллельных пространственных потоков может изменяться в соответствии с ранговой информацией, переданной от пользователя.

Затем символы модуляции для всех потоков данных подаются в процессор 420 TX MIMO, который может дополнительно обрабатывать символы модуляции (например, для OFDM). Затем процессор 420 TX MIMO подает NT символьных потоков на NT передатчиков (TMTR) с 422а по 422t. В некоторых вариантах процессор 420 TX MIMO придает символам потоков данных веса, формирующие луч, на основе пользователя, которому передаются символы, и антенны, с которой передается символ, исходя из пользовательской информации о канальной характеристике.

Каждый передатчик с 422а по 422t принимает и обрабатывает соответствующий символьный поток для обеспечения одного или нескольких аналоговых сигналов и дополнительно приводит к нужному состоянию (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы для обеспечения модулированного сигнала, подходящего для передачи через канал MIMO. Затем NT модулированных сигналов от передатчиков с 422а по 422t передаются от NT антенн с 424а по 424t соответственно.

В системе 450 приемника переданные модулированные сигналы принимаются NR антеннами с 452а по 452r, и полученный сигнал от каждой антенны 452 подается в соответствующий приемник (RCVR) 454. Каждый приемник 454 приводит к нужному состоянию (например, фильтрует, усиливает и преобразует с понижением частоты) соответствующий принятый сигнал, оцифровывает приведенный к нужному состоянию сигнал для обеспечения отсчетов и дополнительно обрабатывает эти отсчеты, чтобы обеспечить соответствующий «принятый» символьный поток.

Затем процессор 460 данных RX принимает и обрабатывает NR принятых символьных потоков от NR приемников 454 на основе конкретной технологии обработки для приемника, чтобы обеспечить ранговое число «обнаруженных» символьных потоков. Обработка, выполняемая процессором 460 данных RX, подробно описывается ниже. Каждый обнаруженный символьный поток включает в себя символы, являющиеся оценками символов модуляции, переданных для соответствующего потока данных. Затем процессор 460 данных RX выполняет демодуляцию, обратное перемежение и декодирование каждого обнаруженного символьного потока для восстановления данных трафика для указанного потока данных. Обработка, выполняемая процессором 460 данных RX, является дополнением к обработке, выполняемой процессором 420 TX MIMO и процессором 414 данных TX в системе 410 передатчика.

Оценка канальной характеристики, созданная процессором 460 RX, может быть использована для выполнения пространственной, пространственно/временной обработки в приемнике, настройки уровней мощности, изменения скоростей или схем модуляции или других действий. Кроме того, процессор 460 RX может оценить отношения уровня «сигнал к совокупному уровню шумов и помех» (SNR) для обнаруженных символьных потоков и, возможно, другие канальные характеристики и подать эти величины в процессор 470. Процессор 460 данных RX или процессор 470 может, кроме того, получить оценку «эффективного» SNR для системы. Затем процессор 470 обеспечивает оценочную канальную информацию, такую как показатель качества канала (CQI), которая может содержать различные типы информации, относящейся к линии связи и/или принятому потоку данных. Например, показатель CQI может содержать только рабочий SNR. Затем показатель CQI обрабатывается процессором 438 данных TX, который также получает данные трафика для нескольких потоков данных от источника 476 данных, модулированных модулятором 480, приведенных к нужному состоянию передатчиками с 454а по 454r и переданных обратно в систему 410 передатчика.

В системе 410 передатчика модулированные сигналы из системы 450 приемника принимаются антеннами 424, приводятся к нужному состоянию приемниками 422, демодулируются демодулятором 440 и обрабатываются процессором 442 данных RX для восстановления показателя CQI, сообщенного системой передатчика. Затем сообщенный показатель CQI поступает в процессор 430 и используется для: (1) определения скоростей передачи данных и схем кодирования и модуляции, подлежащих использованию для потоков данных, и (2) создания различных управляющих воздействий для процессора 414 данных TX и процессора 420 TX MIMO.

В приемнике для обработки NR принятых сигналов с целью обнаружения NT переданных символьных потоков могут быть использованы различные технологии. Эти технологии обработки в приемнике могут быть сгруппированы по двум основным категориям: (i) пространственные и пространственно-временные технологии обработки в приемнике (которые также называют технологиями выравнивания) и (ii) технология обработки в приемнике по типу «последовательное обнуление/выравнивание и подавление помех» (которую также называют технологией обработки в приемнике по типу «последовательное подавление помех» или «последовательное подавление»).

Канал MIMO, сформированный NT передающими и NR приемными антеннами, может быть разделен на NS независимых каналов, причем NS≤min{NT, NR}. Каждый из NS независимых каналов может также называться пространственным подканалом (или каналом передачи) канала MIMO, с соответствующей размерной величиной.

На фиг.3 представлена упрощенная функциональная блок-схема варианта осуществления подсистемы 300 обработки передачи для системы приемника, например системы 450 приемника по фиг.2. Подсистема 300 обработки передачи сконфигурирована для выполнения чередования каналов управления.

Подсистема 300 обработки передачи включает в себя процессор 310 основной полосы частот, сконфигурированной для приема одного или нескольких потоков данных или информационных потоков от одного или нескольких источников данных (не показаны). Процессор 310 основной полосы частот может обрабатывать каждый поток данных или информационный поток, например, посредством усиления, фильтрации, перемежения и кодирования этих потоков от источников данных. Процессор 310 основной полосы частот может обрабатывать каждый поток данных независимо, может объединить два или более потоков данных для обработки или может обрабатывать некоторые потоки данных независимо при объединении двух или более отдельных потоков данных.

Процессор 310 основной полосы частот принимает информацию о временных характеристиках и чередовании данных от контроллера 330 чередования. Контроллер 330 чередования может поддерживать временные характеристики для символа данных, слота и кадра, а также временные характеристики для чередования данных. Для конкретного чередования данных из множества вариантов чередования данных могут быть выделены различные потоки данных. Чередование данных можно рассматривать как назначение временных характеристик для мультиплексирования с временным разделением для конкретного логического канала. То есть каждый логический канал данных может включать в себя множество чередований данных, которое может быть назначено любому из множества потоков данных.

Чередование данных может иметь длительность, фактически соответствующую заранее определенной длительности, которая может быть представлена, например, определенным количеством символов, слотов, кадров или некоторым другим временным шагом. Использование чередования данных может оказаться успешным в системе связи, которая реализует сигнал подтверждения (ACK), указывающий на успешный прием переданных данных. Приемник может обработать принятые сигналы и передать сигнал ACK на интервале времени между соседними чередованиями данных для уменьшения времени повторной передачи. В одном варианте контроллер 330 чередования сконфигурирован для отслеживания шести чередований данных.

Процессор 310 основной полосы направляет обработанные потоки данных в модуль отображения/модулятор 342 сигнала данных. Модуль отображения/модулятор 342 сигнала данных сконфигурирован для отображения одного или нескольких логических каналов данных в соответствующие физические поднесущие символа OFDM. В одном варианте осуществления модуль отображения/модулятор 342 сигнала данных принимает последовательный поток данных от процессора 310 основной полосы частот и обеспечивает преобразование последовательного потока данных в параллельные потоки данных, количество которых равно количеству назначений поднесущих. Модуль отображения/модулятор 342 сигнала данных модулирует назначенные физические поднесущие соответствующими потоками данных согласно заранее определенному типу модуляции. Как было описано ранее, заранее определенным типом модуляции может быть, например, один из следующих типов: BPSK, QPSK, M-PSK или M-QAM.

Модуль 350 назначения со скачкообразной перестройкой частоты определяет поднесущие, назначенные различным логическим каналам, на основе, например, назначения начальной частоты и алгоритма или схемы скачкообразной перестройки частоты. Модуль 350 назначения со скачкообразной перестройкой частоты идентифицирует назначения физических поднесущих, соответствующие логическим каналам данных, и передает эту информацию в блок отображения/модулятор 342 сигнала данных.

Информация о канале управления, которая должна быть включена в символы OFDM, обрабатывается таким же образом, как и данные. Модуль 322 управления для обслуживающего сектора сконфигурирован для приема управляющей информации, которая должна быть передана в точку доступа обслуживающего сектора по каналу управления, назначенному терминалу доступа, соответствующему данному обслуживающему сектору. Например, модуль 322 управления для обслуживающего сектора может быть сконфигурирован для приема канальных запросов от источника данных (не показан) и информации CQI, соответствующей принятым сигналам, обработанным в процессоре данных RX (не показан).

Модуль 322 управления для обслуживающего сектора сконфигурирован для обработки принятых сигналов, причем он может выполнять перемежение, кодирование и иное форматирование управляющих сообщений. Модуль 322 управления для обслуживающего сектора принимает информацию о временных характеристиках и чередовании каналов управления от контроллера 330 чередования. Эта информация может включать в себя назначение чередований и временные характеристики, относящиеся к назначенному чередованию каналов управления.

Линия связи может быть сконфигурирована для поддержки множества чередований каналов управления, которые могут совпадать или отличаться от чередований данных. В одном варианте осуществления может быть минимальное количество чередований каналов управления, и контроллер 330 чередования может отслеживать появление и чередование каналов управления, назначенное каналу управления для обслуживающего сектора. Модуль 322 управления для об