Модифицированные слоистые наполнители и их применение при приготовлении нанокомпозитов

Иллюстрации

Показать все

Изобретение может быть использовано в химической, автомобильной и других отраслях промышленности. Модифицированный слоистый наполнитель включает по меньшей мере один слоистый наполнитель и по меньшей мере один модифицирующий агент, включающий по меньшей мере одну полимерную цепь Е, содержащую углеродную цепь длиной от C40 до С500, и группу, подвешенную к полимерной цепи Е,

в которой значения каждого R, R1 и R2 могут быть одинаковы или различны и независимо выбраны из атома водорода, алкила, алкенов и арилов с C1 по С26, замещенных алкилов, алкенов и арилов с C1 по С26, алифатических спиртов и простых эфиров с C1 по С26, карбоновых кислот, нитрилов, оксиэтилированных аминов, акрилатов и сложных эфиров с C1 по С26, а Х обозначает противоион, такой как Br-, Cl- и PF6-. Предложен способ приготовления такого слоистого наполнителя, нанокомпозит, включающий модифицированный слоистый наполнитель, способ приготовления такого нанокомпозита и изделие, включающее указанный нанокомпозит. Изобретение позволяет улучшить барьерные свойства диафрагм, мембран, внутренних оболочек шин, камер и других подобных изделий. 5 н. и 8 з.п. ф-лы, 6 ил., 4 табл.

Реферат

По настоящей заявке испрашивается приоритет для заявки на патент US, серийный №60/632828, поданной 3 декабря 2004 г., описание которой включено в настоящее описание в качестве ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к модифицированным слоистым наполнителям, приготовленным из слоистых наполнителей и модифицирующих агентов, и к способам их приготовления. Изобретение также относится к нанокомпозитам, приготовленным из этих модифицированных слоистых наполнителей и эластомеров, к способам их приготовления и к их применению в изделиях.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Нанокомпозитные материалы являются объектом обширной научной и технической литературы в значительной степени благодаря их способности придавать данному материалу новые свойства. Так, в частности, значительный интерес представляют полимерные нанокомпозитные материалы, такие как эластомерно-глинистые нанокомпозиты. Упоминаемые в настоящем описании нанокомпозиты или полимерные нанокомпозиты, как правило, представляют собой полимерные системы, содержащие в полимерной матрице неорганические частицы с по меньшей мере одним размером в нанометровом диапазоне.

Для приготовления нанокомпозитов применяют ряд методов получения расслаивающихся глин. Один из наиболее обычных методов базируется на применении органически модифицированных монтмориллонитных глин. Органоглины, как правило, готовят посредством ионообменных реакций на растворной основе, в ходе протекания которых натриевые ионы, которые имеются на поверхности натриевого монтмориллонита, заменяются органическими веществами, такими как алкил- и ариламмониевые соединения, и, как правило, известными в промышленности как вызывающие набухание или расслаивающие средства (см., например, US №5807629, WO 02/100935 и WO 02/100936). Ссылки на описания других известных технических решений включают US №№5576373, 5665183, 5807629, 5936023, 6121361, WO 94/22680, WO 01/85831 и WO 04/058874.

Однако разделение ограничивает длина/тип алкильных цепей многих аммониевых соединений, на что указывает, например, интервал d между слоями и совместимость между алкильными цепями и полимерной главной цепью. Следовательно, существует потребность в новых расслаивающих средствах для улучшений модифицированных слоистых наполнителей при приготовлении нанокомпозитов с улучшенными свойствами, такими как улучшенные барьерные свойства, для применения в виде внутренней оболочки шины.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В одном из вариантов выполнения изобретения его объектом является модифицированный слоистый наполнитель, включающий по меньшей мере один слоистый наполнитель и по меньшей мере один модифицирующий агент, включающий по меньшей мере одну полимерную цепь Е, включающую углеродную цепь длиной от C40 до C500 и функционализованную аммонием группу.

В другом варианте выполнения изобретения его объектом является нанокомпозит, включающий эластомерную композицию и модифицированный слоистый наполнитель, включающий по меньшей мере один слоистый наполнитель и по меньшей мере один модифицирующий агент, включающий по меньшей мере одну полимерную цепь Е, включающую углеродную цепь длиной от С40 до С500 и функционализованную аммонием группу.

В другом варианте выполнения изобретения его объектом является способ приготовления вышеуказанного модифицированного слоистого наполнителя, включающий: приготовление раствора, включающего по меньшей мере один слоистый наполнитель, контактировавший с по меньшей мере одним модифицирующим агентом, с получением продукта контактирования; нагревание раствора; промывку продукта контактирования и сушку на воздухе и/или вакуумную сушку продукта контактирования. В способе раствор может включать растворитель, включающий по меньшей мере один спирт. При этом в частном случае раствор перед получением продукта контактирования нагревают.

Тем не менее в еще одном варианте выполнения изобретения его объектом является изделие, включающее нанокомпозит, включающий эластомерную композицию; модифицированный слоистый наполнитель, включающий по меньшей мере один слоистый наполнитель и по меньшей мере один модифицирующий агент, включающий по меньшей мере одну полимерную цепь Е, включающую углеродную цепь длиной от C40 до C500 и функционализованную аммонием группу; по меньшей мере одно вулканизующее средство и необязательно по меньшей мере один дополнительный наполнитель, необязательно по меньшей мере один сшивающий агент, необязательно по меньшей мере одно вещество для улучшения технологических свойств, необязательно по меньшей мере один пластомер или необязательно их смеси.

В любом из предыдущих вариантов функционализованная аммонием группа может быть представлена в виде следующей группы, подвешенной к полимерной цепи Е:

в которой значения каждого R, R1 и R2, которые одинаковы или различны, независимо выбирают из водородного атома, алкила, алкенов и арилов с C1 по С26, замещенных алкилов, алкенов и арилов с C1 по С26, алифатических спиртов и простых эфиров с С1 по С26, карбоновых кислот, нитрилов, оксиэтилированных аминов, акрилатов и сложных эфиров с С1 по С26; и в которой Х обозначает противоион аммония, такой как Br-, Cl- и PF6-.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 показан график интервала d модифицированной глины из примера 1.

На фиг.2 показан график интервала d модифицированной глины из примера 2.

На фиг.3 показан график интервала d модифицированной глины из примера 3.

На фиг.4 показан график интервала d модифицированной глины из примера 4.

На фиг.5 показан график интервала d модифицированной глины из примера 8.

На фиг.6 показан график интервала d модифицированной глины из примера 10.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Далее описаны различные конкретные варианты, версии и примеры выполнения изобретения, включая предпочтительные варианты и определения, которые приняты в настоящем описании с целью понимания сущности заявленного изобретения. С целью установить нарушение прав в отношении объема "изобретения" следует обратиться к пунктам прилагаемой формулы изобретения, включая их эквиваленты и элементы или ограничения, которые эквивалентны перечисленным.

В качестве новой схемы нумерации для групп Периодической таблицы элементов в настоящем описании использована схема, которая представлена в Chemical and Engineering News, 63(5), 27 (1985).

Встречающееся в настоящем описании понятие "полимер" может быть использовано как охватывающее гомополимеры, сополимеры, тройные сополимеры и т.д. Подобным же образом понятие "сополимер" может относится к полимеру, включающему звенья по меньшей мере двух мономеров необязательно со звеньями других мономеров.

Когда о полимере говорят как о включающем мономер, этот мономер содержится в полимере в полимеризованной форме мономера или в форме производного этого мономера. Подобным же образом, когда каталитические компоненты описаны как включающие компоненты в нейтральных стабильных формах, для специалиста в данной области техники вполне понятно, что ионогенная форма компонента является формой, в которой он взаимодействует с мономерами с образованием полимеров.

Когда используемое в настоящем описании понятие "модифицированный слоистый наполнитель" представлено как охватывающее некоторые компоненты, то эти компоненты находятся в их синтезированной форме или в форме производного (т.е. осознаны, например, химические и физические взаимодействия между компонентами, такие как взаимодействия между слоистыми наполнителями и модифицирующими агентами) и/или с изменениями, которые могут происходить во время синтеза модифицированной слоистой глины.

Когда используемое в настоящем описании понятие "нанокомпозит" представлено как охватывающее некоторые компоненты, то эти компоненты находятся в их синтезированной форме или в форме производного (т.е. осознаны, например, химические и физические взаимодействия между компонентами, такие как взаимодействия между эластомерами и модифицированными слоистыми наполнителями и другими компонентами) и/или с изменениями, которые могут происходить во время синтеза такого нанокомпозита.

Встречающееся в настоящем описании понятие "эластомер" или "эластомерная композиция" относится к любому полимеру или композиции полимеров (такие как смеси полимеров), соответствующей определению по стандарту ASTM D1566. Понятие "эластомер" охватывает смешанные смеси полимеров, такие как приготовленные смешением в расплаве и/или реакторные смеси полимеров. Понятия "эластомер" и "каучук (каучуки)", которые использованы в настоящем описании, можно применять как взаимозаменяемые.

Понятие "част./100" означает частей на сто частей каучука и является мерой, общепринятой в данной области техники, в которой доли компонентов композиции определяют относительно основного эластомерного компонента, в пересчете на 100 мас. част. эластомера (эластомеров) или каучука (каучуков).

Используемое в настоящем описании понятие "эластомер или полимер на изобутиленовой основе" относится к эластомерам или полимерам, включающим по меньшей мере 70 мольных % повторяющихся звеньев из изобутилена.

Понятие "изоолефин" относится к любому олефиновому мономеру, обладающему по меньшей мере одним углеродным атомом, у которого имеются два замещения при этом углеродном атоме.

Понятие "мультиолефин" относится к любому мономеру, обладающему двумя или большим числом двойных связей. Так, например, мультиолефином может быть любой мономер, включающий две сопряженные двойные связи, такой как сопряженный диен, в частности изопрен.

Используемое в настоящем описании понятие "нанокомпозит" или "нанокомпозитная композиция" относится к полимерным системам, содержащим в полимерной матрице неорганические частицы с по меньшей мере одним размером в нанометровом диапазоне.

Используемое в настоящем описании понятие "интеркаляция" относится к состоянию композиции, в котором полимер содержится между всеми слоями пластинчатого наполнителя. Как известно в промышленности и науке, некоторыми указаниями на интеркаляцию могут служить смещение и/или ослабление линий рентгеновского спектра, если сравнивать с линиями у исходных пластинчатых наполнителей, что указывает на более значительный интервал между слоями вермикулита, чем у исходного минерала.

Используемое в настоящем описании понятие "расслаивание" относится к разделению индивидуальных слоев исходной частицы таким образом, что полимер полностью окружает каждую частицу. В одном из вариантов между всеми пластиночками содержится настолько много полимера, что эти пластиночки оказываются размещенными неупорядоченно. Так, например, определенным указанием на расслаивание или интеркаляцию может служить график, демонстрирующий отсутствие линий рентгеновского спектра или более крупного интервала d вследствие неупорядоченного размещения или увеличенного разделения расслоенных пластиночек, как это более подробно обсуждается ниже. Однако, как известно в промышленности и науке, для того чтобы определить признаки расслаивания, могут быть использованы другие указания, в частности при испытаниях на проницаемость, при электронной микроскопии, атомно-силовой микроскопии и т.д.

Используемое в настоящем описании понятие "растворитель" относится к любому веществу, способному растворять другое вещество. Когда используют понятие "растворитель", оно, если не указано иное, может относится к по меньшей мере одному растворителю или к двум или большему числу растворителей. В некоторых вариантах растворитель является полярным, в других вариантах растворитель является неполярным.

Используемое в настоящем описании понятие "раствор" относится к равномерно диспергированному на молекулярном уровне или ионном уровне одному или смеси нескольких веществ (растворенное вещество) в одном или нескольких веществах (растворитель). Процессом растворения является процесс смешения, в котором как эластомер, так и модифицированный слоистый наполнитель содержатся в одном органическом растворителе или смесях растворителей.

Используемое в настоящем описании понятие "углеводород" относится к молекулам или сегментам молекул, содержащим главным образом водородные и углеродные атомы. В некоторых вариантах понятие "углеводород" охватывает также галоидированные аналоги углеводородов и аналоги, содержащие гетероатомы, как это более подробно обсуждается ниже.

Испытание на проницаемость осуществляли в соответствии со следующим описанием. Все образцы подвергали прямому прессованию с медленным охлаждением для получения свободных от дефектов пластин. Для каучуковых образцов применяли пресс для компрессионного прессования и вулканизации. Типичная толщина отформованной прямым прессованием пластины составляла примерно 0,38 мм. Затем с помощью пресса Carver из формованных пластин вырубали диски диаметром 2 дюйма для испытаний на проницаемость. Перед измерениями эти диски кондиционировали в вакуумном сушильном шкафу в течение ночи при 60°С. Проницаемость для кислорода определяли с применением прибора для испытаний на проницаемость Mocon OX-TRAN 2/61 при 40°С согласно публикации R.A.Pasternak и др. в 8 Journal of Polymer Science: часть А-2, 467 (1970). Подготовленные таким образом диски монтировали на шаблоне и герметизировали с помощью вакуумной смазки. С одной стороны диска поддерживали постоянный поток кислорода с расходом 10 мл/мин, тогда как с другой стороны диска поддерживали постоянный поток азота 10 мл/мин. С помощью кислородного датчика, установленного с азотной стороны, можно было бы следить за повышением с течением времени концентрации кислорода с азотной стороны. Время, которое требовалось для пенетрации кислорода через диск или для достижения постоянного значения концентрации кислорода с азотной стороны, фиксировали и использовали для определения проницаемости для кислорода.

Испытание с использованием рентгеновских лучей осуществляли в соответствии со следующим описанием. Рентгенографические данные собирали с помощью гониометров двух разных конфигураций. Для одного ряда данных использовали 2-мерную детекторную микродифракционную систему D/MAX Rapid с ограничителем распространения пучка и точечным источником МУРР, а для второго ряда данных использовали систему линейного источника Ultima III с интегрированным МУРР в варианте параллельных пучков. Графики зависимости интенсивности от интервала d, показанные на фиг. с 1 по 6, построены с помощью точечного источника параллельных пучков с интегрированным прибором с МУРР. С целью уменьшить влияния предпочтительной ориентации для получения этих данных образец готовили срезанием разных секций под разными углами относительно поверхности образца, а для освещения всей площади образца использовали параллельный пучок. Для получения дополнительной информации по осуществлению этих и связанных с ними методов за консультацией следует обращаться к изготовителю и руководству по эксплуатации, относящимся к вышеупомянутому оборудованию.

Эластомер

Нанокомпозиты по настоящему изобретению могут включать по меньшей мере один эластомер совместно с другими компонентами, представленными и заявленными в настоящем описании. В одном из вариантов эластомер может представлять собой сополимер. Эти сополимеры представляют собой статистические эластомерные сополимеры изомоноолефинов с С4 по С7, таких как изобутилен, и пара-алкилстирольного сомономера, предпочтительно пара-метилстирола, содержащего по меньшей мере 80 мас.%, более предпочтительно по меньшей мере 90 мас.%, пара-изомера, а также необязательно включают функционализованные сополимеры, в которых по меньшей мере одна или несколько алкильных замещающих групп, имеющихся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу. В другом варианте сополимер может представлять собой статистический эластомерный сополимер этилена или α-олефина с С3 по С6 и пара-алкилстирольного сомономера, такого как пара-метилстирол, содержащий по меньшей мере 80 мас.%, по другому варианту по меньшей мере 90 мас.%, пара-изомера, и необязательно включают функционализованные сополимеры, в которых по меньшей мере одна или несколько алкильных замещающих групп, имеющихся в стирольных мономерных звеньях, содержат бензильный атом галогена или какую-либо другую функциональную группу. Иллюстративные материалы могут быть охарактеризованы как сополимеры, включающие следующие мономерные звенья, статистически размещенные вдоль полимерной цепи:

в которых каждый из R и R1 независимо обозначает водородный атом, низший алкил, такой как алкил с C1 по С7, или первичный или вторичный алкилгалогенид, а Х обозначает функциональную группу, такую как атом галогена. В одном из вариантов каждый из R и R1 обозначает водородный атом. Вплоть до 60 мол.% пара-замещенных стирольных звеньев, входящих в сополимерную структуру, могут обладать вышеприведенной функционализованной структурой (1) в одном варианте и от 0,1 до 5 мол.% - в другом варианте. Тем не менее в еще одном варианте содержание функционализованной структуры (2) составляет от 0,4 до 2,5 мол.% в пересчете на все мономерные звенья.

Функциональная группа Х может представлять собой атом галогена или какую-либо другую функциональную группу, которую можно внедрять нуклеофильным замещением бензильного атома галогена другими группами, такими как остатки карбоновых кислот, солей карбоновых кислот, эфиров, амидов и имидов карбоновых кислот, гидроксильная, алкоксидная, феноксидная, тиолатная, тиоэфирная, ксантогенатная, цианидная, цианатная, аминогруппа и их смеси. Эти функционализованные изомоноолефиновые сополимеры, способ их получения, способы функционализации и вулканизации более конкретно представлены в US 5162445.

В одном из вариантов эластомер включает сополимеры изобутилена и пара-метилстирола, включающие от 0,5 до 20 мол.% звеньев пара-метилстирола, в которых до 60 мол.% метильных замещающих групп, находящихся в бензильном кольце, содержат атом брома или хлора, в частности атом брома (пара-бромметилстирол), а также их варианты, функционализованные остатками кислот и сложных эфиров.

В другом варианте варианте функциональную группу выбирают с таким расчетом, чтобы, когда полимерные компоненты смешивают при высоких температурах, она могла взаимодействовать или образовывать полярные связи с функциональными группами, содержащимися в матричном полимере, например такими как кислотные, амино- или гидроксильные функциональные группы.

В некоторых вариантах эти сополимеры обладают по существу гомогенным композиционным распределением, вследствие чего содержание пара-алкилстирольных звеньев в по меньшей мере 95 мас.% полимера находится в 10%-ном диапазоне относительно среднего содержания пара-алкилстирольных звеньев в полимере. Типичные сополимеры характеризуются узким молекулярно-массовым распределением (Mw/Mn), составляющим меньше 5, по другому варианту меньше 2,5, и типичной средневязкостной молекулярной массой в интервале от 25000 до 750000, как это определяют гельпроникающей хроматографией.

Эластомер, такой как сополимер, который обсуждался выше, может быть получен суспензионной полимеризацией, как правило, в разбавителе, включающем галоидированный углеводород (углеводороды), такой как хлорированный углеводород и/или фторированный углеводород, включая их смеси (см., например, WO 2004/058828, WO 2004/058827, WO 2004/058835, WO 2004/058836, WO 2004/058825, PCT/US03/41221 и WO 2004/058829), мономерной смеси с использованием в качестве катализатора кислоты Льюиса, последующим галоидированием, предпочтительно бромированием, в растворе в присутствии галогена и инициатора свободно-радикальной полимеризации, такого как тепло, и/или свет, и/или химический инициатор, и необязательным последующим электрофильным замещением атома брома другим функциональным остатком.

В одном из вариантов бромированные изобутилен/п-метилстирольные сополимеры, "БИМС" полимеры, обычно содержат от 0,1 до 5 мол.% бромметилстирольных групп в пересчете на общее количество дериватизированных из мономеров звеньев в полимере. В другом варианте содержание бромметильных групп составляет от 0,2 до 3,0 мол.%, от 0,3 до 2,8 мол.% в ином варианте, от 0,4 до 2,5 мол.% в еще одном варианте и тем не менее от 0,3 до 2,0 в другом варианте, где целевым интервалом может быть любое сочетание любого верхнего предела с любым нижним пределом. Если выразиться по-другому, то типичные сополимеры содержат от 0,2 до 10 мас.% атомов брома в пересчете на массу полимера, от 0,4 до 6 мас.% атомов брома в другом варианте и от 0,6 до 5,6 мас.% в еще одном варианте и являются по существу свободными от кольцевых атомов галогена или атомов галогена в главной полимерной цепи. В одном варианте сополимер представляет собой сополимер из звеньев, дериватизированных из изоолефина с С4 по С7 (или изомоноолефина), звеньев, дериватизированных из пара-метилстирола, и звеньев, дериватизированных из пара-галометилстирола, причем пара-галометилстирольные звенья содержатся в сополимере в количестве от 0,4 до 3,0 мол.% в пересчете на общее число звеньев пара-метилстирола, а дериватизированные из пара-метилстирола звенья содержатся в количестве от 2 до 25 мас.% в пересчете на общую массу полимера в одном варианте и от 4 до 15 мас.% в другом варианте. В еще одном варианте пара-галометилстирол представляет собой пара-бромметилстирол.

Тем не менее в еще одном варианте эластомер может также включать галоидированный бутилкаучуковый компонент либо с сополимером, либо в виде только эластомера в сочетании с расслоенной глиной. В одном варианте выполнения изобретения галоидированный каучуковый компонент представляет собой галоидированный сополимер изоолефина с С4 по С6 и мультиолефина. В другом варианте галоидированный каучуковый компонент представляет собой смесь полидиена или блок-сополимера и сополимера изоолефина с С4 по С6 и сопряженного или "звездообразного" бутильного полимера. Таким образом, галоидированный бутильный полимер, который может быть использован при выполнении настоящего изобретения, может быть представлен как галоидированный эластомер, включающий звенья, дериватизированные из изоолефина с С4 по С7, звенья, дериватизированные из мультиолефина, и звенья, дериватизированные из галоидированного мультиолефина, и включает и как "галоидированный бутилкаучук", и так называемый "галоидированный звездообразный" бутилкаучук.

В одном варианте галоидированный бутилкаучук представляет собой бромированный бутилкаучук, а в другом варианте представляет собой хлорированный бутилкаучук. Общие свойства и переработка галоидированных бутилкаучуков описаны в The Vanderbilt Rubber Handbook 105-122 (под ред. Robert F.Ohm, фирма R.T.Vanderbilt Co., Inc., 1990) и в Rubber Thechnology 311-321 (под ред. Maurice Morton, Chapman & Hall, 1995). Бутилкаучуки, галоидированные бутилкаучуки и звездообразные бутилкаучуки описаны Edward Kresge и Н.С.Wang в 8 Kirk-Othmer Encyclopedia of Chemical Thechnology 934-955 (John Wiley & Sons, Inc. издание 4-ое, 1993).

Галоидированные каучуковые компоненты по настоящему изобретению включают, хотя ими их список не ограничен, бромированный бутилкаучук, хлорированный бутилкаучук, звездообразный изобутиленовый каучук, звездообразный бромированный бутилкаучук (изобутилен-изопреновый сополимер), изобутилен-бромметилстирольные сополимеры, такие как изобутилен/мета-бромметилстирольный, изобутилен/пара-бромметилстирольный, изобутилен-хлорметилстирольный, галоидированный изобутилен-циклопентадиеновый, изобутилен/пара-хлорметилстирольный и т.п. галометилированные ароматические сополимеры, которые описаны в US 4074035 и US 4395506, сополимеры изопрена и галоидированного изобутилена, полихлоропрен и т.п., а также смеси любых из вышеперечисленных материалов. Некоторые варианты галоидированного каучукового компонента описаны также в US 4703091 и 4632963.

Более конкретно в качестве одного варианта эластомер включает галоидированный бутилкаучук. В том смысле, в котором оно использовано в настоящем описании, понятие "галоидированный бутилкаучук" относится как к бутилкаучуку, так и к так называемому "звездообразному" бутилкаучуку, описанному ниже. Такой галоидированный бутилкаучук получают галоидированием бутилкаучука. Так, например, исходные материалы для полимеризации олефинов, используемые при получении галоидированного бутилкаучука по изобретению, представляют собой те олефиновые соединения, которые обычно применяют при получении каучуковых полимеров бутильного типа. Бутильные полимеры получают реакцией в смеси сомономеров, в смеси, включающей по меньшей мере (1) изоолефиновый с С4 по С6 мономерный компонент, такой как изобутилен, и (2) мультиолефиновый или сопряженный диеновый мономерный компонент. Изоолефин составляет от 70 до 99,5 мас.% от общей массы смеси сомономеров в одном варианте и от 85 до 99,5 мас.% в другом варианте. Сопряженный диеновый компонент содержится в сомономерной смеси в количестве от 30 до 0,5 мас.% в одном варианте и от 15 до 0,5 мас.% в другом варианте. Тем не менее в еще одном варианте от 8 до 0,5 мас.% сомономерной смеси приходятся на долю сопряженного диена.

Изоолефин представляет собой соединение с C4 по С6, такое как изобутилен, изобутен-2-метил-1-бутен, 3-метил-1-бутен, 2-метил-2-бутен и 4-метил-1-пентен. Мультиолефин представляет собой сопряженный диен с С4 по C14, такой как изопрен, бутадиен, 2,3-диметил-1,3-бутадиен, мирцен, 6,6-диметилфульвен, циклопентадиен, гексадиен и пиперилен. Один вариант бутилкаучукового полимера по изобретению получают реакцией от 92 до 99,5 мас.% изобутилена и от 0,5 до 8 мас.% изопрена или тем не менее в другом варианте реакцией от 95 до 99,5 мас.% изобутилена и от 0,5 до 5,0 мас.% изопрена.

Галоидированный бутилкаучук получают галоидированием описанного выше бутилкаучукового продукта. Галоидирование можно проводить любым путем, и объем изобретения в настоящем описании каким-либо конкретным способом галоидирования не ограничен. Способы галоидирования полимеров, таких как бутильные полимеры, описаны в US 2631984, 3099644, 4554326, 4681921, 4650831, 4384072, 4513116 и 5681901. В одном варианте атом галогена находится в так называемых структурах II и III, как это обсуждается, например, в работе Rubber Technology на сс.298-299 (1995 г.). В одном варианте бутилкаучук галоидируют в гексановом разбавителе при температуре от 4 до 60°С с использованием в качестве галоидирующего агента брома (Br2) или хлора (Cl2). Такой галоидированный бутилкаучук обладает вязкостью по Муни от 20 до 70 (ML 1+8 при 125°С) в одном варианте и от 25 до 55 в другом варианте. Массовое процентное содержание галогена составляет от 0,1 до 10 мас.% в пересчете на массу галоидированного бутилкаучука в одном варианте и от 0,5 до 5 мас.% в другом варианте. Тем не менее в еще одном варианте массовое процентное содержание галогена в галоидированном бутилкаучуке составляет от 1 до 2,2 мас.%.

В другом варианте галоидированный бутильный или звездообразный бутилкаучук может быть получен галоидированием таким образом, чтобы галоидирование происходило главным образом по месту аллиловых групп. Этого, как правило, добиваются с помощью такого средства, как свободнорадикальное бромирование или свободнорадикальное хлорирование, или по таким методам, как повторная обработка галоидированных каучуков, в частности нагреванием каучука с получением аллилового галоидированного бутильного и звездообразного бутилкаучука. Общие методы приготовления аллилового галоидированного полимера описаны в US 4632963, US 4649178, US 4703091. Таким образом, в одном варианте выполнения изобретения галоидированный бутилкаучук представляет собой такой материал, у которого галоидированные мультиолефиновые звенья являются главным образом аллиловыми галоидированными звеньями и у которого содержание преимущественно аллиловой конфигурации достигает по меньшей мере 20 мол.% (относительно общего количества галоидированных мультиолефиновых звеньев) в одном варианте и по меньшей мере 30 мол.% в другом варианте. Такая система может быть отражена с помощью следующей структурной формулы (3), в которой Х обозначает атом галогена, целесообразно атом хлора или брома, а доля q составляет по меньшей мере 60 мол.% в пересчете на общее число молей галогена в одном варианте, по меньшей мере 30 мол.% в другом варианте и тем не менее от 25 до 90 мол.% в еще одном варианте:

Промышленным вариантом галоидированного бутилкаучука по настоящему изобретению является продукт Bromobutyl 2222 (фирма ExxonMobil Chemical Company, Бейтаун, шт.Техас). Его вязкость по Муни составляет от 27 до 37 (ML 1+8 при 125°С, стандарт ASTM 1646), а содержание брома составляет от 1,8 до 2,2 мас.% в пересчете на продукт Bromobutyl 2222. Далее, продукт Bromobutyl 2222 обладает следующими вулканизационными характеристиками: МН составляет от 28 до 40 дН·м, ML составляет от 7 до 18 дН·м (по стандарту ASTM D2084, модифицированный метод). Другой промышленный вариант галоидированного бутилкаучука представляет собой продукт Bromobutyl 2255 (фирма Exxon Mobil Chemical Company). Его вязкость по Муни составляет от 41 до 51 (ML 1+8 при 125°С, по стандарту ASTM D1646, модифицированный метод), а содержание брома равно от 1,8 до 2,2 мас.%. Более того, продукт Bromobutyl 2255 обладает следующими вулканизационными характеристиками: МН составляет от 34 до 48 дН·м, ML составляет от 11 до 21 дН·м (по стандарту ASTM D2084, модифицированный метод). Объем изобретения промышленным источником любого из галоидированных каучуковых компонентов или вышеприведенными характеристиками не ограничен.

В качестве другого варианта эластомер может включать разветвленный или "звездообразный" галоидированный бутилкаучук. В одном варианте этот звездообразный галоидированный бутилкаучук ("ЗОГБ") представляет собой композицию бутилкаучука (либо галоидированного, либо негалоидированного) и полидиена или блок-сополимера (либо галоидированного, либо негалоидированного). Способы галоидирования подробно изложены в US 4074035, 5071913, 5286804, 5182333 и 6228978. Объем изобретения каким-либо конкретным методом получения ЗОГБ не ограничен. Для получения ЗОГБ во время полимеризации с образованием бутильного или галоидированного бутилкаучука с бутильным или галоидированным бутилкаучуком можно смешивать полидиены/блок-сополимеры или агенты образования ответвлений (ниже в настоящем описании "полидиены"). В качестве агента образования ответвлений или полидиена может быть использован любой приемлемый агент образования ответвлений, и конкретным типом полидиена, используемого для получения ЗОГБ, объем изобретения не ограничен.

В одном варианте ЗОГБ, как правило, представляет собой композицию бутильного или галоидированного бутилкаучука, как это представлено выше, и сополимера полидиена и частично гидрированного полидиена, выбранного из группы, включающей стирол, полибутадиен, полиизопрен, полипиперилен, натуральный каучук, бутадиен-стирольный каучук, этилен-пропилен-диеновый каучук, стирол-бутадиен-стирольный и стирол-изопрен-стирольный блок-сополимеры. В некоторых вариантах эти полидиены содержатся в пересчете на количество мономера в полимере от 0,3 до 3 мас.%, больше 0,3 мас.% в другом варианте и тем не менее в еще одном варианте от 0,4 до 2,7 мас.%.

Промышленным вариантом ЗОГБ по настоящему изобретению является продукт Bromobutyl 6222 (фирма ExxonMobil Chemical Company, Бейтаун, шт.Техас), обладающий вязкостью по Муни (ML 1+8 при 125°С, по стандарту ASTM D1646, модифицированный метод) от 27 до 37 и содержанием брома от 2,2 до 2,6 мас.% в пересчете на ЗОГБ. Более того, продукт Bromobutyl 6222 обладает следующими вулканизационными характеристиками: МН составляет от 24 до 38 дН·м, ML составляет от 6 до 16 дН·м (стандарт ASTM D2084, модифицированный метод).

В некоторых вариантах галоидированный каучуковый компонент содержится в смеси в количестве от 10 до 90 част./100 в одном варианте, от 20 до 80 част./100 в другом варианте и тем не менее от 30 до 70 част./100 в еще одном варианте, причем целевым интервалом может быть любое сочетание любого верхнего предела в частях на 100 част. с любым нижним пределом в частях на 100 част.

Вышеупомянутые полимеры носят общее название полимеров на изобутиленовой основе. В некоторых вариантах эластомер включает полимер на изобутиленовой основе. В соответствии с определением, представленным в настоящем описании, некоторые приведенные ниже эластомеры также являются полимерами на изобутиленовой основе.

В еще одном варианте эластомер может также включать "каучук общего назначения".

Тем не менее в другом варианте эластомер может включать натуральный каучук, изопреновый каучук, бутадиен-стирольный каучук (БСК), бутадиеновый каучук (БК), изопрен-бутадиеновый каучук (ИБК), стирол-изопрен-бутадиеновый каучук (СИБК), этилен-пропиленовый каучук (ЭПД), этилен-пропилен-диеновый каучук (ТЭПД), полисульфид, бутадиен-нитрильный каучук, пропиленоксидные полимеры, звездообразный бутилкаучук и галоидированный звездообразный бутилкаучук, бромированный бутилкаучук, хлорированный бутилкаучук, звездообразный изобутиленовый каучук, звездообразный бромированный бутилкаучук (изобутилен-изопреновый сополимер), изобутилен/n-метилстирольные и галоидированные изобутилен/n-метилстирольные сополимеры, такие как, например, тройные сополимеры дериватизированных из изобутилена звеньев, дериватизированных из п-метилстирола звеньев и дериватизированных из п-бромметилстирола звеньев и их смеси.

В другом варианте эластомер может также включать натуральный каучук. Натуральные каучуки подробно описаны Subramaniam в работе Rubber Technology 179-208 (под ред. Maurice Morton, Chapman & Hall, 1995). Целевые варианты натуральных каучуков по настоящему изобретению выбирают из малайзийских каучуков, таких как SMR CV, SMR 5, SMR 10, SMR20, SMR 50 и их смеси, причем вязкость по Муни этих натуральных каучуков при 100°С (ML 1+4) составляет от 30 до 120, более предпочтительно от 40 до 65. Испытание на вязкость по Муни, о котором идет речь в настоящем описании, проводят в соответствии со стандартом ASTM D-1646.

В другом варианте эластомер может также включать бутадиеновый каучук (БК). Вязкость по Муни бутадиенового каучука, как ее определяют при 100°С (ML 1+4), может находиться в интервале от 35 до 70, от 40 до 65 в другом варианте и тем не менее в еще одном варианте от 45 до 60. Некоторыми примерами промышленных синтетических каучуков, которые могут быть использованы при выполнении настоящего изобретения, являются продукты NATSYN (фирма Goodyear Chemical Company) и BUDENE 1207 или BR 1207 (фирма Goodyear Chemical Company). Примером является полибутадиен с высоким содержанием цис-звеньев (цис-БК). Понятие "цис-полибутадиен" или "полибутадиен с высоким содержанием цис-звеньев" означает, что используют 1,4-цис-полибутадиен, где количество цис-компонента составляет по меньшей мере 95%. Конкретным примером полибутадиеновых технических продуктов с высоким содержанием цис-звеньев, используемых в композиции, является продукт BUDENE 1207.

В другом варианте эластомер может также включать каучуки со звеньями, дериватизированными из этилена и пропилена, такие как ЭПД и ТЭПД, приемлемые также для использования в качестве вспомогательных каучуков. Примерами сомономеров, приемлемых при получении ТЭПД, являются этилиденнорборнен, 1,4-гексадиен, дициклопентадиен, а также другие соединения. Эти каучуки описаны в Rubber Technology 260-283 (1995). Приемлемый этилен-пропиленовый каучук технически доступен как продукт VISTALON (фирма ExxonMobil Chemical Company, Бейтаун, шт.Техас).

В другом варианте эластомер может также включать галоидированный каучук как часть композиции тройного сополимера.

Общие свойства и переработка галоидированных бутилкаучуков описаны, например, в The Vanderbilt Rubber Handbook 105-122 (под ред. Robert F.Ohm., фирма R.T.Vanderbilt Co., Inc. 1990) и в Rubber Thechnology 311-321 (1995). Бутилкаучуки, галоидированные бутилкаучуки и звездообразные бутилкаучуки описаны Edward Kresge и Н.С.Wang в 8 Kirk-Othmer Encyclopedia of Chemical Thechnology 934-955 (John Wiley & Sons, Inc. издание 4-ое, 1993).

В некоторых вариантах эластомер может также включать по меньшей мере один или несколько следующих продуктов: бромированный бути