Способ переработки концентратов платиновых металлов на железоникелевой основе для извлечения платиновых металлов
Изобретение относится к металлургии благородных металлов и может быть использовано в технологии переработки концентрата платиновых металлов на железо-никелевой основе. Способ переработки концентратов платиновых металлов на железо-никелевой основе для извлечения платиновых металлов включает обработку концентрата соляной кислотой с переводом платиновых металлов в раствор. Затем ведут отделение нерастворимого остатка, обработку раствора нитритом натрия и отделение осадка гидроксида железа. Перед обработкой концентрата соляной кислотой его распульповывают в воде, пульпу нагревают, вводят азотную кислоту в объеме, необходимом для растворения примерно 60% железа и никеля, и прогревают в течение 4-5 часов при температуре 85-100°С. Обработку соляной кислотой ведут добавлением соляной кислоты в объеме, необходимом для растворения оставшейся части железа и никеля и платиновых металлов, и прогревают еще в течение 4-5 часов при температуре 85-100°С. Перед обработкой раствора нитритом натрия в него вводят ортофосфорную кислоту или ее натриевую соль. Техническим результатом является глубокое вскрытие концентрата и исключение возможности образования взрывоопасной воздушно-водородной смеси и сильно ядовитого газа фосфина (РН3). 1 табл.
Реферат
Изобретение относится к металлургии благородных металлов (БМ) и может быть использовано в технологии переработки концентрата платиновых металлов на железо-никелевой основе.
Концентраты такого типа могут образовываться при переработке отработанных автомобильных катализаторов пирометаллургическими способами с последующим измельчением. Их состав существенно различается, что связано как с разными типами продукции, поступающей на обогатительную плавку, так и с особенностями используемых технологий. Основными компонентами концентратов являются: железо - массовая доля которого составляет (25-50) %, никель (5-20) %, фосфор (2-10) %, кремний (5-20) %, титан (1-2) %. Из платиновых металлов, как правило, присутствуют: платина (3-5) %, палладий (3-5) % и родий (0.5-1.0) %.
Начальной стадией переработки любых концентратов платиновых металлов является их растворение. При этом часто возникают проблемы разнопланового характера. В одних случаях они сопряжены с низкой активностью сырья. В других, наоборот, с бурным протеканием процесса, сопровождающимся выделением вредных и опасных веществ. Один из распространенных и наиболее часто используемых на практике способов заключается в растворении концентратов платиновых металлов в кислотных средах при окислении.
Известен способ переработки концентратов платиновых металлов, включающий гидрохлорирование в соляной кислоте при нагревании, отделение нерастворимого осадка, обработку полученного раствора нитритом натрия (нитрование), отделение осадка и последующее извлечение из раствора платиновых металлов известными способами [1]. Данный способ является наиболее близким по технической сущности к заявляемому способу и принят в качестве прототипа.
К основным недостаткам способа-прототипа при его использовании в процессе переработки концентратов платиновых металлов на железо-никелевой основе для извлечения платиновых металлов следует отнести: выделение взрывоопасного водорода при взаимодействии железа с соляной кислотой; образование сильно ядовитого химического соединения фосфин, предельно допустимая концентрация которого в воздухе составляет 0.1 мг/м3; большая длительность процесса растворения концентрата; непроизводительный расход окислителя из-за низкой активности концентрата; образование трудно фильтруемых пульп, что требует использования сложного фильтровального оборудования.
Технический результат, на достижение которого направлен предлагаемый способ переработки концентрата платиновых металлов на железо-никелевой основе для извлечения платиновых металлов, заключается в использовании совокупности таких гидрометаллургических приемов переработки, которые позволяют достаточно полно перевести в раствор платиновые металлы и, вместе с тем, не имеют перечисленных недостатков, присущих способу-прототипу.
Заданный технический результат достигается тем, что в известном способе переработки концентратов платиновых металлов на железо-никелевой основе для извлечения платиновых металлов, включающем обработку концентрата соляной кислотой с переводом платиновых металлов в раствор, отделение нерастворимого остатка, обработку раствора нитритом натрия и отделение осадка гидроксида железа, перед обработкой концентрата соляной кислотой его распульповывают в воде, пульпу нагревают, вводят азотную кислоту в объеме, необходимом для растворения примерно 60% железа и никеля, и прогревают в течение 4-5 часов при температуре (85-100)°С, обработку соляной кислотой ведут добавлением соляной кислоты в объеме, необходимом для растворения оставшейся части железа и никеля и платиновых металлов, и прогревают еще в течение 4-5 часов при температуре (85-100)°С, а перед обработкой раствора нитритом натрия в него вводят ортофосфорную кислоту или ее натриевую соль.
Сущность предлагаемого способа заключается в следующем. В концентрате часть железа находится в форме фосфида (Fe3P). В азотной кислоте фосфор окисляется и переходит в раствор в виде ортофосфорной кислоты. Таким образом, исключается возможность образования взрывоопасной воздушно-водородной смеси и сильно ядовитого газа фосфина (PH3). При растворении исходного продукта в азотной кислоте в раствор переходит большая часть железа, никеля, а также до 10% платины и палладия и до 30% родия. Расход азотной кислоты зависит от состава исходного сырья и выбирается с таким расчетом, чтобы ее хватило на растворение примерно 60% железа и никеля (см. реакция 1). Так как данный вид концентрата не обладает высокой активностью, то после введения азотной кислоты пульпу следует прогреть при температуре (85-100)°С. Специально проведенные опыты показали, что для завершения процесса требуется проводить прогревание в течение 4-5 часов. При меньшем времени термообработки процесс растворения не успевает завершиться, а более продолжительное прогревание не приводит к существенному повышению полноты растворения. Указанная температура является наиболее оптимальной. При более низких температурах для завершения процесса растворения требуется увеличивать продолжительность прогревания, а при температурах выше 100°С происходит закипание, сопровождающееся вспениванием и возможным выбросом пульпы из реакционного аппарата. На окисление железа и никеля расходуется лишь половина из вводимой азотной кислоты. Другая часть используется на образование нитратных солей:
При последующем введении соляной кислоты нитрат железа выступает в роли окислителя в реакции растворения оставшейся части железа, никеля, а также платиновых металлов:
Расход соляной кислоты также зависит от состава исходного сырья и рассчитывается по реакциям 1-4. Температурные и временные параметры выбраны по тем же соображениям, что и при растворении в азотной кислоте.
Полученный в результате такой обработки раствор помимо платиновых металлов содержит до 80 г/л железа. Для отделения железа и последующего разделения платиновых металлов раствор обрабатывают нитритом натрия. При этом железо гидролизуется и в виде гидроксида выпадает в осадок. Из практики процесса известно, что гидроксиды железа медленно фильтруются и, кроме того, сорбируют на себе платиновые металлы. С целью устранения перечисленных негативных явлений в раствор перед обработкой нитритом натрия предлагается вводить ортофосфорную кислоту или ее натриевую соль. Фосфат-ион вводят для того, чтобы выделить из раствора железа не в форме гидроксидов, а в виде фосфата. Практика процесса показала, что фосфат железа значительно лучше фильтруется и отмывается от маточного раствора, содержащего платиновые металлы, чем его гидроксид. Расход ортофосфорной кислоты или ее натриевой соли также зависит от концентрации железа в растворе, поступающем на обработку нитритом натрия.
ПРИМЕР 1
В стеклянный реактор залили 100 мл воды, включили перемешивающее устройство и загрузили 100 г концентрата следующего состава, %: Fe - 45, Ni - 15, P - 6, Pt - 4,6, Pd - 4,8, Rh - 0,9, Si - 16. Пульпу нагрели до определенной температуры и медленно прилили 300 мл азотной кислоты, после этого при постоянном перемешивании провели изотермическую выдержку при заданной температуре в течение отведенного времени. Затем в пульпу медленно ввели 350 мл соляной кислоты и также провели изотермическую выдержку в течение определенного времени при заданной температуре. Пульпу отфильтровали, нерастворимый остаток промыли, полученные растворы объединили, определили объем и проанализировали методом эмиссионно-связанной плазмы (ICP). Нерастворимый остаток высушили, взвесили и определили в нем спектральным методом массовую долю платиновых металлов. Получили 700 мл раствора следующего состава, г/л: Fe - 57 г/л; Ni - 18 г/л; Pt - 6.4 г/л; Pd - 6.7 г/л; Rh - 1 г/л. Учитывая, что основная часть находящегося в концентрате фосфора превратилась в ортофосфорную кислоту, то перед обработкой нитритом натрия дополнительно в раствор ввели не 47 мл концентрированного раствора H3PO4, что необходимо для осаждения всего железа в виде фосфата, а только 37 мл. Полученный раствор обработали при нагревании нитритом натрия, пульпу прогрели и отфильтровали. Осадок промыли водой, основной нитритный раствор и промводы объединили, определили объем и проанализировали методом эмиссионно-связанной плазмы (ICP). Осадок высушили, взвесили и определили в нем спектральным методом массовую долю платиновых металлов. Подобные опыты провели с этим же исходным концентратом при различных температурах и продолжительности выдержки. Результаты представлены в таблице 1.
Таблица 1. Распределение металлов при растворении концентрата МПГ на железо-никелевой основе.
№ опыта | Наименование промпродуктов | τ прогревания, час | Т прогревания, °С | V, млМ, г | Распределение, % | ||||||
HNO3 | HCl | HNO3 | HCl | Pt | Pd | Rh | Fe | Ni | |||
1 | Н.остаток от растворения | 4 | 4 | 90 | 90 | 18 | 1.8 | 1.5 | 17.6 | 20 | 26.7 |
Нитритный раствор | 700 | 97.7 | 97.9 | 78.7 | 2.0 | 71 | |||||
Н.остаток от нитрования | 108 | 0.5 | 0.6 | 3.7 | 78 | 2.3 | |||||
2 | Н.остаток от растворения | 1 | 4 | 90 | 90 | 24 | 5.1 | 4.2 | 30.6 | 39 | 42.3 |
Нитритный раствор | 700 | 94.5 | 95.3 | 66.1 | 1.6 | 55.7 | |||||
Н.остаток от нитрования | 97 | 0.4 | 0.5 | 3.3 | 59.4 | 2.0 | |||||
3 | Н.остаток от растворения | 4 | 1 | 90 | 90 | 35 | 46.8 | 34.4 | 54.8 | 45.6 | 47.1 |
Нитритный раствор | 700 | 52.8 | 65.2 | 42.1 | 1.2 | 51.2 | |||||
Н.остаток от нитрования | 84 | 0.4 | 0.4 | 3.1 | 53.2 | 1.7 | |||||
4 | Н.остаток от растворения | 4 | 4 | 50 | 90 | 27 | 7.3 | 5,9 | 33.4 | 36 | 45.1 |
Нитритный раствор | 700 | 92.3 | 93.7 | 63.1 | 1.5 | 52.9 | |||||
Н.остаток от нитрования | 93 | 0.4 | 0.4 | 3.5 | 62.5 | 2.0 | |||||
5 | Н.остаток от растворения | 4 | 4 | 90 | 50 | 32 | 49.3 | 37.7 | 56.4 | 43.4 | 47.1 |
Нитритный раствор | 700 | 50.4 | 61.9 | 40.3 | 1.4 | 50.8 | |||||
Н.остаток от нитрования | 85 | 0.3 | 0.4 | 3.3 | 55.2 | 2.1 |
Таким образом, предлагаемый способ переработки концентратов платиновых металлов на железо-никелевой основе для извлечения платиновых металлов позволяет достигнуть высокого их извлечения в раствор, исключая при этом образования взрывоопасной воздушно-водородной смеси и выделения сильно ядовитого газа - фосфина. Образующиеся нерастворимые остатки с низким содержанием платиновых металлов могут быть направлены на обогатительные операции по известным технологиям.
Источники информации
1. Ю.А.Котляр, М.А.Меретуков, Л.С.Стрижко. Металлургия благородных металлов. Т.2. Учебное пособие. М., Издательский дом «Руда и Металлы», 2005, с.269-273.
Способ переработки концентратов платиновых металлов на железоникелевой основе для извлечения платиновых металлов, включающий обработку концентрата соляной кислотой с переводом платиновых металлов в раствор, отделение нерастворимого остатка, обработку раствора нитритом натрия и отделение осадка гидроксида железа, отличающийся тем, что перед обработкой концентрата соляной кислотой его распульповывают в воде, пульпу нагревают, вводят азотную кислоту в объеме, необходимом для растворения примерно 60% железа и никеля, и прогревают в течение 4-5 часов при температуре 85-100°С, обработку соляной кислотой ведут добавлением соляной кислоты в объеме, необходимом для растворения оставшейся части железа и никеля и платиновых металлов, и прогревают еще в течение 4-5 часов при температуре 85-100°С, а перед обработкой раствора нитритом натрия в него вводят ортофосфорную кислоту или ее натриевую соль.