Способ обезвреживания маломинерализованных низкоактивных отходов в полевых условиях

Изобретение относится к технологии обезвреживания маломинерализованных отходов в полевых условиях. При обезвреживании маломинерализованных низкоактивных жидких отходов производят очистку на механических и ультрафильтрах, обессоливание на обратноосмотических фильтрах и доочистку на ионитовых фильтрах. Концентраты обратноосмотических фильтров доупаривают до насыщения по солям при атмосферном давлении и температуре менее 100°С в емкости, предназначенной для последующего цементирования и захоронения отходов с последующим включением насыщенных солевых концентратов в портландцементы. Конденсат выпарного аппарата возвращают на ультрафильтры, а концентрат ультрафильтров возвращают на механические фильтры. Дополнительно производят очистку отходов от радионуклидов на фильтрах с селективными сорбентами с защитой от ионизирующего излучения, причем на эти фильтры направляют исходные радиоактивные отходы при их удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг и/или радиоактивные концентраты перед упариванием при их удельной активности более 0,1 МБк/кг. При использовании изобретения происходит упрощение аппаратурного оформления процесса доупаривания, повышение эффективности очистки ЖРО в условиях загрязнения ПАВ и нефтепродуктами и уменьшение дозовой нагрузки на обслуживающий персонал. 1 ил.

Реферат

Изобретение относится к технологии обезвреживания жидких радиоактивных отходов (ЖРО) мембранно-сорбционными методами в полевых условиях.

При эксплуатации атомных станций и других ядерных объектов помимо образования реагентных ЖРО (дезактивирующих, моющих, регенерирующих растворов и др.), отличающихся засоленностью и радиоактивностью, происходит загрязнение больших объемов маломинерализованных природных вод радионуклидами до концентраций, превышающих допустимые значения на 3-4 порядка. Такие отходы часто образуются на объектах, не имеющих собственных установок водоочистки, т.е. требующих применения мобильных (транспортируемых) установок.

ЖРО, образующиеся на крупных предприятиях, например АЭС, обезвреживаются на стационарных промышленных установках спецводоочистки (СВО). Основным способом, используемым на этих установках, является очистка на механических фильтрах, выпарных аппаратах, работающих при небольшом избыточном давлении, и ионообменных фильтрах с последующим отверждением радиоактивных концентратов битумированием или цементированием [Никифоров А.С. и др. Обезвреживание жидких радиоактивных отходов. - М.: Энергоатомиздат, 1985 г., с.54-55].

Недостатком данного способа является то, что при высокой степени очистки от радионуклидов (для реальных отходов АЭС степень очистки в среднем в 104 раз при концентрировании ЖРО до 150-200 г/л) выпаривание при температуре свыше 100°С является высокоэнергоемким процессом (на 1 м3 раствора расходуется до 1 т пара), что ограничивает его применение в полевых условиях на передвижных (мобильных) установках и делает нерентабельным при переработке небольших объемов маломинерализованных низкоактивных ЖРО. Кроме того, в этой технологической схеме при выпаривании в щелочной среде (рН 10-11), поддерживаемой в ЖРО для перевода радионуклидов иода в нелетучую форму, высокая степень очистки от основной массы солей сопровождается значительным загрязнением дистиллята аммиаком, что резко повышает нагрузку на ионообменные фильтры.

При доупаривании кубового остатка (солесодержанием 150-200 г/л) с целью сокращения объема радиоактивных отходов до предела насыщения растворов по солям (400-500 г/л) происходят снижение степени очистки от радионуклидов и интенсивное выделение солей жесткости на греющих поверхностях выпарных аппаратов, снижающее их теплоотдачу и затрудняющее эксплуатацию. Это требует периодических кислотных промывок аппаратов с добавкой HNO3 (проведение упаривания в кислотном режиме при рН ~3), что дополнительно повышает солесодержание, а значит и объем захораниваемых отходов. Причем цементирование концентратов АЭС при повышении солесодержания отходов с 200 г/л до 400 г/л требует уменьшения раствороцементного отношения (с 0,6-0,7 до 0,3-0,4), т.е. двукратного повышения расхода цемента. В результате объем отвержденного продукта, отправляемого на захоронение, практически не сокращается. Мало того, выщелачиваемость радионуклидов из цементных блоков с высоким солесодержанием возрастает и, следовательно, их экологическая безопасность снижается [Соболев И.А. и др. Обезвреживание радиоактивных отходов на централизованных пунктах. - М.: Энергоатомиздат, 1983 г., с.40-45].

Известен способ обезвреживания маломинерализованных низкоактивных вод в полевых условиях на установке, включающей очистку на механических и ультрафильтрах, обессоливание на обратноосмотических фильтрах и доочистку на ионитовых фильтрах с отверждением образующихся радиоактивных концентратов включением в шлакопортландцемент [патент РФ №2144708, бюл. №2, 2000].

Основным недостатком данного способа является то, что при экономически эффективных параметрах процесса (давление до 7 МПа) достигается концентрирование ЖРО лишь до солесодержания не более 50 г/л. Для достижения в концентрате солесодержания 200 г/л давление в обратноосмотическом аппарате должно быть увеличено до значений более 20 МПа, что практически невозможно из-за недостаточной прочности обратноосмотических мембран. Причем с увеличением степени концентрирования ЖРО снижается степень их очистки от радионуклидов. Кроме того, с ростом солесодержания концентрата увеличивается и выделение солей жесткости на обратноосмотических мембранах, что требует предварительного реагентного умягчения растворов перед обратным осмосом, в частности, путем обработки отработавшими регенератами ионитов. Все это приводит к получению в 3-4 раза больших объемов концентратов, поступающих на отверждение по сравнению с СВО на АЭС.

Известен способ обезвреживания маломинерализованных низкоактивных вод в полевых условиях, включающий очистку на механических и ультрафильтрах, обессоливание на обратноосмотических фильтрах, доочистку на ионитовых фильтрах, доупаривание образующихся радиоактивных концентратов на роторно-пленочном вакуумном концентраторе до насыщения по солям с последующим включением насыщенных солевых концентратов в портландцементы [патент РФ №2195726, бюл. №36, 2002]. По своей технологической сущности и достигаемому результату этот способ наиболее близок к заявляемому и выбран в качестве прототипа.

Основным недостатком данного способа является то, что для проведения процесса упаривания при температуре ниже 100°С требуется вакуумное разрежение. Так, роторно-пленочные вакуумные выпарные аппараты работают в основном при температуре 60-80°С [Максин В.И., Вахнин И.Г., Стандритчук О.З. и др. Роторный пленочный выпарной аппарат. // Химия и технология воды, 1989, т.11, №1, с.78-80], что соответствует разрежению 0,2-0,5 от атмосферного. В соответствии с этим усложняется конструкция выпарного аппарата (требуются насос и специальное вакуумное оборудование) и повышается его металлоемкость (до тонны), что затрудняет его использование в полевых условиях. Кроме того, столь глубокое концентрирование маломинерализованных (менее 1 г/л) низкоактивных отходов до насыщения по солям (в зависимости от солевого состава вплоть 400-500 г/л) может привести к повышению удельной активности солевых концентратов до значений более 1 МБк/кг по бета-излучающим радионуклидам, т.е. к образованию среднеактивных отходов [Санитарные правила обращения с радиоактивными отходами (СПОРО-2002). М.: Минздрав, 2002, с.10.], дальнейшее обращение с которыми в полевых условиях будет затруднено (требуются защита и переработка специальными методами [Ядерная энергетика и окружающая среда. Вып.1. - М.: АИНФ 539, 1981]). В случае наличия в упариваемых ЖРО поверхностно-активных веществ (ПАВ) и других органических примесей, включая нефтепродукты, в таком аппарате с развитой испаряющей поверхностью (пленкой) в результате пенного уноса происходит значительное загрязнение конденсата. Причем даже при предусмотренном данным способом направлении конденсата выпарного аппарата на обратноосмотические фильтры высокомолекулярные загрязнения (в первую очередь нефтепродукты) будут мешать работе обратноосмотических элементов.

Задача, решаемая предлагаемым изобретением, заключается в упрощении аппаратурного оформления процесса доупаривания, повышении эффективности очистки ЖРО в условиях загрязнения ПАВ и нефтепродуктами и уменьшении дозовой нагрузки на обслуживающий персонал.

Для достижения указанного технического результата в способе обезвреживания маломинерализованных низкоактивных жидких отходов в полевых условиях, включающем очистку на механических и ультрафильтрах, обессоливание на обратноосмотических фильтрах и доочистку на ионитовых фильтрах с доупариванием образующихся радиоактивных концентратов до насыщения по солям при температуре менее 100°С и последующим включением насыщенных солевых концентратов в портландцементы, согласно изобретению дополнительно производят очистку отходов от радионуклидов на фильтрах с селективными сорбентами с защитой от ионизирующего излучения, доупаривание концентратов обратноосмотических фильтров при атмосферном давлении в емкости, предназначенной для последующего цементирования и захоронения отходов, причем конденсат выпарного аппарата возвращают на ультрафильтры, концентрат ультрафильтров возвращают на механические фильтры, а на фильтры с селективными сорбентами направляют исходные радиоактивные отходы при их удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг и/или радиоактивные концентраты перед упариванием при их удельной активности более 0,1 МБк/кг.

Проведение доупаривания радиоактивных концентратов при температуре менее 100°С при атмосферном давлении обеспечивает проведение процесса испарения воды без кипения, что предотвращает аэрозольный и пенный унос загрязнений в конденсат (коэффициенты очистки паров не ниже 105) и позволяет проводить доупаривание непосредственно в емкостях, предназначенных для дальнейшего цементирования и захоронения отходов, что значительно упрощает аппаратурное оформление процесса, уменьшает возможность аварийных ситуаций и уменьшает дозовую нагрузку на обслуживающий персонал [Сивош К., Ловашш Д., Литпак Л. и др. Упаривание жидких радиоактивных отходов при температуре ниже температуры кипения. - В кн.: Исследования в области обезвреживания жидких, твердых и газообразных радиоактивных отходов и дезактивации загрязненных поверхностей. - Материалы IV научно-технической конференции СЭВ. - М.: Атомиздат, 1978, вып.1, с.34-40]. Возврат конденсата от доупаривания на ультрафильтры и возврат концентрата ультрафильтров на механические фильтры обеспечивает очистку от высокомолекулярных загрязнений, включая нефтепродукты, которые попадают в конденсат за счет молекулярного уноса, что создает благоприятные условия для высокоэффективной работы обратноосмотических и ионитовых фильтров. Обратноосмотические фильтры обычно обеспечивают концентрирование малосолевых (менее 1 г/л) отходов не менее чем в 10 раз, т.е. при исходной удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг возможно образование среднеактивных отходов (более 1 МБк/кг), что позволяет избежать предварительной очистки их на фильтрах селективных сорбентов Солесодержание же обратноосмотических концентратов, как правило, не превышает 50 г/л и при их удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг в процессе доупаривания до насыщения по солям (в зависимости от солевого состава вплоть 400-500 г/л) возможно образование среднеактивных отходов (более 1 МБк/кг), что позволяет избежать очистки их перед доупариванием на фильтрах селективных сорбентов. Поскольку селективные сорбенты не подлежат регенерации, то их фильтры сразу могут быть помещены в бетонную защиту (фильтры-контейнеры) и по исчерпании их емкости непосредственно в этой защите поступать на захоронение, что обеспечивает радиационную безопасность обслуживающего персонала. В зависимости от солевого состава отверждаемых концентратов их включают в портландцементы соответствующей марки, включая шлакопортландцемент [Качество компаундов, образующихся при цементировании жидких радиоактивных отходов низкого и среднего уровней активности. - Технические требования. - РД 95 10497-93. - М.: Минатом РФ, 1993].

На чертеже изображена схема реализации способа, где позициями обозначены:

1 - фильтр с селективными сорбентами,

2 - механический фильтр, 3 - ультрафильтр,

4 - обратноосмотический фильтр, 5 - ионитовый фильтр.

Способ осуществляется следующим образом.

Маломинерализованные (до 1 г/л по сухому остатку) низкоактивные (менее 1 МБк/кг), в основном бикарбонатные хлоридно-сульфатные жидкие отходы направляют при удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг сначала на фильтры 1 с селективными по радионуклидам сорбентами с защитой от ионизирующего излучения, а при удельной активности менее 0,1 МБк/кг - непосредственно на механические 2 и ультрафильтры 3 для очистки от взвесей и нефтепродуктов. Затем отходы подают на обессоливание на обратноосмотические фильтры 4 и на доочистку на ионитовые фильтры 5 (солесодержание фильтрата менее 10 мг/л и удельная активность не более 5 Бк/кг) Образующийся при обратноосмотической очистке концентрат с солесодержанием не более 50 г/л направляют, при удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг, сначала на фильтры 1 с селективными по радионуклидам сорбентами с защитой от ионизирующего излучения, а при удельной активности менее 0,1 МБк/кг - непосредственно на доупаривание при атмосферном давлении и температуре менее 100°С в емкости, предназначенной для последующего цементирования и захоронения отходов, до насыщения по солям (вплоть до 400-500 г/л) и отверждают включением в портландцементы, марка которых подбирается в зависимости от солевого состава Конденсат от доупаривания возвращают на ультрафильтры 3, а концентрат ультрафильтров возвращают на механические фильтры 2. Данный способ обеспечивает сокращение объема ЖРО, загрязненных ПАВ и нефтепродуктами, не менее чем в 400 раз, даже при исходной удельной активности, достигающей 1 МБк/кг. При этом на всех стадиях процесса очистки для персонала сохраненяются условия обслуживания оборудования для низкоактивных отходов и обеспечивается степень очистки растворов от радионуклидов не менее чем в 2·104 раза

По сравнению с известными методами обезвреживания ЖРО данный способ для отходов, загрязненных ПАВ и нефтепродуктами, даже без использования селективных сорбентов обеспечивает более высокие коэффициенты очистки на тех же механических, ультра- и обратноосмотических фильтрах, что не следует явным образом из уровня техники, т.е. соответствует критерию изобретательского уровня.

Примеры конкретного исполнения.

Пример 1. (прототип) В качестве маломинерализованных низкоактивных жидких отходов использовали раствор бикарбонатных хлоридно-сульфатных природных вод (солесодержание ~450 мг/л), содержащий 25 мг/л ПАВ и 25 мг/л нефтепродуктов (рН 8,5). Удельная активность составляла 0,3 кБк/кг по цезию-137 и 0,6 кБк/кг по стронцию-90 (согласно нормам радиационной безопасности НРБ-99 [Нормы радиационной безопасности (НРБ-99). - М.: Минздрав, 1999], уровень вмешательства в воде УВвода составляет 11 Бк/кг для цезия-137 и 5 Бк/кг для стронция-90).

Обезвреживание проводили путем очистки на механических и ультрафильтрах от радионуклидов, адсорбированных на взвесях, коллоидах и эмульсиях, затем обессоливанием на обратноосмотических фильтрах и доочисткой на ионитовых фильтрах (КУ-2 в Н+-форме и АВ-17 в ОН--форме) от радионуклидов, входящих в состав комплексов и солей. Обратноосмотические фильтры работали при давлении 7 МПа с концентрированием ЖРО до 50 г/л. Концентраты ультра- и обратноосмотических фильтров направляли на доупаривание при температуре 60°С и разрежении 0,2 от атмосферного в роторно-пленочный вакуумный концентратор до солесодержания (сухого остатка) 500 г/л (при подщелачивании до рН ~11). Конденсат от доупаривания возвращали на обратноосмотические фильтры. Доупаренный солевой концентрат включали в портландцемент М-400 с сорбционной добавкой глины. Удельная активность конденсата и очищенной воды составляла 0,3 Бк/кг по цезию-137 и 0,6 Бк/кг по стронцию-90 (т е. почти в 10 раз менее УВ-вода), а поступающего на отверждение доупаренного солевого концентрата - 0,3 МБк/кг по цезию-137 и 0,6 МБк/кг по стронцию-90 (т.е. концентрат относится к низкоактивным ЖРО).

Пример 2. (прототип). Отличается от примера 1 тем, что удельная активность исходного раствора составляла 0,3 МБк/кг по цезию-137 и 0,6 МБк/кг по стронцию-90. Удельная активность конденсата и очищенной воды составляла 0,3 кБк/кг по цезию-137 и 0,6 кБк/кг по стронцию-90 (т.е. превышала УВвода по стронцию-90 более чем в 10 раз), а поступающего на отверждение доупаренного солевого концентрата - 0,3 ГБк/кг по цезию-137 и 0,6 ГБк/кг по стронцию-90 (т.е. концентрат относится к среднеактивным ЖРО и при его отверждении требуется защита от ионизирующего излучения).

Пример 3. Отличается от примера 1 тем, что доупаривание концентрата обратноосмотических фильтров проводили при атмосферном давлении и температуре 60°С в 200 литровом контейнере в форме бочки, предназначенном для последующего цементирования и захоронения отходов. Конденсат от доупаривания возвращали на ультрафильтры, а концентрат ультрафильтров возвращали на механические фильтры. Удельная активность конденсата составляла 0,003 Бк/кг по цезию-137 и 0,006 Бк/кг по стронцию-90, очищенной воды - 0,03 Бк/кг по цезию-137 и 0,06 Бк/кг по стронцию-90 (т.е. менее УВвода почти в 100 раз), а поступающего на отверждение доупаренного солевого концентрата - 0,3 МБк/кг по цезию-137 и 0,6 МБк/кг по стронцию-90 (т.е. концентрат относится к низкоактивным ЖРО).

Пример 4. Отличается от примера 3 тем, что удельная активность исходного раствора составляла 0,3 МБк/кг по цезию-137 и 0,6 МБк/кг по стронцию-90. Исходный раствор и обратноосмотический концентрат предварительно очищали от радионуклидов на фильтрах с селективным сорбентом на основе ионообменных смол модифицировать последовательной обработкой растворами ферроцианида калия и солей кобальта [Патент РФ №2267176. 2005, Бюл. №36.] (эффективность сорбции Cs/Sr - 99,9%/99,5%) с бетонной защитой от ионизирующего излучения (фильтах-контейнерах). Удельная активность конденсата составляла 0,003 мБк/кг по цезию-137 и 0,15 мБк/кг по стронцию-90, очищенной воды - 0,03 Бк/кг по цезию-137 и 0,3 Бк/кг по стронцию-90 (т.е. менее УВвода почти в 20 раз), а поступающего на отверждение доупаренного солевого концентрата - 0,3 кБк/кг по цезию-137 и 3 кБк/кг по стронцию-90 (т.е. концентрат относится к низкоактивным ЖРО).

Следует отметить, что отработанные селективные сорбенты поступают на захоронение непосредственно в фильтрах с бетонной защитой от ионизирующего излучения (фильтах-контейнерах) в качестве кондиционированных твердых радиоактивных отходов, т к. радионуклиды на сорбентах фиксируются настолько прочно, что не вымываются при попадании в воду.

Предлагаемый способ облегчает эксплуатацию оборудования для обезвреживания маломинерализованных низкоактивных отходов, так как позволяет вести доупаривание непосредственно в емкостях, предназначенных для цементирования и захоронения отходов, и даже при относительно высокой удельной активности отходов требует защиту от ионизирующего излучения только на фильтрах-контейнерах с селективными сорбентами, поэтому способ является промышленно применимым. В случае загрязнения отходов ПАВ и нефтепродуктами данным способом даже без использования фильтров с селективными сорбентами обеспечивается на порядок более эффективная очистка от радионуклидов.

Способ обезвреживания маломинерализованных низкоактивных жидких отходов в полевых условиях, включающий очистку на механических и ультрафильтрах, обессоливание на обратноосмотических фильтрах и доочистку на ионитовых фильтрах с доупариванием образующихся радиоактивных концентратов до насыщения по солям при температуре менее 100°С и последующим включением насыщенных солевых концентратов в портландцементы, отличающийся тем, что дополнительно производят очистку отходов от радионуклидов на фильтрах с селективными сорбентами с защитой от ионизирующего излучения, доупаривание концентратов обратноосмотических фильтров при атмосферном давлении в емкости, предназначенной для последующего цементирования и захоронения отходов, причем конденсат от доупаривания возвращают на ультрафильтры, концентрат ультрафильтров возвращают на механические фильтры, а на фильтры с селективными сорбентами направляют исходные радиоактивные отходы при их удельной активности по бета-излучающим нуклидам более 0,1 МБк/кг и/или радиоактивные концентраты перед упариванием при их удельной активности более 0,1 МБк/кг.