Устройство и способ регулирования системы привода от электродвигателя

Иллюстрации

Показать все

Изобретение относится к области электротехники и может быть использовано в системе привода, в котором режим регулирования переключается между режимом ШИМ-регулирования и режимом регулирования прямоугольно-импульсного напряжения вне зависимости от типа электродвигателя. Техническим результатом является уменьшение флуктуации вращающего момента при переключении режима регулирования. В устройстве и способе регулирования системы привода от электродвигателя в режиме регулирования прямоугольно-импульсного напряжения выполняется регулирование вращающего момента посредством выполнения регулирования обратной связи, при котором фаза (Δv) прямоугольно-импульсного напряжения корректируется на основании отклонения оцененного значения (Trq) вращающего момента от заданного значения (Trqcom) вращающего момента. Часть (420) для оценки вращающего момента вычисляет оцененное значение (Trq) вращающего момента, используя токи (Id, Iq) электродвигателя, вычисленные на основании значений, измеренных датчиками (24) тока и датчиком (25) положения, так же как в случае режима ШИМ-регулирования. А именно, при регулировании электродвигателя используется количественная оценка состояния (количественная оценка, определенная датчиками) электродвигателя (M1) переменного тока как в режиме регулирования прямоугольно-импульсного напряжения, так и в режиме ШИМ-регулирования. 4 н. и 9 з.п. ф-лы, 12 ил.

Реферат

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

1. Область техники, к которой относится изобретение

[0001] Изобретение в основном относится к устройству и способу регулирования системы привода от электродвигателя. Более конкретно изобретение относится к устройству и способу регулирования системы привода от электродвигателя, которая преобразует напряжение постоянного тока в напряжение переменного тока, используя инвертор, для привода и регулирования электродвигателя переменного тока.

2. Описание известного уровня техники

[0002] Общеизвестна система привода от электродвигателя, которая преобразует напряжение постоянного тока в напряжение переменного тока, используя инвертор, для привода и регулирования трехфазного электродвигателя переменного тока. В таких системах привода от электродвигателя были предложены различные режимы регулирования для соответствующего регулирования вращающего момента электродвигателя переменного тока на заданный вращающий момент (значение команды вращающего момента).

[0003] Например, в публикации японской патентной заявки №JP-А-2005-124359 приводится описание способа, согласно которому при регулировании тока синхронного электродвигателя в цепи обратной связи по току используется токовый сигнал, оцениваемый контрольным устройством, имеющим поправочный член, который служит для корректировки ошибки между фактической и расчетной частотой вращения. При регулировании тока на основании значения команды для тока, обеспечивающего заданный вращающий момент (значения команды для тока Id по оси d), и сигнала обратной связи по току вырабатывается команда для напряжения, обеспечивающего заданный вращающий момент. Согласно публикации японской патентной заявки №JP-A-2005-124359 напряжение, подаваемое на каждую фазу синхронного электродвигателя (электродвигателя переменного тока), вырабатывается в соответствии с вышеупомянутой обратной связью по току посредством операции переключения, выполняемой в инверторе, в соответствии с регулированием посредством широтно-импульсной модуляции (ШИМ-PWM-pulse-width modulation). Для эффективного привода электродвигателя ШИМ-регулирование обычно осуществляется посредством выполнения векторного управления.

[0004] Однако при помощи ШИМ-регулирования достигается лишь ограниченное напряжение основной гармоники. Поэтому в публикации японской патентной заявки №JP-A-11-299297 дается описание переключения режима регулирования электродвигателя в зависимости от ситуации между нормальным режимом ШИМ-регулирования и режимом регулирования, в котором на электродвигатель подается прямоугольно-импульсное напряжение с коэффициентом заполнения ШИМ, зафиксированным на максимальном значении, а выходной вращающий момент электродвигателя регулируется посредством регулирования фазы прямоугольно-импульсного напряжения (режим регулирования прямоугольно-импульсного напряжения).

[0005] В соответствии с режимом регулирования электродвигателя, описанным в публикации японской патентной заявки №JP-A-2005-124359, регулирование может быть выполнено более эффективно, поскольку электрический ток точно измеряется, и в индуцируемое напряжение вносится поправка. Однако режим регулирования электродвигателя зафиксирован на режиме ШИМ-регулирования. Соответственно, вне зависимости от рабочего состояния электродвигателя, получить большую выходную мощность всегда затруднительно.

[0006] Для устранения этого неудобства в публикации японской патентной заявки №JP-A-11-299297 дается описание переключения режима регулирования электродвигателя между режимом ШИМ-регулирования и режимом регулирования прямоугольно-импульсного напряжения. В такой конфигурации необходимо принимать некоторые меры для того, чтобы при переключении режима регулирования в выходном вращающем моменте электродвигателя не возникали флуктуации. Однако в публикации японской патентной заявки JP-A-11-299297 описание таких мер отсутствует.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0007] Настоящее изобретение сделано в свете вышеописанных обстоятельств. Поэтому изобретение предусматривает устройство и способ регулирования системы привода от электродвигателя, имеющей конфигурацию регулирования, в которой режим регулирования переключается между режимом регулирования с широтно-импульсной модуляцией (ШИМ) и режимом регулирования прямоугольно-импульсного напряжения, при этом указанные устройство и способ регулирования позволяют соответственно регулировать выходной вращающий момент, когда происходит переключение режима регулирования.

[0008] Первый аспект настоящего изобретения относится к устройству регулирования системы привода от электродвигателя, включающей инвертор, который запускает электродвигатель переменного тока. Устройство регулирования включает датчик тока, датчик положения, средство выбора режима регулирования, первое средство регулирования электродвигателя и второе средство регулирования электродвигателя. Датчик тока измеряет ток электродвигателя, протекающий в электродвигателе переменного тока. Датчик положения измеряет угловое положение электродвигателя переменного тока. Средство выбора режима регулирования выбирает режим регулирования для преобразования напряжения, выполняемого в инверторе, исходя из рабочего состояния электродвигателя переменного тока. Когда средство выбора режима регулирования выбирает первый режим регулирования, в котором на электродвигатель переменного тока подается прямоугольно-импульсное напряжение, то первое средство регулирования электродвигателя осуществляет регулирование вращающего момента посредством регулирования обратной связи, при котором фаза прямоугольно-импульсного напряжения корректируется на основании отклонения выходного вращающего момента электродвигателя переменного тока от заданного значения вращающего момента. Когда средство выбора режима регулирования выбирает второй режим регулирования, при котором напряжение, подаваемое на электродвигатель переменного тока, регулируется в режиме широтно-импульсной модуляции, то второе средство регулирования электродвигателя осуществляет регулирование вращающего момента посредством регулирования обратной связи по току электродвигателя на основании заданного значения тока, соответствующего заданному значению вращающего момента. Второе средство регулирования электродвигателя осуществляет регулирование обратной связи по току электродвигателя на основании выходных сигналов от датчика тока и датчика положения. Первое средство регулирования электродвигателя включает первое средство оценки вращающего момента, средств регулирования фазы напряжения и первое средство регулирования напряжения. Первое средство оценки вращающего момента оценивает выходной вращающий момент электродвигателя переменного тока на основании выходных сигналов от датчика тока и датчика положения. Средство регулирования фазы напряжения определяет фазу прямоугольно-импульсного напряжения на основании отклонения результата оценки вращающего момента первым средством оценки вращающего момента от заданного значения вращающего момента. Первое средство регулирования напряжения регулирует преобразование напряжения, выполняемое в инверторе, таким образом, что на электродвигатель переменного тока подается прямоугольно-импульсное напряжение с фазой, определенной средством регулирования фазы напряжения.

[0009] Второй аспект настоящего изобретения относится к способу регулирования системы привода от электродвигателя, включающей инвертор, который запускает электродвигатель переменного тока. В соответствии с данным способом регулирования измеряется ток электродвигателя, протекающий в электродвигателе переменного тока, измеряется угловое положение электродвигателя переменного тока и, исходя из рабочего состояния электродвигателя переменного тока, выбирается режим регулирования для выполняемого в инверторе преобразования напряжения. Когда выбирается первый режим регулирования, при котором в электродвигатель переменного тока подается прямоугольно-импульсное напряжение, регулирование вращающего момента выполняется посредством регулирования обратной связи, при котором фаза прямоугольно-импульсного напряжения корректируется на основании отклонения выходного вращающего момента электродвигателя переменного тока от заданного значения вращающего момента. В это время на основании выходных сигналов от датчика тока и датчика положения оценивается выходной вращающий момент электродвигателя переменного тока, на основании отклонения результата оценки вращающего момента от заданного значения вращающего момента определяется фаза прямоугольно-импульсного напряжения и регулируется выполняемое в инверторе преобразование напряжения, так что в электродвигатель переменного тока подается прямоугольно-импульсное напряжение с определенной фазой. Когда выбирается второй режим регулирования, при котором напряжение, подаваемое на электродвигатель переменного тока, регулируется в режиме широтно-импульсной модуляции, регулирование вращающего момента выполняется посредством регулирования обратной связи по току электродвигателя на основании заданного значения тока, соответствующего заданному значению вращающего момента. В это время выполняется регулирование обратной связи по току электродвигателя на основании измеренного тока электродвигателя и измеренного углового положения.

[0010] При помощи рассмотренных выше устройства и способа регулирования системы привода от электродвигателя, и в первом режиме регулирования электродвигателя, представляющем собой режим регулирования прямоугольно-импульсного напряжения, и во втором режим регулирования электродвигателя, представляющем собой режим ШИМ-регулирования, регулирование вращающего момента выполняется посредством выполнения регулирования обратной связи с использованием выходных сигналов от датчика тока и датчика положения в качестве количественной оценки состояния электродвигателя. Соответственно, количественная оценка состояния (выходные сигналы от датчиков), используемая для регулирования электродвигателя, между режимами регулирования не изменяется. Следовательно, при переключении режима регулирования выходной вращающий момент регулируется должным образом. В частности, можно предотвратить ступенчатые флуктуации вращающего момента из-за погрешности при измерении указанным датчиком.

[0011] Датчик тока может быть предусмотрен таким образом, чтобы он измерял токи, протекающие в соответствующих фазах электродвигателя переменного тока. Кроме того, первое средство оценки вращающего момента может оценивать выходной вращающий момент электродвигателя переменного тока на основании тока по оси d и тока по оси q, которые вычисляются на основании выходных сигналов датчика тока и датчика положения.

[0012] Выходной вращающий момент электродвигателя переменного тока может быть оценен на основании токов по оси d и по оси q электродвигателя переменного тока.

[0013] Посредством рассмотренных выше устройства и способа регулирования системы привода от электродвигателя, в первом режиме регулирования электродвигателя, который является режимом регулирования прямоугольно-импульсного напряжения, выходной вращающий момент электродвигателя переменного тока оценивается на основании тока по оси d (тока Id) и тока по оси q (тока Iq) при векторном регулировании, которое обычно используется во втором режиме регулирования, которое является режимом ШИМ-регулирования. Таким образом, регулирование прямоугольно-импульсного напряжения выполняется аналогично тому, как выполняется ШИМ-регулирование.

[0014] Кроме того, первое средство оценки вращающего момента может оценивать выходной вращающий момент электродвигателя переменного тока на основании токов по оси d и по оси q и постоянной электродвигателя для электродвигателя переменного тока, а устройство регулирования может дополнительно включать средство коррекции постоянной для коррекции постоянной электродвигателя на основании тока по оси d и тока по оси q.

[0015] Выходной вращающий момент электродвигателя переменного тока может быть оценен на основании токов по оси d и по оси q и постоянной электродвигателя для электродвигателя переменного тока, а постоянная электродвигателя может корректироваться на основании тока по оси d и тока по оси q.

[0016] Посредством рассмотренных выше устройства и способа регулирования системы привода от электродвигателя, выходной вращающий момент электродвигателя переменного тока оценивается после изменения постоянной электродвигателя (более конкретно, индуктивности по оси d и индуктивности по оси q) из-за изменения тока электродвигателя (тока по оси d и тока по оси q) для его корректировки. Таким образом, точность оценки вращающего момента в режиме регулирования прямоугольно-импульсного напряжения повышается и соответственно вращающий момент регулируется более точно.

[0017] В устройстве регулирования согласно первому аспекту изобретения второе средство регулирования электродвигателя может включать второе средство оценки вращающего момента, средство изменения заданного значения вращающего момента, средство выработки команды тока и второе средство регулирования напряжения. Второе средство оценки вращающего момента оценивает выходной вращающий момент электродвигателя переменного тока на основании выходных сигналов от датчика тока и датчика положения аналогично тому, каким образом первое средство оценки вращающего момента оценивает выходной вращающий момент электродвигателя переменного тока. Средство изменения заданного значения вращающего момента изменяет заданное значение вращающего момента на основании отклонения вращающего момента, оцененного посредством второго средства оценки вращающего момента, от заданного значения вращающего момента. Средство выработки команды тока вырабатывает заданное значение тока на основании заданного значения вращающего момента, измененного с помощью средства изменения заданного значения вращающего момента. Второе средство регулирования напряжения регулирует выполняемое в инверторе преобразование напряжения таким образом, что напряжение, подаваемое на электродвигатель переменного тока, регулируется на основании отклонения тока электродвигателя, основанного на значении, измеряемом датчиком тока, от заданного значения тока, выработанного средством выработки команды тока.

[0018] Когда выбирается второй способ регулирования, выходной вращающий момент электродвигателя переменного тока может быть оценен на основании измеренного тока электродвигателя и измеренного углового положения аналогично вышеописанной оценке вращающего момента, а заданное значение вращающего момента может быть изменено на основании отклонения оцененного вращающего момента от заданного значения вращающего момента. Затем, заданное значение тока может быть выработано на основании измененного заданного значения вращающего момента, и выполняемое в инверторе преобразование напряжения может регулироваться таким образом, что напряжение, подаваемое на электродвигатель переменного тока, регулируется на основании отклонения измеренного тока электродвигателя от выработанного заданного значения тока.

[0019] В рассмотренных выше устройстве и способе регулирования системы привода от электродвигателя, даже в режиме ШИМ-регулирования, регулирование обратной связи по току электродвигателя выполняется на основании отклонения вращающего момента, так же как в случае режима регулирования прямоугольно-импульсного напряжения. Таким образом, ток электродвигателя регулируется так, что компенсируется изменение выходных характеристик электродвигателя из-за изменения температуры. В результате флуктуации вращающего момента предотвращаются без применения датчика температуры и т.п. Кроме того, и в режиме ШИМ-регулирования, и в режиме регулирования прямоугольно-импульсного напряжения вращающий момент регулирования обратной связи выполняется с использованием выходного вращающего момента, оцениваемого способом, общим для этих режимов регулирования. В результате возможно еще более надежно предотвращать флуктуации вращающего момента, которые с большой вероятностью возникают при переключении режима регулирования.

[0020] Второй режим регулирования может включать режим синусоидальной широтно-импульсной модуляции, в котором частота модуляции лежит в диапазоне от 0 до 0,61, и режим широтно-импульсной перемодуляции, в котором основная гармоника искажается, так что частота модуляции лежит в диапазоне от 0,61 до 0,78.

[0021] В рассмотренных выше устройстве и способе регулирования системы привода от электродвигателя режим регулирования переключается между обычным режимом регулирования посредством синусоидальной широтно-импульсной модуляции (ШИМ), режимом ШИМ-регулирования посредством перемодуляции и режимом регулирования прямоугольно-импульсного напряжения на основании рабочего состояния (как правило, вращающего момента и состояния вращения) электродвигателя переменного тока. В результате выходная мощность электродвигателя переменного тока в диапазонах средних и высоких скоростей вращения возрастает.

[0022] Третий аспект настоящего изобретения относится к устройству регулирования системы привода от электродвигателя, включающей инвертор, который запускает электродвигатель переменного тока. Устройство регулирования включает средство выбора режима регулирования и средство регулирования множества режимов регулирования электродвигателя. Средство выбора режима регулирования выбирает режим регулирования инвертора из множества режимов регулирования на основании рабочего состояния электродвигателя переменного тока. Средство регулирования множества режимов регулирования электродвигателя предусматривается таким образом, чтобы оно отвечало соответствующему множеству режимов регулирования и регулировало выходной вращающий момент электродвигателя переменного тока в режиме регулирования, выбранном средством выбора режима регулирования. Для регулирования выходного вращающего момента электродвигателя переменного тока используется оцененный выходной вращающий момент, а оценка выходного вращающего момента выполняется способом, общим для множества режимов регулирования в средстве регулирования электродвигателя.

[0023] Четвертый аспект настоящего изобретения относится к способу регулирования системы привода от электродвигателя, включающей инвертор, который запускает электродвигатель переменного тока. В соответствии с данным способом регулирования режим регулирования инвертора выбирается из множества режимов регулирования на основании рабочего состояния электродвигателя переменного тока и выходной вращающий момент электродвигателя переменного тока регулируется в выбранном режиме регулирования. Для регулирования выходного вращающего момента электродвигателя переменного тока используется оцененный выходной вращающий момент, а оценка выходного вращающего момента электродвигателя выполняется способом, общим для множества режимов регулирования.

[0024] В рассмотренных выше устройстве и способе регулирования системы привода от электродвигателя способ оценки вращающего момента является общим для множества режимов регулирования, в которых регулирование вращающего момента выполняется с использованием оцененного выходного вращающего момента. Соответственно, возможно предотвратить флуктуации вращающего момента, которые с большой вероятностью возникают при переключении режима регулирования.

[0025] Электродвигатель переменного тока может быть электродвигателем с постоянным магнитом, в котором постоянный магнит закреплен на роторе.

[0026] В рассмотренном выше устройстве регулирования системы привода от электродвигателя в конфигурации, когда потребителем электроэнергии является электродвигатель с постоянным магнитом, который удобен для уменьшения размеров и повышения КПД, компенсируется изменение выходных характеристик электродвигателя благодаря изменению температуры постоянного магнита. В результате предотвращаются флуктуации вращающего момента.

[0027] Настоящее изобретение предусматривает устройство и способ регулирования системы привода от электродвигателя, имеющей конфигурацию системы регулирования, в которой режим регулирования переключается между режимом регулирования посредством широтно-импульсной модуляции (ШИМ) и режим регулирования прямоугольно-импульсного напряжения, при этом указанные устройство и способ регулирования позволяют предотвратить флуктуации выходного вращающего момента, возникающие с большой вероятностью при переключении режима регулирования, благодаря чему вращающий момент регулируется надлежащим образом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0028] Отличительные особенности, преимущества, а также техническое и промышленное значение изобретения будут более понятны при изучении последующего подробного описания предпочтительного примера осуществления настоящего изобретения со ссылками на прилагаемые чертежи.

На фиг.1 представлен вид, отображающий полную конфигурацию системы привода от электродвигателя в соответствии с одним из примеров осуществления настоящего изобретения.

На фиг.2 представлена таблица режимов регулирования, используемых в системе привода от электродвигателя в соответствии с данным примером осуществления настоящего изобретения.

На фиг.3 показана блок-схема выбора режима регулирования.

На фиг.4 представлен график, отображающий способ переключения режимов регулирования на основании рабочего состояния электродвигателя.

На фиг.5 показана блок-схема регулирования, когда в системе привода от электродвигателя в соответствии с данным примером осуществления настоящего изобретения используется режим ШИМ-регулирования (режим синусоидального ШИМ-регулирования и режим ШИМ-регулирования с перемодуляцей).

На фиг.6 показана блок-схема регулирования, когда в системе привода от электродвигателя в соответствии с данным примером осуществления настоящего изобретения используется режим регулирования прямоугольно-импульсного напряжения.

На фиг.7 показана первая блок-схема, на которой изображен пример конфигурации части, выполняющей вычисление вращающего момента.

На фиг.8 представлен график, отображающий изменения константы электродвигателя относительно тока электродвигателя в уравнении для вычисления вращающего момента.

На фиг.9 показана вторая блок-схема, на которой изображен другой пример конфигурации части, выполняющей вычисление вращающего момента.

На фиг.10 показана блок-схема регулирования, на которой изображен режим регулирования прямоугольно-импульсного напряжения, использованный как сравнительный пример.

На фиг.11 представлен график, отображающий способ изменения выходного вращающего момента при переключении режимов регулирования.

На фиг.12 показана блок-схема регулирования, когда в системе привода от электродвигателя в соответствии с данным примером осуществления настоящего изобретения используется режим ШИМ-регулирования.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ПРИМЕРА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

[0029] В последующем описании и на прилагаемых чертежах будет более подробно рассмотрено настоящее изобретение со ссылками на предпочтительный пример его осуществления. Одинаковые или соответствующие части будут обозначаться одними и теми же ссылочными номерами, и в основном будут рассматриваться только один раз.

[0030] На фиг.1 представлен вид, на котором показана полная конфигурация блока привода от электродвигателя в соответствии с одним из примеров осуществления настоящего изобретения. Как показано на фиг.1, система 100 привода от электродвигателя согласно данному примеру осуществления настоящего изобретения включает часть 10# для генерирования напряжения постоянного тока, сглаживающий конденсатор С0, инвертор 14 и электродвигатель M1 переменного тока.

[0031] Электродвигатель M1 переменного тока является приводным электродвигателем, который создает вращающий момент для привода ведущих колес гибридного транспортного средства или электромобиля. Альтернативно, электродвигатель M1 переменного тока может быть сконфигурирован для работы в качестве электрогенератора с приводом от двигателя внутреннего сгорания. Электродвигатель M1 переменного тока может быть сконфигурирован для работы как в качестве электродвигателя, так и электрогенератора. Электродвигатель M1 переменного тока может работать в качестве электродвигателя для двигателя внутреннего сгорания и быть смонтирован на гибридном транспортном средстве как компонент для запуска двигателя внутреннего сгорания.

[0032] Часть 10# для генерирования напряжения постоянного тока включает источник В питания постоянного тока, который может быть заряжен электроэнергией, системные реле SR1 и SR2, сглаживающий конденсатор С1 и повышающий/понижающий преобразователь 12.

[0033] Источник В питания постоянного тока может быть образован аккумуляторной батареей, например, никель-металлогибридной или литий-ионной аккумуляторной батареей. Альтернативно, источник В питания постоянного тока может быть образован таким устройством хранения электроэнергии, как конденсатор с двойным электрическим слоем (ионистор). Напряжение Vb постоянного тока на выходе источника В питания постоянного тока измеряется датчиком 10 напряжения. Датчик 10 напряжения выдает сигнал, индицирующий напряжение Vb постоянного тока, в блок 30 управления.

[0034] Системное реле SRI обеспечивает соединение между положительной клеммой источника В питания постоянного тока и линией 6 электропитания. Системное реле SR2 обеспечивает соединение между отрицательной клеммой источника В питания постоянного тока и кабелем 5 заземления. Системные реле SRI и SR2 активируются/деактивируются в ответ на сигнал SE из блока 30 управления. Более конкретно, системные реле SRI и SR2 активируются в ответ на высокий логический уровень сигнала SE из блока управления 30 и деактивируются в ответ на низкий логический уровень сигнала SE из блока 30 управления. Сглаживающий конденсатор С1 устанавливается между линией 6 электропитания и кабелем 5 заземления и подсоединяется к линии 6 электропитания и кабелю 5 заземления.

[0035] Повышающий/понижающий преобразователь 12 включает катушку L1 индуктивности, силовые полупроводниковые переключательные элементы Q1 и Q2 и диоды D1 и D2.

[0036] Силовые полупроводниковые переключательные элементы Q1 и Q2 устанавливаются между линией 7 электропитания и кабелем 5 заземления и подсоединяются к линии 7 электропитания и кабелю 5 заземления, а друг с другом соединяются последовательно. Силовые полупроводниковые переключательные элементы Q1 и Q2 активируются/деактивируются в ответ на сигналы S1 и S2 переключения соответственно из блока 30 управления.

[0037] Примерами силовых полупроводниковых переключательных элементов (далее называемых просто "переключательные элементы"), которые могут быть использованы в данном примере осуществления настоящего изобретения, являются биполярный транзистор с изолированным затвором, силовой МОП-транзистор (МОП - "металл - оксид - полупроводник" - MOS - Metal Oxide Semiconductor) и силовой биполярный транзистор. Встречно-параллельные диоды D1 и D2 подключаются к переключательным элементам Q1 и Q2 соответственно.

[0038] Катушка L1 индуктивности устанавливается между узлом, где переключательные элементы Q1 и Q2 соединяются друг с другом, и линией 6 электропитания и подсоединяется к данному узлу и к линии 6 электропитания. Сглаживающий конденсатор С0 устанавливается между линией 7 электропитания и кабелем 5 заземления и подсоединяется к линии 7 электропитания и кабелю 5 заземления.

[0039] Инвертор 14 включает плечо 15 U-фазы, плечо 16 V-фазы и плечо 17 W-фазы, которые подключаются параллельно между линией 7 электропитания и кабелем 5 заземления. Каждое из плеч - плечо 15 U-фазы, плечо 16 V-фазы и плечо 17 W-фазы - образовано переключательными элементами, которые установлены между линией 7 электропитания и кабелем 5 заземления и последовательно соединены друг с другом. Например, плечо 15 U-фазы образовано переключательными элементами Q3 и Q4, плечо 16 V-фазы образовано переключательными элементами Q5 и Q6 и плечо 17 W-фазы образовано переключательными элементами Q7 и Q8. Встречно-параллельные диоды D3 - D8 подключаются к переключательным элементам Q3-Q8 соответственно. Переключательные элементы Q3-Q8 активируются/деактивируются в ответ на сигналы S3-S8 переключения соответственно из блока 30 управления.

[0040] Средние точки плеча 15 U-фазы, плеча 16 V-фазы и плеча 17 W-фазы подключаются к концам обмотки U-фазы, обмотки V-фазы и обмотки W-фазы электродвигателя M1 переменного тока соответственно. Как правило, электродвигатель M1 переменного тока является трехфазным электродвигателем с постоянными магнитами. В электродвигателе M1 переменного тока одни концы обмотки U-фазы, обмотки V-фазы и обмотки W-фазы соединяются друг с другом в нейтральной точке. Вторые концы обмотки U-фазы, обмотки V-фазы и обмотки W-фазы подключаются к средним точками плеча 15 U-фазы, плеча 16 V-фазы и плеча 17 W-фазы соответственно.

[0041] Во время работы в режиме повышения повышающий/понижающий преобразователь 12 повышает напряжение Vb постоянного тока, поступающее из источника В питания постоянного тока, и подает повышенное напряжение постоянного тока (далее напряжение постоянного тока, которое соответствует напряжению на входе в инвертор 14, иногда будет называться "системным напряжением") в инвертор 14. Более конкретно, период, в течение которого активирован переключательный элемент Q1, и период, в течение которого активирован переключательный элемент Q2, устанавливаются попеременно в ответ на сигналы S1 и S2 управления переключением из блока 30 управления. Коэффициент повышения напряжения соответствует отношению периодов, в течение которых переключательные элементы Q1 и Q2 активированы, к полному периоду.

[0042] Во время работы в режиме понижения повышающий/понижающий преобразователь 12 понижает напряжение постоянного тока (системное напряжение), поступающее из инвертора 14 через сглаживающий конденсатор С0, и подает пониженное напряжение постоянного тока в источник В питания постоянного тока. Более конкретно, период, в течение которого активирован только переключательный элемент Q1, и период, в течение которого переключательные элементы Q1 и Q2 деактивированы, устанавливаются попеременно в ответ на сигналы S1 и S2 переключения из блока 30 управления. Коэффициент понижения напряжения соответствует отношению периода, в течение которого активирован переключательный элемент Q1, к полному периоду.

[0043] Сглаживающий конденсатор С0 сглаживает напряжение постоянного тока из повышающего/понижающего преобразователя 12 и подает сглаженное напряжение постоянного тока в инвертор 14. Датчик 13 напряжения измеряет напряжение между концами сглаживающего конденсатора СО, т.е. системное напряжение, и выдает в блок 30 управления сигнал, индицирующий измеренное значение VH.

[0044] В случае, когда заданное значение вращающего момента для электродвигателя Ml переменного тока является положительным (Trqcom >0) при подаче напряжения постоянного тока из сглаживающего конденсатора С0 в инвертор 14, инвертор 14 преобразует это напряжение постоянного тока в напряжение переменного тока путем активации/деактивации переключательных элементов Q3-Q8 в ответ на соответствующие сигналы S3-S8 управления переключением из блока 30 управления и питает электродвигатель M1 переменного тока таким образом, что электродвигатель M1 переменного тока выдает положительный вращающий момент. Альтернативно, в случае, когда заданное значение вращающего момента для электродвигателя M1 переменного тока является нулевым (Trqcom=0), инвертор 14 преобразует это напряжение постоянного тока в напряжение переменного тока путем активации/деактивации переключательных элементов Q3-Q8 в ответ на соответствующие сигналы S3-S8 управления переключением и питает электродвигатель M1 переменного тока таким образом, что выходной вращающий момент электродвигателя M1 переменного тока равняется нулю. То есть, электродвигатель M1 переменного тока запускается для получения равного нулю или положительного вращающего момента, который определяется заданным значением Trqcom вращающего момента.

[0045] Когда в гибридном транспортном средстве или в электромобиле, содержащем систему 100 привода от электродвигателя, выполняется операция регенеративного торможения, заданное значение Trqcom вращающего момента для электродвигателя M1 переменного тока устанавливается на отрицательное значение (Trqcom<0). В этом случае инвертор 14 преобразует напряжение переменного тока, генерируемое электродвигателем M1 переменного тока, в напряжение постоянного тока путем активации/деактивации переключательных элементов Q3-Q8 в ответ на соответствующие сигналы S3-S8 управления переключением и подает напряжение постоянного тока (системное напряжение) в повышающий/понижающий преобразователь 12 через сглаживающий конденсатор С0. Примером операции регенеративного торможения в этом случае является операция торможения в сочетании с регенеративным генерированием электроэнергии, которая выполняется, когда водитель, управляющий гибридным транспортным средством или электромобилем, нажимает педаль тормоза, и торможение автомобиля (или отмена ускорения) в сочетании с регенеративным генерированием электроэнергии при отпускании педали газа (вместо нажатия педали тормоза) во время движения автомобиля.

[0046] Датчики 24 тока измеряют токи, протекающие в электродвигателе M1 переменного тока, и выдают сигналы, индицирующие измеренные токи электродвигателя, в блок 30 управления. Сумма мгновенных значений трехфазных токов iu, iv и iw равняется 0. Соответственно, достаточно использовать два датчика 24 тока для измерения токов электродвигателя, протекающих в двух фазах электродвигателя M1 переменного тока (например, тока iv в фазе V и тока iw в фазе W).

[0047] Датчик 25 угла поворота (синус-косинусный вращающийся трансформатор) измеряет угол θ поворота ротора электродвигателя M1 переменного тока и передает сигнал, индицирующий угол θ поворота, в блок 30 управления. Блок 30 управления на основании угла θ поворота вычисляет скорость вращения электродвигателя M1 переменного тока.

[0048] Блок 30 управления управляет работой повышающего/понижающего преобразователя 12 и инвертора 14 на основании заданного значения Trqcom вращающего момента, индицируемого сигналом, получаемым из внешнего электронного блока управления (ЭБУ верхнего уровня, не показан), напряжения Vb аккумуляторной батареи, измеряемого датчиком 10 напряжения, системного напряжения VH, измеряемого датчиком 13 напряжения, токов iv электродвигателя, индицируемых посредством сигналов из датчиков 24 тока, и угла θ поворота, индицируемого посредством сигналов из датчика 25 скорости вращения, таким образом, что электродвигатель M1 переменного тока вырабатывает вращающий момент, соответствующий заданному значению Trqcom вращающего момента, в соответствии с описанным далее способом. То есть, блок 30 управления вырабатывает сигналы S1 и S2 управления переключением для регулирования повышающего/понижающего преобразователя 12 вышеописанным образом и сигналы S3-S8 управления переключением для регулирования инвертора 14 вышеописанным образом, и выводит сигналы S1 и S2 в повышающий/понижающий преобразователь 12, а сигналы S3-S8 в инвертор 14.

[0049] Во время выполнения повышающим/понижающим преобразователем 12 операции повышения блок 30 управления регулирует выходное напряжение VH из сглаживающего конденсатора С0 по принципу обратной связи и вырабатывает сигналы S1 и S2 управления переключением, на основании которых выходное напряжение VH согласуется с заданным значением напряжения.

[0050] При получении из внешнего электронного блока управления (ЭБУ) сигнала RGE, который указывает, что гибридное транспортное средство или электромобиль переводится в режим регенеративного торможения, блок 30 управления вырабатывает сигналы S3-S8 управления переключ