Дросселирование мощности на обратной линии в системе беспроводной связи с многими несущими

Иллюстрации

Показать все

Заявленное изобретение относится к системам беспроводной связи с многими несущими и. более конкретно, к дросселированию мощности обратной связи. Технический результат заключается в расширении принципа снижения взаимных помех между многочисленными пользователями для увеличения числа пользовательских каналов. Для этого предусмотрен терминал доступа, содержащий блок обработки, память, функционально подсоединенную к блоку обработки, приемные схемы, функционально подсоединенные к блоку обработки, передающие схемы, имеющие усилитель мощности, используемый как в режиме с одной несущей, так и в режиме с многими несущими, причем упомянутые передающие схемы функционально подсоединены к блоку обработки, и блок управления дросселированием, функционально подсоединенный к усилителю мощности, предназначенный для дросселирования мощности для обеспечения достаточной разности между номинальным и максимально допустимым значением для усилителя мощности. 3 н. и 46 з.п. ф-лы, 29 ил.

Реферат

Притязание на приоритет

Настоящая заявка претендует на приоритет предварительной заявки США, озаглавленной «Method and Apparatus for Reverse Link Throttling in a Multi-Carrier Wireless Communication System» (Способ и устройство для дросселирования обратной линии в системе беспроводной связи с многими несущими), имеющей № 60/700532, поданной 18 июля 2005 г., права на которую принадлежат заявителю настоящей заявки, которая в явной форме включена по ссылке в данный документ.

Уровень техники

Область техники

Настоящая заявка на патент относится, в основном, к системам беспроводной связи с многими несущими и, более конкретно, к дросселированию мощности обратной линии.

Уровень техники

Системы 100 связи могут использовать одну частоту несущей или многочисленные частоты несущих. В системах 100 беспроводной связи прямая линия относится к связи от сети 120 доступа (СД) к удаленной станции 106 (или терминалу 106 доступа), тогда как обратная линия относится к связи от удаленной станции 106 к сети 120. (Терминал 106 доступа (ТД) также известен как удаленная станция, мобильная станция или абонентская станция. Также, терминал 106 доступа (ТД) может быть мобильным или стационарным). Каждая линия связи может включать в себя различное количество частот несущих. Пример системы 100 сотовой связи показан на Фиг.1А, где позиции 102А-102G относятся к сотам, позиции 160А-160G относятся к базовым станциям, и позиции 106А-106G относятся к терминалам доступа.

Системой 100 связи может быть система многостанционного доступа с кодовым разделением каналов (CDMA, МДКР), имеющая оверлейную систему с высокой скоростью передачи данных (HDR, ВСПД), такую как заданная в стандарте ВСПД. СД 120 обменивается данными с ТД, а также с любыми другими ТД 106 в системе, посредством радиоинтерфейса. СД 120 включает в себя многочисленные секторы, причем каждый сектор обеспечивает, по меньшей мере, один канал. Канал определяется как набор линий связи для передач между СД 120 и ТД 106 при данном выделении частот. Канал состоит из прямой линии и обратной линии.

Абонентская станция 106 с высокой скоростью передачи данных может обмениваться данными с одной или несколькими базовыми станциями 160 ВСПД, упоминаемыми в данном документе как приемопередатчики 160 модемного пула (MPT, ППМП), через радиоинтерфейс. Терминал 106 доступа передает и принимает пакеты данных через один или несколько приемопередатчиков 160 модемного пула на контроллер 130 базовой станции ВСПД, упоминаемый в данном документе как контроллер 130 модемного пула (MPC, КМП). Приемопередатчики 160 модемного пула и контроллеры 130 модемного пула представляют собой части сети 120 доступа (СД). Сеть 120 доступа может дополнительно соединяться с дополнительными сетями 104 вне сети 120 доступа, такими как корпоративная интрасеть или Интернет, и может транспортировать пакеты данных между каждым терминалом 106 доступа и такими внешними сетями. Терминал 106 доступа, который установил активное соединение канала трафика с одним или несколькими приемопередатчиками 160 модемного пула, называется активным терминалом 106 доступа, и, как считается, находится в состоянии трафика. Терминал 106 доступа, который находится в процессе установления активного соединения канала трафика с одним или несколькими приемопередатчиками 130 модемного пула, как считается, находится в состоянии установления соединения. Терминалом 106 доступа может быть любое устройство передачи данных, которое обменивается данными по беспроводному каналу или по проводному каналу, например, используя волоконно-оптические или коаксиальные кабели. Терминалом 106 доступа может быть любое из нескольких типов устройств, включающих в себя, но не ограничиваясь ими, карту персонального компьютера (ПК), карту CompactFlash, внешний или внутренний модем или беспроводный или проводной телефон. Линия связи, по которой терминал 106 доступа посылает сигналы на приемопередатчик 160 модемного пула, называется обратной линией. Линия связи, по которой приемопередатчик 160 модемного пула посылает сигналы на терминал 106 доступа, называется прямой линией.

Фиг.1В представляет собой упрощенную функциональную блок-схему примерной системы связи МДКР. Контроллер 130 базовой станции может использоваться для обеспечения сопряжения между сетью 104 и всеми базовыми станциями 160, рассредоточенными по географической зоне. Для удобства объяснения показана только одна базовая станция 160. Географическая зона, как правило, подразделяется на меньшие зоны, известные как соты 102. Каждая базовая станция 160 конфигурируется для обслуживания всех абонентских станций 106 в ее соответствующей соте. В некоторых применениях с высоким уровнем трафика сота 102 может быть разделена на секторы, при этом базовая станция 160 обслуживает каждый сектор. В описанном примерном варианте осуществления показаны три абонентские станции 106А-С на связи с базовой станцией 160. Каждая абонентская станция 106А-С может обращаться к сети 104 или устанавливать связь с другими абонентскими станциями 106 при помощи одной или нескольких базовых станций 160 под управлением контроллера 130 базовой станции.

Современные системы связи разработаны так, что дают возможность многочисленным пользователям обращаться к общей среде связи. В технике известны многочисленные методы многостанционного доступа, такие как многостанционный доступ с временным разделением каналов (TDMA, МДВР), многостанционный доступ с частотным разделением каналов (FDMA, МДЧР), многостанционный доступ с пространственным разделением каналов, многостанционный доступ с поляризационным разделением каналов, многостанционный доступ с кодовым разделением каналов (МДКР) и другие подобные методы многостанционного доступа. Принцип многостанционного доступа представляет собой методологию распределения каналов, которая позволяет многочисленным пользователям обращаться к общей линии связи. Распределение каналов может принимать различные формы в зависимости от конкретного метода многостанционного доступа. В качестве примера, в системах МДЧР общий спектр частот разделяется на ряд меньших подполос, и каждому пользователю предоставляется своя собственная подполоса для доступа к линии связи. Альтернативно, в системах МДВР каждому пользователю предоставляется весь спектр частот во время периодически повторяющихся канальных интервалов. В системах МДЧР каждому пользователю предоставляется весь спектр частот на все время, но его передачи различаются посредством использования кода.

В системах связи с многостанционным доступом методы снижения взаимных помех между многочисленными пользователями часто используются для увеличения числа пользовательских каналов. В качестве примера, методы управления мощностью могут использоваться для ограничения мощности передачи каждого пользователя до той, которая необходима для достижения требуемого качества обслуживания. Этот подход гарантирует, что каждый пользователь передает только минимально необходимую мощность, но не выше, таким образом выполняя наименьший возможный вклад в общий шум, наблюдаемый другими пользователями. Эти методы управления мощностью могут стать более сложными в системах связи с многостанционным доступом, поддерживающих пользователей с многоканальными возможностями. В дополнение к ограничению мощности передачи пользователя, распределяемая мощность должна выравниваться между многочисленными каналами таким образом, который оптимизирует рабочие характеристики.

Система управления мощностью может использоваться для снижения взаимных помех между многочисленными абонентскими станциями 106. Система управления мощностью может использоваться для ограничения мощности передачи как по прямой, так и по обратной линиям для достижения требуемого качества обслуживания. Для целей иллюстрации методы вычисления коэффициента усиления описываются с ссылкой на обратную линию, однако, как понятно для специалиста в данной области техники, эти методы вычисления коэффициента усиления в равной степени применимы к прямой линии.

Мощность передачи обратной линии обычно управляется посредством двух контуров управления мощностью. Первым контуром управления мощностью является разомкнутый контур управления. Разомкнутый контур управления предназначен для управления мощностью передачи обратной линии как функции потерь в тракте, влияния загрузки базовой станции 160 и вызванных окружающей средой явлений, таких как быстрое замирание и затенение. Этот процесс оценки разомкнутого контура управления хорошо известен в системах связи МДКР.

Вторым контуром управления мощностью является замкнутый контур управления. Замкнутый контур управления имеет функцию коррекции оценки разомкнутого контура для достижения требуемого отношения сигнал-шум (ОСШ) на базовой станции 160. Это может достигаться посредством измерения мощности передачи обратной линии на базовой станции 160 и обеспечения обратной связи на абонентскую станцию 106 для настройки мощности передачи обратной линии. Сигнал обратной связи может быть в виде команды обратного управления мощностью (ОУМ), которая генерируется посредством сравнения измеренной мощности передачи обратной линии на базовой станции 160, с контрольной точкой управления мощностью. Если измеренная мощность передачи обратной линии ниже контрольной точки, тогда команда повышения ОУМ подается на абонентскую станцию 106 для повышения мощности передачи обратной линии. Если измеренная мощность передачи обратной линии выше контрольной точки, тогда команда понижения ОУМ подается на абонентскую станцию 106 для снижения мощности передачи обратной линии.

Разомкнутый и замкнутый контуры управления могут использоваться для управления мощностью передачи различных канальных структур обратной линии. В качестве примера, в некоторых системах связи МДКР форма волны обратной линии включает в себя канал трафика для переноса услуг передачи речи и данных на базовую станцию 160 и пилотный канал, используемый базовой станцией 160 для когерентной демодуляции речи и данных. В этих системах разомкнутый и замкнутый контуры управления могут использоваться для управления мощностью обратной линии пилотного канала. Чтобы оптимизировать рабочие характеристики, мощность пилотного канала тогда может выравниваться с мощностью канала трафика. Конкретно, каждый канал может расширяться уникальным ортогональным кодом, генерируемым с использованием функций Уолша. Коэффициент усиления затем может применяться к каналу трафика, чтобы поддерживать оптимальное отношение мощностей канала трафика к пилотному каналу.

Этот принцип может быть расширен на дополнительные каналы в форме волны обратной линии. В системах связи МДКР с изменяемой скоростью передачи данных, например, канал управления скоростью передачи данных (УСПД), содержащий сообщение УСПД, в основном, поддерживается передачей обратной линии. В режиме изменяемой скорости передачи данных скорость передачи данных передачи прямой линии определяется сообщением УСПД. Сообщение УСПД обычно основывается на оценке отношения несущая/помеха (ОНП), выполненной на абонентской станции 106. Этот подход обеспечивает механизм эффективной передачи базовой станцией 160 данных прямой линии на максимально возможной высокой скорости передачи. Примерной системой связи МДКР, поддерживающей схему запроса изменяемой скорости передачи данных, является система связи с высокой скоростью передачи данных (ВСПД). Система связи ВСПД типично разработана по согласованию с одним или несколькими стандартами, такими как «cdma2000 High Rate Packet Data Air Interface Specification», Проект 2 по системам 3-го поколения (П2С3П) C.S0024, Версия 2, 27 Октября 2000 г., опубликованными консорциумом, названным «3.sup.rd Generation Partnership Project».

Разомкнутые и замкнутые контуры управления могут использоваться для управления мощностью передачи различных канальных структур обратной линии. Например, в патенте США № 6594501, озаглавленном «Systems and Techniques for Channel Gain Computations», описывается дросселирование или снижения мощности до предварительно определенных отношений мощностей каналов управления скоростью передачи данных (УСПД) и каналов подтверждения приема (ПП) относительно пилотного канала, если полная мощность передачи обратной линии превышает максимально допустимую мощность передатчика.

Сущность изобретения

В виду вышеуказанного, описанные признаки настоящего изобретения, в основном, относятся к одной или нескольким улучшенным системам, способам и/или устройствам для передачи речи.

В одном варианте осуществления заявка на патент содержит терминал доступа, содержащий блок обработки, память, функционально подсоединенную к блоку обработки, приемные схемы, функционально подсоединенные к блоку обработки, передающие схемы, имеющие усилитель мощности (УМ), используемый как в режиме с одной несущей, так и в режиме с многими несущими, причем упомянутые передающие схемы функционально подсоединены к блоку обработки, и блок управления дросселированием, функционально подсоединенный к усилителю мощности, предназначенный для дросселирования мощности для обеспечения достаточной разности между номинальным и максимально допустимым значением для усилителя мощности.

В другом варианте осуществления блок управления дросселированием дополнительно выполнен с возможностью дросселирования мощности по обратной линии, имеющей одну несущую, содержащего этапы дросселирования мощности канала управления источником данных (УИД) вниз до уровня по умолчанию, дросселирования мощности для, по меньшей мере, одного канала УСПД по основной несущей обратной линии (ОЛ) до тех пор, пока не будет достаточной разность между номинальным и максимально допустимым значением для УМ, или пока не будет сброшена мощность канала УСПД, дросселирования мощности для, по меньшей, мере одного канала ПП по основной несущей обратной линии до тех пор, пока не будет достаточной разность между номинальным и максимально допустимым значением для УМ, или пока не будет сброшена мощность канала ПП; и дросселирования одной или нескольких из мощностей пилотного канала, канала передачи данных или канала индикатора обратной скорости передачи (ИОСП) до тех пор, пока не будет достаточной разность между номинальным и максимально допустимым значением.

В другом варианте осуществления блок управления дросселированием дополнительно выполнен с возможностью дросселирования мощности по обратной линии, имеющей многочисленные несущие, содержащего этапы дросселирования мощности одной основной несущей ОЛ и дросселирования мощности, по меньшей мере, одной дополнительной несущей ОЛ, причем этап дросселирования мощности основной несущей ОЛ содержит этапы дросселирования мощности для канала управления источником данных вниз до уровня по умолчанию, дросселирования мощности для, по меньшей мере, одного канала управления скоростью передачи данных, дросселирования мощности для, по меньшей мере, одного канала подтверждения приема и дросселирования одной или нескольких из мощностей пилотного канала, канала передачи данных или канала индикатора обратной скорости передачи, и причем этап дросселирования мощности, по меньшей мере, одной дополнительной несущей обратной линии содержит дросселирование одной или нескольких из мощностей пилотного канала, канала передачи данных или канала индикатора обратной скорости передачи по первой дополнительной несущей, дросселирование одной или нескольких из мощностей канала передачи данных или канала индикатора обратной скорости передачи по второй дополнительной несущей, дросселирование мощности для, по меньшей мере, одного канала управления скоростью передачи данных по второй дополнительной несущей, дросселирование мощности для, по меньшей мере, одного канала подтверждения приема по второй дополнительной несущей; и дросселирование мощности для, по меньшей мере, одного пилотного канала по второй дополнительной несущей.

Краткое описание чертежей

Фиг.1А представляет собой схему системы сотовой связи;

Фиг.1В представляет собой упрощенную функциональную блок-схему примерной абонентской станции, предназначенной для работы в системе связи МДКР;

Фиг.2 представляет собой один пример системы связи, поддерживающей передачи с высокой скоростью передачи данных (ВСПД) и предназначенной для планирования передач многочисленным пользователям;

Фиг.3 представляет собой функциональную блок-схему примерной абонентской станции, предназначенной для работы в системе связи МДКР;

Фиг.4 представляет собой функциональную блок-схему примерного управления коэффициентом усиления передатчика и передатчика из абонентской станции по Фиг.1В;

Фиг.5 представляет собой блок-схему последовательности операций, иллюстрирующую способ снижения мощности, реализуемый посредством управления коэффициентом усиления передатчика по Фиг.4;

Фиг.6 представляет собой блок-схему последовательности операций, иллюстрирующую альтернативный способ снижения мощности, реализуемый посредством управления коэффициентом усиления передатчика по Фиг.4;

Фиг.7 иллюстрирует терминал доступа (ТД) согласно настоящей заявке на патент;

Фиг.8 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, где количество назначенных обратных линий (ОЛ) равно 1;

Фиг.9 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности;

Фиг.10 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, при асимметричном режиме, когда обратная линия имеет одну несущую, и прямая линия имеет многочисленные несущие, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.11 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, когда количество назначенных несущих обратной линии ОЛ больше 1;

Фиг.12 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, при передаче каналов УСПД и ПП по некоторой дополнительной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.13 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, при передаче всех каналов УСПД и ПП по основной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.14 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, когда количество назначенных несущих обратной линии ОЛ больше 1, и ТхТ2Р≤TxT2Pmin для всех несущих ОЛ;

Фиг.15 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, при передаче каналов УСПД и ПП по некоторой дополнительной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.16 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, при передаче каналов УСПД и ПП по некоторой дополнительной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.17 представляет собой блок-схему последовательности операций, описывающую этапы, выполняемые для снижения мощности передачи, вводимой в усилитель мощности, при передаче всех каналов УСПД и ПП по основной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.18 представляет собой пример структуры протокола широкополосного МДКР (ШМДКР), известной в технике;

Фиг.19 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, когда количество назначенных обратных линий (ОЛ) равно 1;

Фиг.20 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности;

Фиг.21 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, при асимметричном режиме, когда обратная линия имеет одну несущую, и прямая линия имеет многочисленные несущие, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.22 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, когда количество назначенных несущих обратной линии ОЛ больше 1;

Фиг.23 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, при передаче каналов УСПД и ПП по некоторым дополнительным несущим обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.24 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, при передаче всех каналов УСПД и ПП по основной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.25 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, когда количество назначенных несущих обратной линии ОЛ больше 1, и ТхТ2Р≤TxT2Pmin для всех несущих ОЛ;

Фиг.26 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, при передаче каналов УСПД и ПП по некоторым дополнительным несущим обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной;

Фиг.27 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, при передаче каналов УСПД и ПП по некоторым дополнительным несущим обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной; и

Фиг.28 представляет собой функциональную блок-схему, иллюстрирующую средство снижения мощности передачи, вводимой в усилитель мощности, при передаче всех каналов УСПД и ПП по основной несущей обратной линии, и разность между номинальным и максимально допустимым значением для УМ не является достаточной.

Подробное описание

Подробное описание, изложенное ниже в связи с прилагаемыми чертежами, подразумевается как описание примерных вариантов осуществления настоящего изобретения и не предназначено для представления единственных вариантов осуществления, в которых может быть осуществлено на практике настоящее изобретение. Термин «примерный», используемый в данном описании, означает «служащий в качестве примера, образца или иллюстрации» и не должен обязательно толковаться как предпочтительный или выгодный по отношению к другим вариантам осуществления. Подробное описание включает в себя конкретные подробности с целью обеспечения полного понимания настоящего изобретения. Однако для специалиста в данной области техники очевидно, что настоящее изобретение может быть осуществлено на практике без этих конкретных подробностей. В некоторых случаях, общеизвестные конструкции и устройства показаны в виде блок-схемы, чтобы избежать затруднения понимание сущности настоящего изобретения.

В примерном варианте осуществления системы связи система управления мощностью может использоваться для увеличения количества пользователей, которые могут поддерживаться системой. Для этих пользователей с многоканальной возможностью методы вычисления коэффициента усиления могут использоваться для выравнивания относительной мощности передачи между каналами. Вычисления коэффициента усиления могут выполняться посредством процесса оценки мощности, который управляет мощностью передачи для одного или нескольких каналов. В случае, когда полная мощность передачи превышает ограничения на мощность пользователя, может использоваться процедура систематического снижения мощности для снижения коэффициента усиления одного или нескольких каналов.

Различные аспекты этих методов вычисления коэффициента усиления описываются в контексте системы связи МДКР, однако для специалиста в данной области техники понятно, что методы вычисления коэффициента усиления многочисленных каналов аналогичным образом применимы для использования в различных других средах связи. Следовательно, любая ссылка на систему связи МДКР предназначена только для иллюстрации обладающих признаками изобретения аспектов настоящего изобретения с пониманием, что такие обладающие признаками изобретения аспекты имеют широкую область применений.

МДКР представляет собой схему модуляции и многостанционного доступа, основанную на связи с расширенным спектром. В системе связи МДКР большое количество сигналов совместно используют один и тот же спектр частот и, в результате, обеспечивают увеличение числа пользовательских каналов. Это достигается посредством передачи каждого сигнала с различным кодом псевдослучайного шума (ПШ), который модулирует несущую, и, таким образом, расширяет спектр формы волны сигнала. Передаваемые сигналы разделяются в приемнике при помощи коррелятора, который использует соответствующий ПШ-код для сужения спектра требуемого сигнала. Нежелательные сигналы, ПШ-коды которых не совпадают, не сужаются по полосе частот и только способствуют образованию шума.

Для передач данных СД 120 принимает запрос данных от ТД 106. Запрос данных задает скорость передачи данных, с которой должны посылаться данные, длительность передаваемого пакета данных и сектор, из которого должны посылаться данные. ТД 106 определяет скорость передачи данных, основываясь на качестве канала между СД 120 и ТД 106. В одном варианте осуществления качество канала определяется отношением несущая/помеха (ОНП). Альтернативные варианты осуществления могут использовать другие метрики, соответствующие качеству канала. ТД 106 обеспечивают запросы на передачу данных посредством посылки сообщения управления скоростью передачи данных по заданному каналу, упоминаемому как канал УСПД. Сообщение УСПД включает в себя часть скорости передачи данных и часть сектора. Часть скорости передачи данных указывает запрашиваемую скорость передачи данных, с которой СД 120 должна посылать данные, и сектор указывает сектор, из которого СД 120 должна посылать данные. Информация как о скорости передачи данных, так и о секторе обычно требуется для обработки передачи данных. Часть скорости передачи данных упоминается как значение УСПД, и часть сектора упоминается как покрытие УСПД. Значение УСПД представляет собой сообщение, посылаемое на СД 120 по радиоинтерфейсу. В одном варианте осуществления каждое значение УСПД соответствует скорости передачи данных в кбит/с, имеющей связанную с ней длительность пакета в соответствии с предварительно определенным назначением значения УСПД. Назначение включает в себя значение УСПД, задающее нулевую скорость передачи данных. На практике, нулевая скорость передачи данных указывает СД 120, что ТД 106 не может принимать данные. В одной ситуации, например, качество канала является недостаточным для точного приема ТД 106 данных.

В работе ТД 106 может непрерывно контролировать качество канала для вычисления скорости передачи данных, на которой ТД 126 может принимать следующую передачу пакета данных. ТД 106 затем генерирует соответствующее значение УСПД; значение УСПД передается на СД 120 для запроса передачи данных. Отметьте, что обычно передачи данных разделяются на пакеты. Время, необходимое для передачи пакета данных, является функцией применяемой скорости передачи данных.

Этот сигнал УСПД также обеспечивает информацию, которую планировщик 132 каналов (см. ниже) использует для определения мгновенной скорости передачи для потребления информации (или приема переданных данных) для каждой из удаленных станций 106, связанной с каждым списком очередности. Согласно варианту осуществления сигнал УСПД, передаваемый с любой удаленной станции 106, указывает, что удаленная станция 106 может принимать данные на любой одной из многочисленных действительных скоростей передачи данных.

Один пример системы 100 связи, поддерживающей передачи ВСПД и предназначенной для планирования передач многочисленным пользователям, изображен на Фиг.2. Фиг.2 подробно описывается ниже в данном документе, на которой конкретно, базовая станция 160 и контроллер 130 базовой станции выполняют сопряжение с интерфейсом 146 пакетной сети. Контроллер 130 базовой станции включает в себя планировщик 132 каналов для реализации алгоритма планирования для передач в системе 100 связи. Планировщик 132 каналов определяет длительность интервала обслуживания, во время которого данные должны передаваться на любую конкретную удаленную станцию 106, основываясь на связанной с ней мгновенной скорости передачи удаленной станции 160 для приема данных (как указано в принятом последнем сигнале УСПД). Интервал обслуживания может не быть непрерывным во времени, но может происходить один раз каждые n канальных интервалов. Согласно одному варианту осуществления первая часть пакета передается во время первого канального интервала в первый момент времени, и вторая часть передается позже через 4 канальных интервала в последующий момент времени. Также, любые последующие части пакета передаются в многочисленных канальных интервалах, имеющих подобное расширение на 4 канальных интервала, т.е. через 4 канальных интервала друг от друга. Согласно варианту осуществления мгновенная скорость приема данных Ri определяет длительность Li интервала обслуживания, связанную с конкретным списком очередности данных.

Кроме того, планировщик 132 каналов выбирает конкретный список 172 очередности данных для передачи. Ассоциированное количество данных, подлежащих передаче, затем извлекается из списка 172 очередности данных и подается на канальный элемент 168 для передачи на удаленную станцию 106, связанную со списком 172 очередности данных. Как описано ниже, планировщик 132 каналов выбирает список 172 очередности для предоставления данных, которые передаются в последующем интервале обслуживания, используя информацию, включающую в себя весовой коэффициент, связанный с каждым из списков 172 очередности. Затем обновляется весовой коэффициент, связанный с переданным списком 172 очередности.

Контроллер 130 базовой станции выполняет сопряжение с интерфейсом 146 пакетной сети, телефонной коммутируемой сетью 148 общего пользования (ТфОП) и всеми базовыми станциями 160 в системе 100 связи (для простоты на Фиг.2 показана только одна базовая станция 160). Контроллер 130 базовой станции координирует связь между удаленными станциями 106 в системе 100 связи и другими пользователями, подключенными к интерфейсу 146 пакетной сети и ТфОП 148. ТфОП 148 выполняет сопряжение с пользователями при помощи стандартной телефонной сети (не показана на Фиг.2).

Контроллер 130 базовой станции содержит многочисленные селекторные элементы 136, хотя для упрощения на Фиг.2 показан только один. Каждый селекторный элемент 136 назначен для управления связью между одной или несколькими базовыми станциями 160 и одной удаленной станцией 106 (не показана). Если селекторный элемент 136 не был назначен данной удаленной станции 106, процессор 141 управления вызовом информируется о необходимости посылки поискового вызова на удаленную станцию 106. Процессор 141 управления вызовом затем предписывает базовой станции 160 послать поисковый вызов на удаленную станцию 106.

Источник 122 данных содержит количество данных, которое должно быть передано на данную удаленную станцию 106. Источник 122 данных подает данные на интерфейс 146 пакетной сети. Интерфейс 146 пакетной сети принимает данные и направляет данные на селекторный элемент 136. Селекторный элемент 136 затем передает данные на каждую базовую станцию 160, находящуюся на связи с целевой удаленной станцией 106. В примерном варианте осуществления каждая базовая станция 160 сопровождает список 172 очередности данных, который хранит данные, подлежащие передаче на удаленную станцию 106.

Данные передаются в пакетах данных из списка 172 очередности данных на канальный элемент 168. В примерном варианте осуществления на прямой линии «пакет данных» ссылается на количество данных, которое равно максимум 1024 битов, и на количеству данных, подлежащих передаче на удаленную станцию 106 назначения в пределах предварительно определенного «канального интервала» (например, ≈1,667 мс). Для каждого пакета данных канальный элемент 168 вставляет необходимые поля управления. В примерном варианте осуществления канальный элемент 168 выполняет кодирование циклическим избыточным контролем (ЦИК) пакета данных и полей управления и вставляет набор кодовых хвостовых битов. Пакет данных, поля управления, биты проверки на четность ЦИК и кодовые хвостовые биты составляют отформатированный пакет. В примерном варианте осуществления канальный элемент 168 затем кодирует отформатированный пакет и перемежает (или переупорядочивает) символы в кодированном пакете. В примерном варианте осуществления пакет с перемежением маскируется кодом Уолша и его спектр расширяется короткими кодами псевдослучайной синфазной последовательности (ПСП) и псевдослучайной квадратурной последовательности (ПКП). Данные с расширенным спектром подаются на радиочастотный (РЧ) блок 170, который выполняет квадратурную модуляцию, фильтрует и усиливает сигнал. Сигнал прямой линии передается по эфиру при помощи антенны 165 по прямой линии.

На удаленной станции 106 сигнал прямой линии принимается антенной и направляется на приемник 408. Приемник 408 фильтрует, усиливает, выполняет квадратурную демодуляцию и квантует сигнал. Оцифрованный сигнал подается на демодулятор (DEMOD) 256, где его спектр сужается при помощи коротких кодов ПСП и ПКП и демаскируется посредством защиты Уолша. Демодулированные данные подаются на декодер 258, который выполняет функции обработки сигнала в обратной последовательности, относительно той, которая была выполнена на базовой станции 160, конкретно, функции деперемежения, декодирования и проверки ЦИК. Декодированные данные подаются на приемник данных.

Аппаратные средства, как указано выше, поддерживают передачи с изменяемой скоростью передачи данных, сообщений, речи, видео и других видов передач информации по прямой линии. Скорость передачи данных, передаваемых из списка 172 очередности данных, изменяется, приспосабливаясь к изменениям интенсивности сигнала и шумовой среде на удаленной станции 106. Каждая из удаленных станций 106 предпочтительно передает сигнал УСПД на связанную с ней базовую станцию 160 в каждом канальном интервале. Сигнал УСПД подает информацию на базовую станцию 160, которая включает в себя идентификацию удаленной станции 106 и скорость передачи, с которой удаленная станция 106 должна принимать данные из связанного с ней списка 172 очередности данных. Следовательно, схемы на удаленной станции 106 измеряют интенсивность сигнала и оценивают шумовую среду на удаленной станции 106 для определения информации о скорости передачи, подлежащей передаче в сигнале УСПД.

Сигнал УСПД, передаваемый каждой удаленной станцией 106, проходит по каналу обратной линии и принимается на базовой станции 160 при помощи приемной антенны 165, подсоединенной к РЧ-блоку 170. В примерном варианте осуществления, информация об УСПД демодулируется в канальном элементе 168 и подается на планировщик 174 каналов, расположенны