Схема электропитания и система электропитания

Иллюстрации

Показать все

Предусмотрена схема электропитания, которую можно применять повсеместно без использования переключающего элемента с высоким выдерживаемым напряжением, и которая может выдавать стабильную мощность на нагрузочное устройство. Блок (14) зарядки размещен между запирающим конденсатором (С4) и нагрузочной катушкой (L2). Блок (14) зарядки имеет анод, подключенный к положительному выводу катушки обратной связи (L3), и катод, подключенный к катоду стабилитрона (Z1). Таким образом, при высоком напряжении в сети (Е) электропитания общего использования работает блок (14) зарядки, при этом запирающий конденсатор (С4) быстро заряжается, период открытого состояния транзистора (Q1) сокращается, что обеспечивает технический результат - препятствует подаче избыточного напряжения между стоком и истоком транзистора (Q1). В то же время обеспечивается плоская выходная характеристика, обозначающая соотношение между напряжением в сети (Е) электропитания общего использования и током, протекающим в нагрузочном устройстве. 2 н. и 8 з.п. ф-лы, 17 ил.

Реферат

Область техники

Настоящее изобретение относится к схеме электропитания автоколебательного типа и системе электропитания.

Уровень техники

В последние годы люди все чаще ездят заграницу, что обуславливает необходимость в разработке устройства электропитания, которое можно использовать не только в своей стране, но и в зарубежных странах, где напряжение электропитания общего пользования отличается от напряжения в своей стране, т.е. источника питания, который можно применять повсеместно для зарядки приборов, таких как электробритвы, электрические зубные щетки и т.д.

На фиг.17 показана принципиальная схема традиционного устройства электропитания, описанного в патентном документе 1. Устройство электропитания, показанное на фиг.17, представляет собой устройство электропитания автоколебательного типа, которое действует, как описано ниже. Сначала, когда блок электропитания E0 подключается, мощность поступает на конденсатор C20 через резистор смещения R80, в результате чего конденсатор C20 заряжается, и напряжение затвора VG FET1 возрастает. Затем, когда напряжение VG превышает пороговое напряжение FET1, FET1 отпирается, и протекает ток ID. Когда ток ID возрастает и R40xID превышает пороговое напряжение транзистора Tr10, транзистор Tr10 отпирается, разряжая ёмкость затвора FET1. Поэтому напряжение VG убывает, FET1 начинает запираться, и ток IL1 катушки также начинает убывать. Это приводит к тому, что напряжение VG быстро убывает вследствие напряжения, индуцированного в обмотке L30 обратной связи, и FET1 полностью запирается.

Когда FET1 запирается, резонансная схема, состоящая из конденсатора C10 и первичной обмотки L10, находится в состоянии свободных колебаний, и напряжение VG превышает пороговое напряжение FET1, опять же, благодаря току IL1 катушки, что приводит к повторному отпиранию FET1. Таким образом, операции запирания и отпирания FET1 повторяются, в результате чего мощность поступает на нагрузку E20.

Затем, поскольку напряжение ID ·R40 на резисторе R40 преобладает над FET1, т.е. благодаря току ID, избыточный ток не будет протекать даже в переходном состоянии, то напряжение VG не будет чрезмерно уменьшаться, и колебания в резонансной схеме будут стабилизироваться.

Кроме того, устройство электропитания типа RCC (преобразователь с ударным возбуждением дросселя) раскрыто в патентном документе 2 в качестве уровня техники настоящего изобретения.

Однако, поскольку устройство электропитания в патентном документе 1 не приспособлено для повсеместного применения, когда оно используется в странах или регионах, где напряжение в блоке E0 электропитания велико, напряжение стока-истока FET1 становится слишком большим, что приводит к проблеме необходимости наличия у FET1 большого выдерживаемого напряжения стока-истока.

С другой стороны, поскольку переключающееся устройство электропитания патентного документа 2, относится к типу RCC, его переключающий элемент действует в режиме жесткого переключения и, в результате этого, возникает проблема, состоящая в том, что будет генерироваться больше шума, и потеря мощности будет возрастать. Кроме того, поскольку переключающееся устройство электропитания, раскрытое в патентном документе 2 относится к типу RCC, и поэтому напряжение стока-истока переключающего элемента не будет возрастать до уровня резонансного типа, даже когда оно используется в странах или регионах, где напряжение в сети электропитания велико, нет необходимости в снижении напряжения стока-истока переключающего элемента. Поэтому вышеописанная проблема, которая возникает в устройствах электропитания автоколебательного типа, не будет возникать.

Задачей настоящего изобретения является обеспечение схемы электропитания и системы электропитания, которые можно применять повсеместно без использования переключающего элемента, имеющего большое выдерживаемое напряжение, и которые могут выдавать стабильную мощность на нагрузочные устройства.

Патентный документ 1: выложенная патентная заявка Японии № 08-80042.

Патентный документ 2: выложенная патентная заявка Японии № 10-98880.

Раскрытие изобретения

Схема электропитания согласно настоящему изобретению выполнена с возможностью автоколебания за счет подачи мощности от блока электропитания, причем схема электропитания отличается тем, что содержит: резонансный блок, включающий в себя резонансный конденсатор и резонансную катушку, и для подачи мощности на нагрузочное устройство; колебательный блок, включающий в себя первый переключающий элемент, подключенный последовательно к резонансному блоку, и катушку обратной связи, магнитно связанную с резонансной катушкой, и для отпирания и запирания первого переключающего элемента, вызывающего автоколебание резонансного блока; блок выключения, включающий в себя второй переключающий элемент, и запирающий конденсатор, подключенный между управляющим выводом второго переключающего элемента и отрицательным электродом блока электропитания, в котором, когда ток открытого состояния, который протекает, когда первый переключающий элемент открыт, достигает заранее определенного уровня, второй переключающий элемент отпирается, что приводит к запиранию первого переключающего элемента; и первый блок зарядки, включающий в себя диод, анод которого подключен к стороне катушки обратной связи, и стабилитрон, катод которого подключен к катоду диода, и анод которого подключен к стороне запирающего конденсатора.

Согласно этой конфигурации, предусмотрен первый блок зарядки, включающий в себя диод для задержки протекания тока к катушке обратной связи от запирающего конденсатора, и стабилитрон, который действует, когда напряжение катушки обратной связи превышает фиксированное значение, между катушкой обратной связи и запирающим конденсатором. В результате этого, когда блок электропитания выдает большое напряжение, напряжение на катушке обратной связи превышает фиксированное значение, и первый блок зарядки действует, тем самым подавая ток на запирающий конденсатор. Благодаря этому запирающий конденсатор заряжается током открытого состояния первого переключающего элемента и током, подаваемым от первого блока зарядки, в течение периода открытого состояния первого переключающего элемента, для быстрого отпирания второго переключающего элемента и быстрого запирания первого переключающего элемента. В результате, период открытого состояния первого переключающего элемента сокращается, что приводит к снижению энергии, запасенной в резонансном блоке, что позволяет подавлять рост выходного тока, подлежащего пропусканию через нагрузочное устройство. Благодаря этой конфигурации, выходная характеристика, которая указывает соотношение между напряжением, выдаваемым блоком электропитания и выходным током, протекающим через нагрузочное устройство, когда выходное напряжение представлено на оси абсцисс, и выходной ток представлен на оси ординат, становится выравненной, что позволяет обеспечить повсеместно применимую схему электропитания.

Кроме того, поскольку при высоком напряжении, выдаваемом блоком электропитания, запирающий конденсатор будет быстро заряжаться благодаря действию первого блока зарядки, период открытого состояния первого переключающего элемента сокращается, что позволяет предотвращать подачу избыточного напряжения на первый переключающий элемент.

Кроме того, поскольку первый блок зарядки содержит диод для задерживания протекания тока из запирающего конденсатора в катушку обратной связи, величину заряда, накапливаемого в запирающем конденсаторе при отпирании первого переключающего элемента, можно сделать постоянной, и, таким образом, время зарядки запирающего конденсатора становится постоянным, что позволяет поддерживать период открытого состояния первого переключающего элемента постоянным и, таким образом, выдавать стабильную мощность на нагрузочное устройство.

Краткое описание чертежей

Фиг.1 - принципиальная схема системы электропитания, согласно варианту осуществления 1 настоящего изобретения.

Фиг.2 - временная диаграмма системы электропитания, показанной на фиг.1, где (A) показывает напряжение стока-истока транзистора Q1, (B) - ток стока, (C) - напряжение катушки обратной связи, (D) - напряжение база-эмиттер запирающего транзистора Tr, и (E) - ток коллектора запирающего транзистора Tr.

Фиг.3 - график, демонстрирующий выходную характеристику настоящей системы электропитания, где ось ординат указывает выходной ток, и ось абсцисс указывает входное напряжение.

Фиг.4 - принципиальная схема системы электропитания согласно варианту осуществления 2 настоящего изобретения.

Фиг.5 - принципиальная схема системы электропитания согласно варианту осуществления 3 настоящего изобретения.

Фиг.6 - график, демонстрирующий выходную характеристику настоящей системы электропитания, где ось ординат указывает выходной ток, и ось абсцисс указывает входное напряжение.

Фиг.7 - принципиальная схема системы электропитания, согласно варианту осуществления 4 настоящего изобретения.

Фиг.8 - принципиальная схема системы электропитания, согласно варианту осуществления 5 настоящего изобретения.

Фиг.9 - принципиальная схема системы электропитания, согласно варианту осуществления 6 настоящего изобретения.

Фиг.10 - принципиальная схема системы электропитания, согласно варианту осуществления 7 настоящего изобретения.

Фиг.11 - принципиальная схема системы электропитания, согласно варианту осуществления 8 настоящего изобретения.

Фиг.12 - диаграмма формы волны сигнала зарядки и тока зарядки, где (A) показывает диаграмму формы волны сигнала зарядки и тока зарядки в ходе нормальной зарядки, и (B) показывает диаграмму формы волны, когда среднее значение тока зарядки должно быть меньше, чем в ходе нормальной зарядки (при снижении выходной мощности).

Фиг.13 - принципиальная схема системы электропитания, согласно варианту осуществления 9 настоящего изобретения.

Фиг.14 - принципиальная схема системы электропитания, согласно варианту осуществления 10 настоящего изобретения.

Фиг.15 - принципиальная схема системы электропитания, согласно варианту осуществления 11 настоящего изобретения.

Фиг.16 - принципиальная схема системы электропитания, согласно варианту осуществления 11 настоящего изобретения.

Фиг.17 - принципиальная схема традиционного устройства электропитания, описанного в патентном документе 1.

Наилучший вариант выполнения изобретения

В дальнейшем будет описана система электропитания, согласно вариантам осуществления настоящего изобретения.

(Вариант осуществления 1)

На фиг.1 показана принципиальная схема системы электропитания, согласно варианту осуществления 1 настоящего изобретения. Система электропитания содержит схему 10 электропитания и нагрузочное устройство 20. Схема 10 электропитания содержит резонансный блок 11, колебательный блок 12, блок выключения 13, блок зарядки 14 (первый блок зарядки) и блок 15 электропитания.

Резонансный блок 11 содержит резонансную катушку L1 и резонансный конденсатор C3, которые подключены параллельно, и подает мощность на нагрузочное устройство.

Резонансный блок 12 содержит катушку L3 обратной связи, конденсатор C2, резистор R2 и транзистор Q1 (первый переключающий элемент), и резистор R4, и вызывает автоколебание резонансного блока 11. Катушка L3 обратной связи магнитно связана с резонансной катушкой L1, благодаря чему вывод со стороны затвора транзистора Q1 имеет положительную полярность. Поэтому вывод со стороны затвора транзистора Q1 катушки L3 обратной связи называется положительным выводом, и вывод, противоположный положительному выводу, называется отрицательным выводом. Отрицательный вывод катушки L3 обратной связи подключен к отрицательному электроду T1 блока 15 электропитания. Один конец резонансной катушки L1 подключен к стоку транзистора Q1.

Транзистор Q1 представляет собой n-канальный полевой транзистор, сток которого подключен к резонансному блоку 11, исток которого подключен к блоку 13 выключения, и затвор которого (управляющий вывод) подключен к положительному выводу катушки L3 обратной связи через резистор R2 и конденсатор C2. Кроме того, между затвором и истоком транзистора Q1 подключен резистор R4, препятствующий выводу на затвор избыточного напряжения.

Конденсатор C2 одним концом подключен к отрицательному электроду T1 блока электропитания 15 через катушку L3 обратной связи и другим концом - к затвору транзистора Q1 через резистор R2. Таким образом, протекание тока от пускового резистора R1 к катушке L3 обратной связи блокируется конденсатором C2 и резистором R2.

Блок 13 выключения содержит запирающий транзистор Tr (второй переключающий элемент), запирающий конденсатор C4 и резисторы R5 и R6, и сконфигурирован так, что запирающий конденсатор C4 заряжается током стока (током открытого состояния), который протекает, когда транзистор Q1 отпирается и когда напряжение запирающего конденсатора C4 превышает пороговое напряжение запирающего транзистора Tr, запирающий транзистор Tr отпирается, вызывая запирание транзистора Q1.

Запирающий конденсатор C4 одним концом подключен к отрицательному электроду T1 и другим концом - к базе (управляющему выводу) запирающего транзистора Tr.

Запирающий транзистор Tr представляет собой биполярный транзистор npn-типа, эмиттер которого подключен к отрицательному электроду T1 блока 15 электропитания, запирающий конденсатор C4 подключен параллельно между базой и эмиттером, и коллектор подключен к положительному электроду T2 блока 15 электропитания через пусковой резистор R1. Затем запирающий транзистор Tr отпирается, когда напряжение запирающего конденсатора C4 превышает пороговое напряжение, благодаря чему ёмкость затвора транзистора Q1 разряжается, тем самым вызывая запирание транзистора Q1. Это позволяет предотвращать протекание избыточного тока стока в транзистор Q1 и, таким образом, защищать транзистор Q1.

Резистор R6 одним концом подключен к отрицательному электроду T1 и другим концом - к базе транзистора Tr через резистор R5 и сконфигурирован так, что напряжение в ответ на ток стока, который протекает, когда транзистор Q1 отпирается, выводится на запирающий конденсатор C4 через резистор R5, тем самым заряжая запирающий конденсатор C4.

Блок зарядки 14 содержит диод D1, стабилитрон Z1 и резистор R3 и выполнен с возможностью работы, когда напряжение, превышающее фиксированное значение, выводится из блока 15 электропитания, для зарядки запирающего конденсатора C4. Диод D1 подключен своим анодом к положительному выводу L3 катушки обратной связи. Стабилитрон Z1 своим катодом подключен к катоду диода D1 и своим анодом - к запирающему конденсатору C4 через резистор R3.

Блок 15 электропитания выполнен схемой 151 выпрямителя и конденсатора C1 и предназначен для преобразования переменного напряжения из сети E электропитания общего использования в напряжение постоянного тока. Сеть E электропитания общего использования выдает переменное напряжение с амплитудой от 80 до 246 В. Схема 151 выпрямителя выполнена, например, схемой диодного моста и обеспечивает двухполупериодное выпрямление переменного напряжения, выводимого из сети E электропитания общего использования. Конденсатор C1 выполнен, например, электролитическим конденсатором и осуществляет сглаживание напряжения, полученного двухполупериодным выпрямлением, осуществляемым схемой 151 выпрямителя для создания напряжения постоянного тока.

Нагрузочное устройство 20 содержит нагрузочную катушку L2, конденсатор C5, подключенный параллельно к нагрузочной катушке L2, диод D2, анод которого подключен к конденсатору C5, и вторичную батарею 21, положительный электрод которой подключен к катоду диода D2, и отрицательный электрод которой подключен к конденсатору C5.

Нагрузочная катушка L2 магнитно связана с резонансной катушкой L1, поэтому отрицательная сторона электрода вторичной батареи 21 имеет положительную полярность. Здесь, резонансная катушка L1 и нагрузочная катушка L2 соединены бесконтактным способом через изолятор, который не показан на фигуре. Заметим, что резонансная катушка L1 и нагрузочная катушка L2 образуют трансформатор, в котором резонансная катушка L1 служит первичной обмоткой, и нагрузочная катушка L2 служит вторичной обмоткой.

Конденсатор C5 осуществляет сглаживание напряжения, выводимого из нагрузочной катушки L2, и диод D2 выпрямляет напряжение, выводимое из нагрузочной катушки L2. В результате этого, во вторичную батарею 21 протекает постоянный ток зарядки. Вторичная батарея 21 выполнена литий-ионной вторичной батареей, никель-кадмиевой вторичной батареей и т.п.

Теперь будет описана работа системы электропитания, показанной на фиг.1. На фиг.2 представлена временная диаграмма системы электропитания, показанной на фиг.1, где (A) показывает напряжение стока-истока транзистора Q1, (B) - ток стока, (C) - напряжение на катушке L3 обратной связи, (D) - напряжение между база-эмиттер запирающего транзистора Tr, и (E) - ток коллектора запирающего транзистора Tr. Далее, работа настоящей системы электропитания будет описана со ссылкой на принципиальную схему, показанную на фиг.1, и временную диаграмму, показанную на фиг.2.

Напряжение переменного тока от 80 до 264 В, выводимое от сети E электропитания общего использования, выпрямляется схемой 151 выпрямителя и сглаживается конденсатором C1 для получения напряжения постоянного тока от 113 до 374 В. Когда напряжения катушки L3 обратной связи и конденсатора C1 возрастают, ток протекает через пусковой резистор R1, и напряжение начинает подаваться на затвор транзистора Q1. Когда напряжение затвора транзистора Q1 превышает пороговое напряжение транзистора Q1, транзистор Q1 отпирается (в момент времени TM1), и ток начинает протекать в резонансный конденсатор C3 и резонансную катушку L1.

В этот момент, как показано на фиг.2(B), ток стока начинает протекать в транзисторе Q1, и ток начинает протекать в резонансной катушке L1. Когда ток начинает протекать в резонансной катушке L1, напряжение генерируется в катушке L3 обратной связи, также магнитно связанной с резонансной катушкой L1, и транзистор Q1 поддерживается в открытом состоянии вследствие направленного свойства резонансной катушки L1. Кроме того, когда транзистор Q1 отпирается, напряжение начинает генерироваться благодаря току стока в резисторе R6, и запирающий конденсатор C4 заряжается.

В то же время положительное напряжение возникает на положительном выводе катушки L3 обратной связи, и когда напряжение в сети E электропитания общего использования превышает фиксированное значение, блок 14 зарядки действует, заставляя ток протекать в запирающий конденсатор C4 через диод D1, стабилитрон Z1 и резистор R3, тем самым заряжая запирающий конденсатор C4. Таким образом, можно быстро открывать запирающий транзистор Tr, поскольку запирающий конденсатор C4 заряжается напряжением, генерируемым на блоке 14 зарядки и резисторе R6.

Когда напряжение запирающего конденсатора C4 возрастает до порогового напряжения запирающего транзистора Tr (в момент времени TM2), запирающий транзистор Tr отпирается, тем самым разряжая ёмкость затвора транзистора Q1, и транзистор Q1 запирается (в момент времени TM3).

В этот момент, благодаря наличию запирающего конденсатора C4, запирающий транзистор Tr поддерживает открытое состояние в течение некоторого времени, пока не наступит момент TM4, и отрицательное напряжение не возникнет на положительном выводе катушки L3 обратной связи, при котором транзистор Q1 поддерживает закрытое состояние. В этот момент ток, протекающий в резонансной катушке L1, поступает на резонансный конденсатор C3, и начинается резонанс, между индуктивностью рассеяния резонансной катушки L1 и резонансным конденсатором C3, благодаря чему напряжение стока-истока транзистора Q1 изменяется согласно кривой выпуклостью вверх, как показано на фиг.2(A). Кроме того, вместе с этим, напряжение на катушке L3 обратной связи изменяется кривой выпуклостью вниз.

Кроме того, в настоящем варианте осуществления, резонансная катушка L1 и нагрузочная катушка L2 тесно связаны и образуют индуктивность возбуждения и индуктивность рассеяния в резонансной катушке L1. Спустя короткое время после наступления резонанса, положительное напряжение возникает на положительном выводе катушки L3 обратной связи, благодаря чему транзистор Q1 вновь отпирается (в момент времени TM5). Заметим, что ёмкость запирающего конденсатора C4 и значения сопротивления резисторов R5, R6 определены таким образом, чтобы заряд, накопленный в запирающем конденсаторе C4, целиком или определенная его часть, разряжался через резистор R5 и резистор R6 в период открытого состояния транзистора Q1, когда транзистор Q1 отпирается.

На фиг.3 показан график, демонстрирующий выходную характеристику настоящей системы электропитания, где ось ординат указывает выходной ток, и ось абсцисс указывает входное напряжение. График сплошной линией указывает выходную характеристику, когда блок 14 зарядки используется, и график пунктирной линией указывает выходную характеристику, когда блок 14 зарядки не используется. Выходной ток указывает ток зарядки, который протекает во вторичной батарее 21 нагрузочного устройства 20, и входное напряжение указывает выводимое напряжение в сети E электропитания общего использования. Кроме того, E1 указывает напряжение в сети E электропитания общего использования, когда напряжение, соответствующее порогу, на котором блок 14 зарядки начинает работать, подается на положительный вывод катушки L3 обратной связи.

Обозначим число витков резонансной катушки L1 как N1, число витков катушки L3 обратной связи как N3, и напряжение, выводимое сетью E электропитания общего использования, как E, и предусмотрим, что резонансная катушка L1 и катушка L3 обратной связи полностью связаны, на катушке L3 обратной связи возникает напряжение ExN3/N1. Затем, когда напряжение (ExN3/N1), возникающее на катушке L3 обратной связи, оказывается выше, чем напряжение пробоя VZ1 стабилитрона Z1, блок зарядки 14 начинает работать.

В результате этого ток зарядки, который предположительно возрастает согласно пунктирной линии на фиг.3, подавляется, что показано сплошной линией, поэтому увеличение тока зарядки значительно подавляется в диапазоне напряжений, превышающих E1. Таким образом, хотя, при возрастании напряжения в сети E электропитания общего использования ток, который протекает в блоке 14 зарядки, возрастает, это приводит к сокращению периода открытого состояния транзистора Q1 и, таким образом, уменьшению энергии, запасенной в резонансном блоке 11 в течение периода открытого состояния, что позволяет подавлять рост выходного тока. Заметим, что, поскольку градиент выходного тока в диапазоне высоких напряжений, показанный на фиг.3, можно регулировать путем регулировки значения сопротивления резистора R3, можно сделать так, чтобы выходной ток оставался, по существу, постоянным или немного снижался, как показано на фиг.6.

Теперь рассмотрим случай, когда блок 14 зарядки не содержит диод D1. В этом случае, поскольку отрицательное напряжение возникает в катушке L3 обратной связи, как показано на фиг.2(C), в течение периода закрытого состояния транзистора Q1, заряд запирающего конденсатора C4 также будет разряжаться в катушку L3 обратной связи. Затем, поскольку отрицательное напряжение, которое возникает на катушке L3 обратной связи, изменяется со временем и поэтому нестабильно, величина электрического заряда, подлежащего разряду, также окажется нестабильной, и существует опасность того, что оставшаяся ёмкость запирающего конденсатора C4, когда транзистор Q1 отпирается, не будет постоянной. По этой причине оказывается трудным заставить запирающий конденсатор C4 разряжать каждый раз фиксированную величину заряда, и, таким образом, период открытого состояния транзистора Q1 становится нестабильным.

С другой стороны, в настоящей системе электропитания блок 14 зарядки содержит диод D1, анод которого подключен к положительному выводу катушки L3 обратной связи. По этой причине в период закрытого состояния транзистора Q1, электрический заряд, накопленный в запирающем конденсаторе C4, будет разряжаться только с помощью резисторов R5, R6, и разряд через блок 14 зарядки будет задерживаться. В результате этого, когда транзистор Q1 отпирается, заряд, накопленный в запирающем конденсаторе C4, будет иметь нулевое или фиксированное значение, что позволяет сделать период открытого состояния транзистора Q1 постоянным.

Как описано выше, в системе электропитания, согласно варианту осуществления 1, поскольку она содержит блок 14 зарядки, выходным током можно управлять так, чтобы он находился в пределах определенного диапазона, независимо от амплитуды напряжения в сети E электропитания общего использования, тем самым обеспечивая повсеместно применимую схему 10 электропитания. Кроме того, поскольку она содержит блок 14 зарядки, и период открытого состояния транзистора Q1 убывает по мере возрастания напряжения в сети E электропитания общего использования, возникает возможность предотвращать подачу чрезмерно высокого напряжения на транзистор Q1. Кроме того, поскольку блок 14 зарядки содержит диод D1, анод которого подключен к положительному выводу катушки L3 обратной связи, разряд через блок 14 зарядки из запирающего конденсатора C4 задерживается, что позволяет стабилизировать период открытого состояния транзистора Q1 и, таким образом, стабилизировать мощность, подаваемую на нагрузочное устройство 20.

(Вариант осуществления 2)

Теперь будет описана система электропитания, согласно варианту осуществления 2 настоящего изобретения. На фиг.4 показана принципиальная схема системы электропитания, согласно варианту осуществления 2 настоящего изобретения. Заметим, что на фиг.4 детали, аналогичные деталям варианта осуществления 1, обозначены теми же позициями, и их описание будет опущено. Система электропитания, согласно варианту осуществления 2, отличается тем, что между положительным электродом T2 и базой запирающего транзистора Tr подключен резистор R7.

Поскольку напряжение, поступающее из сети E электропитания общего использования, заставляет ток протекать в запирающий конденсатор C4 через резистор R7, частичное напряжение между резистором R7 и объединенным резистором из резисторов R5 и R6 всегда выводится на запирающий конденсатор C4. Соответственно, по мере возрастания напряжения в сети E электропитания общего использования, напряжение, выводимое на запирающий конденсатор C4, будет возрастать, что позволяет управлять периодом открытого состояния транзистора Q1 в зависимости от напряжения в сети E электропитания общего использования для управления выходным сигналом на нагрузочное устройство 20.

Кроме того, поскольку ток на запирающий конденсатор C4 поступает не только через блок 14 зарядки, но и через резистор R7, запирающий конденсатор C4 может быстро открывать запирающий транзистор Tr, тем самым сокращая период открытого состояния транзистора Q1, что позволяет использовать транзистор, имеющий низкое выдерживаемое напряжение в качестве транзистора Q1.

Как описано выше, в системе электропитания, согласно варианту осуществления 2, возникает возможность управления выходным сигналом на нагрузочное устройство 20 путем регулировки напряжения в сети E электропитания общего использования и предотвращения подачи избыточного напряжения на транзистор Q1.

(Вариант осуществления 3)

Теперь будет описана система электропитания, согласно варианту осуществления 3 настоящего изобретения. На фиг.5 показана принципиальная схема системы электропитания, согласно варианту осуществления 3 настоящего изобретения. Заметим, что на фиг.5 детали, аналогичные деталям вариантов осуществления 1 и 2, обозначены теми же позициями, и их описание будет опущено. Система электропитания, согласно варианту осуществления 3, отличается тем, что блок 16 сглаживания подключен параллельно блоку 14 зарядки в системе электропитания, согласно варианту осуществления 1. Блок 16 сглаживания содержит диод D3, конденсатор C7 и резистор R8. Диод D3 своим анодом подключен к положительному выводу катушки L3 обратной связи и своим катодом к базе запирающего транзистора Tr через резистор R8 и к отрицательному электроду T1 через конденсатор C7.

Блок 16 сглаживания осуществляет сглаживание напряжения катушки L3 обратной связи для генерации напряжения, соответствующего напряжению в сети электропитания. В результате этого, запирающий конденсатор C4 заряжается двумя путями: через блок 14 зарядки и через блок 16 сглаживания. По этой причине напряжение, в котором пульсации, содержащиеся в напряжении, генерируемом в конденсаторе C1, ослаблены, выводится на запирающий конденсатор C4, поэтому время до отпирания запирающего транзистора Tr стабилизируется, и период открытого состояния транзистора Q1 стабилизируется, что позволяет резонансному блоку 11 создавать стабильное колебание.

На фиг.6 показан график выходной характеристики системы электропитания, согласно варианту осуществления 3, где ось ординат указывает выходной ток, и ось абсцисс указывает входное напряжение. Заметим, что сплошная линия указывает выходную характеристику, согласно варианту осуществления 3, и пунктирная линия указывает выходную характеристику, согласно варианту осуществления 4. Выходной ток указывает ток зарядки, который протекает во вторичной батарее 21 нагрузочного устройства 20, и входное напряжение указывает напряжение сети E электропитания общего использования. Как показано на фиг.6, можно видеть, что, когда предусмотрен блок 16 сглаживания, градиент в диапазоне низкого напряжения напряжений до E1 становится слабее по сравнению с графиком, показанным на фиг.3. Таким образом, выходным током можно управлять так, чтобы он находился в пределах определенного диапазона, независимо от амплитуды выводимого напряжения в сети E электропитания общего использования.

Как описано выше, в системе зарядки, согласно варианту осуществления 3, поскольку она содержит блок 16 сглаживания, стабильное напряжение выводится на запирающий конденсатор C4, тем самым обеспечивая более плоскую выходную характеристику, что позволяет обеспечивать систему электропитания, более пригодную для повсеместного применения.

(Вариант осуществления 4)

Теперь будет описана система электропитания, согласно варианту осуществления 4 настоящего изобретения. На фиг.7 показана принципиальная схема системы электропитания, согласно варианту осуществления 4 настоящего изобретения. Заметим, что на фиг.7 детали, аналогичные деталям согласно вариантам осуществления 1-3, обозначены теми же позициями, и их описание будет опущено. Система электропитания, согласно варианту осуществления 4, отличается тем, что блок 17 зарядки предусмотрен вместо блока 16 сглаживания в системе электропитания варианта осуществления 3, т.е. запирающий конденсатор C4 заряжается с использованием двух блоков 14 и 17 зарядки.

Блок 17 зарядки, который имеет аналогичную конфигурацию с блоком 14 зарядки, содержит диод D5, стабилитрон Z2 и резистор R9. Диод D5 своим анодом подключен к положительному выводу катушки L3 обратной связи и своим катодом - к катоду стабилитрона Z2. Стабилитрон Z2 своим анодом подключен к базе запирающего транзистора Tr через резистор R9.

Теперь предположим, что напряжение VZ2 пробоя стабилитрона Z2 больше напряжения VZ1 пробоя стабилитрона Z1. В результате этого, когда напряжение положительного вывода катушки L3 обратной связи меньше VZ1, блоки 14, 17 зарядки не будут работать; когда напряжение положительного вывода катушки L3 обратной связи не меньше VZ1 и меньше VZ2, работает только блок 14 зарядки; и когда напряжение положительного вывода катушки L3 обратной связи не меньше VZ2, блок 14 зарядки и блок 17 зарядки работают совместно.

В результате этого, как показано на графике пунктирной линией на фиг.6, в выходной характеристике появляются две точки перегиба P1 и P2. Таким образом, когда напряжение в сети Е электропитания общего использования меньше E2, и напряжение положительного вывода катушки L3 обратной связи меньше напряжения VZ1 пробоя, блоки 14, 17 зарядки не будут работать. Кроме того, когда напряжение в сети Е электропитания общего использования не меньше E2 и меньше E3, и напряжение положительного вывода катушки L3 обратной связи не меньше напряжения VZ1 пробоя и меньше напряжения VZ2 пробоя, работает только блок 14 зарядки. Благодаря этой конфигурации, запирающий конденсатор C4 заряжается блоком 14 зарядки, в результате чего период открытого состояния будет сокращаться для этой части, и выходной ток будет снижаться. По этой причине выходная характеристика демонстрирует более слабый градиент в диапазоне среднего напряжения от E2 до E3, чем в диапазоне низкого напряжения.

Кроме того, когда напряжение в сети Е электропитания общего использования не меньше E3, и напряжение положительного вывода катушки L3 обратной связи больше напряжения VZ2 пробоя, блок зарядки 17 работает в дополнение к блоку 14 зарядки. Благодаря этой конфигурации, запирающий конденсатор C4 заряжается двумя путями от блока 14 зарядки и блока 17 зарядки, в результате чего период открытого состояния дополнительно сокращается для этой части, и выходной ток будет снижаться. По этой причине выходная характеристика демонстрирует более слабый градиент в диапазоне высокого напряжения, чем в диапазоне среднего напряжения.

Как описано выше, в системе электропитания, согласно варианту осуществления 4, поскольку блок 17 зарядки предусмотрен в дополнение к блоку 14 зарядки, выходная характеристика изменяется в две стадии, дополнительно сокращая диапазон изменения выходного тока и обеспечивая более плоскую выходную характеристику, в результате чего становится возможным обеспечить систему электропитания, более пригодную для повсеместного применения.

Заметим, что хотя в системе электропитания, согласно варианту осуществления 4, предусмотрено два блока 14 и 17 зарядки, это не является ограничением, и можно обеспечить три или более. В таком случае задание разных значений напряжения пробоя для стабилитронов, обеспеченных в каждом блоке зарядки, позволит получить выходную характеристику, имеющую точки перегиба в соответствии с количеством блоком зарядки, тем самым обеспечивая более плоскую выходную характеристику. Кроме того, регулировка количества блоков зарядки и значения напряжения пробоя стабилитрона позволяет регулировать выходную характеристику таким образом, чтобы получить нужный выходной ток в диапазоне напряжения целевой сети Е электропитания общего использования.

(Вариант осуществления 5)

Теперь будет описана система электропитания, согласно варианту осуществления 5 настоящего изобретения. На фиг.8 показана принципиальная схема системы электропитания, согласно варианту осуществления 5. Заметим, что на фиг.8 детали, аналогичные деталям согласно вариантам осуществления 1 - 4, обозначены теми же позициями, и их описание будет опущено. Система электропитания, согласно варианту осуществления 5, отличается тем, что она содержит блок 18 зарядки, в котором стабилитрон Z2 блока 17 зарядки опущен в системе электропитания варианта осуществления 4.

Поскольку блок 18 зарядки не включает в себя стабилитрон Z2, он действует даже при низком напряжении в сети Е электропитания общего использования, и блок 14 зарядки не работает, тем самым заряжая запирающий конденсатор C4. По этой причине система электропитания демонстрирует выходную характеристику, имеющую более слабый градиент в диапазоне низкого напряжения, тем самым обеспечивая более плоскую выходную характеристику.

С другой стороны, когда сеть Е электропитания общего использования выводит высокое напряжение, которое приводит в действие блок 14 зарядки, возрастание выходного тока в диапазоне высокого напряжения будет подавляться по аналогии с вариантом осуществления 1, тем самым обеспечивая плоскую выходную характеристику.

Как описано выше, в системе электропитания, согласно варианту осуществления 5, поскольку предусмотрен блок 18 зарядки, можно получить плоскую выходную характеристику в диапазоне низкого напряжения, что позволяет обеспечить систему электропитания, более пригодную для повсеместного применения.

(Вариант осуществления 6)

Теперь будет описана си