Десульфурация и новый способ ее выполнения

Настоящее изобретение относится к удалению серы из потоков углеводородов, к композиции, пригодной для использования при десульфуризации потоков крекинг-бензинов и дизельного топлива, и способу ее изготовления. Описаны способ получения композиции для удаления серы из потоков углеводородов, включающий: (а) смешивание: 1) жидкости, 2) первого формиата металла, 3) материала, содержащего диоксид кремния, 4) оксида алюминия и 5) второго формиата металла с образованием смеси указанных компонентов; (b) сушку указанной смеси с образованием высушенной смеси; (с) прокаливание высушенной смеси; и (d) восстановление прокаленной смеси агентом восстановления в условиях восстановления с получением композиции, содержащей активатор с пониженной валентностью, (е) отделение полученной композиции, причем указанная прокаленная восстановленная смесь способствует удалению серы из потока углеводородов при условиях десульфуризации, и где указанная жидкость является аммиаком, и композиция, полученная описанным выше способом. Описан способ удаления серы из потока углеводородов, включающий: (а) контактирование его с композицией, полученной описанным выше способом, в зоне десульфуризации при условиях, обеспечивающих образование десульфурированного потока углеводородов и сульфированной композиции; (b) отделение указанного десульфурированного потока углеводородов от указанной сульфированной композиции и образование отделенного десульфурированного потока углеводородов и отделенной сульфированной композиции; (с) регенерацию по меньшей мере части указанной отделенной сульфированной композиции в зоне регенерации для удаления по меньшей мере части содержащейся в ней и/или на ней серы и образования в результате этого регенерированной композиции: (d) восстановление указанной регенерированной композиции в зоне активации для образования композиции, содержащей активатор с пониженной валентностью, обеспечивающей удаление серы из потока углеводородов при его соприкосновении с такой композицией; и последующий е) возврат по меньшей мере части указанной восстановленной композиции в указанную зону десульфуризации. Описаны крекинг-бензин и дизельное топливо, полученное описанным выше способом. Технический эффект - повышение стабильности снижения серы из потоков углеводородов в процессе десульфуризации. 5 н. и 21 з.п ф-лы, 8 табл.

Реферат

Данное изобретение относится к удалению серы из потоков углеводородов. В другом аспекте данное изобретение относится к композициям, пригодным для использования при десульфурации потоков крекинг-бензинов и дизельного топлива. Еще один аспект данного изобретения относится к способам изготовления композиций для использования при удалении примеси серы из потоков крекинг-бензинов и дизельного топлива.

Необходимость в более полном сгорании топлива обусловила проведение продолжающихся во всем мире работ по уменьшению уровня содержания серы в потоках углеводородов, таких как бензин и дизельное топливо. Уменьшение содержания серы в таких потоках углеводородов рассматривают в качестве средства улучшения качества воздушной среды вследствие того, что сера оказывает негативное воздействие на рабочие характеристики чувствительных к ней узлов, таких как каталитические дожигатели выхлопных газов автомобиля. Присутствие оксидов серы в выхлопе автомобильного двигателя ингибирует и может необратимо отравить катализаторы на основе благородных металлов, находящиеся в дожигателе выхлопных газов. Выделения из неэффективного или отравленного дожигателя выхлопных газов содержат несгоревшие остатки, неметановые углеводороды, оксиды азота и монооксид углерода. Такие выделения катализируются солнечным светом и образуют приземный озоновый слой, обычно называемый смогом.

Термически обработанные бензины, такие как, например, бензин термического крекинга, бензин висбрекинга, бензин коксования и бензин каталитического крекинга (в отношении которых далее используется в собирательном значении термин «крекинг-бензин»), содержат некоторое количество олефинов, ароматических соединений, серы и серосодержащих соединений. Поскольку большинство бензинов, таких как автомобильные бензины, бензины для гоночных автомобилей, авиационные бензины, бензины для судов и т.п., содержат в качестве компонента, по меньшей мере в некотором количестве, крекинг-бензин, то уменьшение содержания серы в крекинг-бензине будет, естественно, способствовать уменьшению содержания серы в большинстве видов бензина, таких как, например, автомобильные бензины, бензины для гоночных автомобилей, авиационные бензины, бензины для судов и т.п.

Обсуждение общественностью содержания серы в бензине не концентрировалось на том, должно ли или нет уменьшаться содержание серы. Общее мнение выражалось в том, что уменьшение содержания серы в бензине снижает выпуск автомобильных выхлопных газов и улучшает качество воздушной среды. Соответственно, нормы до настоящего времени были сосредоточены на требуемом уровне снижения, географических зонах, нуждающихся в бензине с пониженным содержанием серы, и временных рамках для выполнения требований.

Поскольку остается проблема в отношении воздействия автомобилей на загрязнение воздуха, то ясно, что потребуются дополнительные усилия по снижению содержания серы в автомобильном топливе. Наряду с тем, что в настоящее время бензины содержат примерно 330 частей на миллион (частей/млн) серы, Агентство по защите окружающей среды США недавно выпустило директиву, в соответствии с которой среднее содержание серы в бензине должно быть меньше 30 частей/млн в среднем при верхнем пределе 80 частей/млн. К 2008 году стандарты фактически потребуют, чтобы каждая бензиновая смесь, продаваемая в Соединенных Штатах, соответствовала содержанию серы в 30 частей/млн.

В дополнение к необходимости обеспечения возможности производства автомобильного топлива с низким содержанием серы имеет место также необходимость в способе, который будет оказывать минимальное влияние на содержание олефинов в таком топливе, с тем, чтобы поддерживалось его октановое число (как октановое число по исследовательскому методу, так и октановое число по моторному методу). Такой способ был бы желателен, поскольку насыщение олефинов существенно влияет на октановое число. Такое неблагоприятное воздействие на содержание олефинов, как правило, обусловлено обычно используемыми жесткими условиями, например, во время гидродесульфурации, при удалении тиофеновых соединений (таких как, например, тиофены, бензотиофены, алкилтиофены, алкилбензотиофены, алкилдибензотиофены и т.п.), которые представляют собой некоторые из серосодержащих соединений, наиболее трудно удаляемых из крекинг-бензина. Кроме того, необходимо избегать использования систем, условия в которых приводят к снижению содержания ароматических соединений в крекинг-бензине вследствие насыщения. Соответственно, имеется потребность в способе, который обеспечивает десульфурацию и поддерживает октановое число.

В дополнение к необходимости удаления серы из крекинг-бензинов в нефтяной промышленности существует потребность в уменьшении содержания серы в дизельном топливе. В общем случае, гораздо труднее удалить серу из дизельного топлива, чем из бензина. При удалении серы из дизельного топлива гидродесульфурацией его цетановое число улучшается, однако при этом велика стоимость используемого водорода. Водород используется в этом случае как при гидродесульфурации, так и при гидрогенизации ароматических соединений.

Соответственно, имеется потребность в способе десульфурации без значительного расхода водорода, с тем, чтобы предоставить более экономичный процесс обработки крекинг-бензинов и дизельного топлива.

Вследствие отсутствия успехов в предоставлении результативного и экономически осуществимого процесса для снижения содержания серы в крекинг-бензинах и дизельном топливе очевидно, что имеется потребность в улучшенном способе десульфурации потоков таких углеводородов, который оказывал бы минимальное влияние на октановое число при обеспечении существенного снижения содержания серы.

Традиционно композиции, используемые в процессах удаления серы из потоков углеводородов, являются агломератами, используемыми для видов применения с неподвижным слоем. Вследствие различных преимуществ проведения процесса в псевдоожиженном слое потоки углеводородов иногда обрабатывают в реакторах с псевдоожиженным слоем. Реакторы с псевдоожиженным слоем имеют преимущества перед реакторами с неподвижным слоем, такие как, например, лучшая передача тепла и лучший перепад давления. В реакторах с псевдоожиженным слоем обычно используют реагенты в виде частиц. Размер таких частиц обычно находится в интервале от примерно 1 микрона до примерно 1000 микрон. Однако такие обычно используемые реагенты не обладают достаточным сопротивлением истиранию для всех видов применения. Поэтому желательны создание композиции с достаточно высоким сопротивлением истиранию, которая удаляет серу из указанных потоков углеводородов и может быть использована в реакторах с псевдоожиженным слоем, транспортных реакторах, подвижных реакторах или реакторах с неподвижным слоем, и разработка способа получения такой композиции экономически выгодным образом, что явилось бы существенным вкладом в данную область техники и в экономику.

Желательно разработать новые способы получения таких композиций, которые могут быть использованы для десульфурации потоков углеводородов.

Кроме того, желательно создание способа удаления серы из потоков углеводородов, который минимизировал бы расход водорода и насыщение олефинов и ароматических соединений, содержащихся в таких потоках.

Также желательно получить увеличенное содержание в композициях активатора, который способствует удалению серы из дизельного топлива.

Помимо указанного, желательно создать десульфурированный крекинг-бензин, который содержит менее примерно 100 частей/млн, предпочтительно менее 50 частей/млн, серы в расчете на массу десульфурированного крекинг-бензина и который содержит в основном такое же количество олефинов и ароматических соединений, как и в том крекинг-бензине, из которого изготовлен такой десульфурированный крекинг-бензин. Также желательно создать десульфурированное дизельное топливо.

Первый вариант осуществления данного изобретения содержит новый способ получения композиции, который включает:

a) смешивание: 1) жидкости, 2) соединения, содержащего цинк, 3) материала, содержащего диоксид кремния, 4) оксида алюминия и 5) активатора с образованием смеси указанных компонентов;

b) сушку полученной смеси с образованием высушенной смеси;

c) прокаливание высушенной смеси с образованием прокаленной смеси;

d) восстановление прокаленной смеси подходящим восстановителем при подходящих условиях для получения композиции, содержащей активатор с пониженной валентностью, и

e) отделение полученной композиции.

Второй вариант осуществления данного изобретения включает другой новый способ получения композиции, который включает:

a) смешивание: 1) жидкости, 2) соединения, содержащего металл, 3) материала, содержащего диоксид кремния, 4) оксида алюминия и 5) первого активатора с образованием смеси указанных компонентов;

b) сушку полученной смеси с образованием высушенной смеси;

c) объединение второго активатора с высушенной смесью с образованием объединенной смеси;

d) сушку объединенной смеси с образованием высушенной объединенной смеси;

e) прокаливание высушенной объединенной смеси с образованием прокаленной активированной смеси;

f) восстановление прокаленной активированной смеси подходящим восстановителем при подходящих условиях для получения композиции, содержащей активатор с пониженной валентностью, и

g) отделение полученной композиции.

Третий вариант осуществления данного изобретения включает способ, который включает, содержит или содержит в основном:

(a) смешивание: 1) жидкости, 2) соединения, содержащего металл, 3) материала, содержащего диоксид кремния и 4) активатора с образованием смеси указанных компонентов;

(b) добавление оксида алюминия к полученной смеси с образованием смеси, содержащей оксид алюминия;

(c) сушку полученной смеси, содержащей оксид алюминия, с образованием высушенной смеси;

(d) прокаливание высушенной смеси с образованием прокаленной смеси;

(e) восстановление прокаленной смеси подходящим восстановителем при подходящих условиях для получения композиции, содержащей активатор с пониженной валентностью, и

(f) отделение полученной композиции.

Четвертый вариант осуществления данного изобретения включает способ, который включает, содержит или содержит в основном:

(a) смешивание: 1) жидкости, 2) первого формиата металла, 3) материала, содержащего диоксид кремния, 4) оксида алюминия и 5) второго формиата металла с образованием смеси указанных компонентов;

(b) сушку полученной смеси с образованием высушенной смеси;

(c) прокаливание высушенной смеси с образованием прокаленной смеси; и

(d) восстановление прокаленной смеси восстановителем при соответствующих условиях для получения композиции, содержащей активатор с пониженной валентностью, и

(e) отделение полученной композиции.

Пятый вариант осуществления данного изобретения включает способ удаления серы из потока углеводородов, включающий:

a) приведение потока углеводородов в соприкосновение с композицией по первому или второму, третьему или четвертому варианту осуществления в зоне десульфурации при таких условиях, которые обеспечивают образование десульфурированного потока углеводородов и сульфурированной композиции;

b) отделение десульфурированного потока углеводородов от сульфурированной композиции и образование отделенного потока десульфурированного потока углеводородов и отделенной сульфурированной композиции;

c) регенерацию по меньшей мере части отделенной сульфурированной композиции в зоне регенерации для удаления по меньшей мере части содержащейся в ней и/или на ней серы и образования в результате этого регенерированной композиции;

d) восстановление регенерированной композиции в зоне восстановления таким образом, чтобы образовать восстановленную композицию, содержащую активатор с пониженной валентностью, которая будет обеспечивать удаление серы из потока углеводородов при его соприкосновении с такой композицией; и последующий

e) возврат по меньшей мере части восстановленной композиции в зону десульфурации.

Другие аспекты, задачи и преимущества данного изобретения будут видны из подробного описания данного изобретения и прилагаемой формулы изобретения.

Термин «бензин» означает смесь углеводородов, кипящую в интервале от примерно 37,8°C до примерно 260°C, или любую фракцию такой смеси. Примеры подходящего бензина включают в себя, однако не ограничены ими, потоки углеводородов на нефтеперерабатывающих заводах, такие как нафта, прямогонная нафта, нафта коксования, бензин каталитического крекинга, нафта висбрекинга, алкилат, изомерат, реформат и т.п. и их комбинации.

Термин «крекинг-бензин» означает смесь углеводородов, кипящую в интервале от примерно 37,8°C до примерно 260°C, или любую фракцию такой смеси, которая получена каталитическим или термическим процессом, обеспечивающим разделение больших молекул углеводородов на молекулы меньших размеров. Примеры подходящих термических процессов включают в себя, однако не ограничиваются ими, коксование, термический крекинг, висбрекинг и т.п. и их комбинации. Примеры подходящих процессов каталитического крекинга включают в себя, однако не ограничиваются ими, флюид-каталитический крекинг, крекинг тяжелой нефти и т.п. и их комбинации. Соответственно, примеры подходящего крекинг-бензина включают в себя, однако не ограничиваются ими, бензин коксования, бензин термического крекинга, бензин висбрекинга, бензин флюид-каталитического крекинга, бензин крекинга тяжелой нефти и т.п. и их комбинации. В некоторых примерах такой крекинг-бензин может быть фракционирован и/или гидрирован перед десульфурацией в случае использования в качестве потока углеводородов в способе по данному изобретению.

Термин «дизельное топливо» означает смесь углеводородов, кипящую в интервале от примерно 148,9°C до примерно 398,9°C, или любую фракцию такой смеси. Примеры подходящего дизельного топлива включают в себя, однако не ограничиваются ими, легкий рецикловый газойль, керосин, авиационное топливо, прямогонное дизельное топливо, гидроочищенное дизельное топливо и т.п. и их комбинации.

Термин «сера» означает серу в любой форме, такой как элементарная сера или соединение серы, обычно присутствующее в текучей среде, содержащей углеводороды, такой как крекинг-бензин или дизельное топливо. Примеры серы, которые могут присутствовать в процессе, проводимом по данному изобретению, и обычно содержатся в потоке углеводородов, включают в себя, однако не ограничиваются ими, сероводород, карбонилсульфид (COS), сероуглерод (CS2), меркаптаны (RSH), органические сульфиды (R-S-R), органические сульфиды (R-S-S-R), тиофены, замещенные тиофены, органические трисульфиды, органические тетрасульфиды, бензотиофены, алкилтиофены, алкидбензотиофены, алкилдибензотиофены и т.п. и их комбинации, а также такие соединения с более высокой молекулярной массой, обычно присутствующие в дизельном топливе тех видов, рассматриваемых для использования в процессе по данному изобретению; в указанных соединениях R может быть алкильной, циклоалкильной или арильной группой, содержащей от одного до десяти атомов углерода.

Термин «текучая среда» означает газ, жидкость, пар и их комбинации.

Термин «газообразный» означает, что состояние, в котором находится текучая среда, содержащая углеводороды, такая как крекинг-бензин или дизельное топливо, является преимущественно газообразной или паровой фазой.

Термин «сопротивление истиранию» означает сопротивление истиранию композиции, полученной способом (способами) по данному изобретению. Термин «индекс Дэвисона» («DI») означает меру устойчивости композиции к уменьшению размера частиц при контролируемых условиях турбулентного движения. Чем выше измеренная величина DI, тем ниже сопротивление истиранию композиции.

Термин «компонент, улучшающий сопротивление истиранию» означает любой компонент, который может быть добавлен к композиции, изготовленной способами по данному изобретению, для улучшения сопротивления истиранию такой композиции по сравнению с композицией, которая не содержит такого компонента, улучшающего сопротивление истиранию. Примеры подходящего компонента, улучшающего сопротивление истиранию, включают в себя, однако не ограничиваются ими, глины, высокоглиноземистые цементы, романцементы, портландцемент, алюминат кальция, силикат кальция, тальк и т.п. и их комбинации. Термин «глина» означает любую глину, которая может быть использована в качестве компонента, улучшающего сопротивление истиранию композиции по данному изобретению. Примеры пригодной глины включают в себя, однако не ограничиваются ими, бентонит, натриевый бентонит, кислотопромытый бентонит, атапульгит, каолин, каолинит, монтмориллонит, иллит, галлуазит, гекторит, сепиолит и т.п. и их комбинации. Предпочтительно такой компонент, улучшающий сопротивление истиранию, содержит глину. Более предпочтительно такой компонент, улучшающий сопротивление истиранию, выбран из группы, содержащей бентонит, натриевый бентонит, кислотопромытый бентонит и т.п. и их комбинации. Наиболее предпочтительно такой компонент, улучшающий сопротивление истиранию, является бентонитом.

Термин «металл» означает металл в любой форме, такой как элементарный металл или соединение, содержащее металл. Соединение, содержащее металл, которое является отдельным от активатора компонентом в композиции(ях), изготовленной(ых) способами, предлагаемыми в данном изобретении, могут иметь металл, выбранный из группы, включающей в себя цинк, марганец, серебро, медь, кадмий, олово, лантан, скандий, церий, вольфрам, молибден, железо, ниобий, тантал, галлий, индий и комбинации любых двух или более указанных металлов. В способе, использованном в первом варианте осуществления, предпочтительно используют соединение, содержащее цинк, изготавливая композицию, содержащую оксид цинка.

Термин «формиат металла», как он использован здесь, означает соединение, образованное по меньшей мере одним ионом металла и по меньшей мере одним ионом муравьиной кислоты. Ион муравьиной кислоты представляет собой атом углерода, который соединен с атомом водорода и двумя атомами кислорода, при этом один из атомов кислорода имеет двойную связь с атомом углерода.

Термин «оксид металла», как он использован здесь, означает любой оксид металла.

Термин «оксид металла» также означает оксид металла в любой форме, такой как оксид металла или предшественник оксида металла.

Такой оксид металла предпочтительно присутствует в композиции, изготовленной способом по данному изобретению, в количестве, находящемся в интервале от примерно 10 до примерно 90 процентов содержания оксида металла в расчете на общую массу композиции по данному изобретению, более предпочтительно в количестве, находящемся в интервале от примерно 30 до примерно 80 процентов оксида металла и наиболее предпочтительно в количестве, находящемся в интервале от примерно 40 до примерно 70 процентов оксида металла.

Термин «активатор» означает любой компонент, который при добавлении к композиции по данному изобретению способствует десульфурации потоков углеводородов. Такие активаторы могут являться по меньшей мере одним металлом, оксидом металла, предшественником оксида металла, твердым раствором двух или более металлов или сплавом двух или более металлов, в которых металлический компонент выбран из группы, включающей в себя никель, кобальт, железо, марганец, медь, цинк, молибден, вольфрам, серебро, олово, сурьму, ванадий, золото, платину, рутений, иридий, хром, палладий, титан, цирконий, родий, рений и комбинации любых двух или более указанных металлов. В четвертом варианте осуществления такой активатор добавляют к композиции в виде второго формиата металла.

Некоторые примеры соединений, содержащих активирующий металл, включают в себя ацетаты металлов, карбонаты металлов, нитраты металлов, сульфаты металлов, тиоцианаты металлов и т.п. и их комбинации. Предпочтительно металл такого активатора является никелем.

Композиция, содержащая активатор с пониженной валентностью, представляет собой композицию, которая обладает способностью к химическому и/или физическому взаимодействию с серой. Также предпочтительно, чтобы такая композиция удаляла диолефины и другие смолообразующие соединения из крекинг-бензина.

Во время получения композиции по данному изобретению активатор, выбранный из группы, содержащей металлы, оксиды металлов и т.п. и их комбинации, может первоначально находиться в виде соединения, содержащего металл, и/или предшественника оксида металла. Следует иметь в виду, что в случае, когда активатор первоначально представляет собой соединение, содержащее металл, и/или предшественник оксида металла, часть такого соединения и/или предшественника или все его количество может быть преобразовано в соответствующий металл или оксид металла во время раскрытого здесь процесса по данному изобретению.

Как правило, активатор в обычном состоянии окисления находится в комбинации с частью оксида металла композиции по данному изобретению, изготовленной способами, предлагаемыми в данном изобретении. Число атомов кислорода, связанных с активатором, должно быть уменьшено для образования активатора с пониженной валентностью. Следовательно, по меньшей мере часть активатора, присутствующего в композиции по данному изобретению, должна находиться в виде активатора с пониженной валентностью. Не имея намерений в отношении установления связи с теорией, можно, по-видимому, считать, что такой активатор с пониженной валентностью обладает способностью к хемосорбции, отделению или удалению серы. Соответственно, должно быть уменьшено или число атомов кислорода, связанных с активатором, или же состояние окисления активатора соответствует металлу с нулевой валентностью. Например, если металлом активатора является никель, то может быть использован оксид никеля (NiO), и никелем с пониженной валентностью (металлом активатора) может быть или металлический никель (Ni0) или нестехиометрический оксид никеля формулы NiO(1-x), где 0<x<1. Если в качестве металла активатора используется вольфрам, то может быть использован оксид вольфрама (WO3), и вольфрамом с пониженной валентностью (металлом активатора) может быть оксид вольфрама (WO3), металлический вольфрам (W0) или нестехиометрический оксид вольфрама формулы WO(3-y), где 0<y<3.

Предпочтительно активатор присутствует в количестве, которое обеспечивает эффективное удаление серы из потока углеводородов при его соприкосновении с указанной композицией в условиях проведения десульфурации. Предпочтительно, чтобы из общего количества активатора, присутствующего в композиции по данному изобретению, по меньшей мере 10 процентов от массы активатора присутствовало в виде активатора с пониженной валентностью, более предпочтительно, чтобы по меньшей мере 40 процентов активатора являлось активатором с пониженной валентностью, и наиболее предпочтительно, чтобы по меньшей мере 80 процентов активатора являлось активатором с пониженной валентностью для лучшей активности в отношении удаления серы. Такой активатор с пониженной валентностью обычно присутствует в композиции по данному изобретению в количестве, находящемся в интервале от примерно 1 до примерно 60 процентов от общей массы композиции по данному изобретению, предпочтительно в количестве, находящемся в интервале от примерно 5 до примерно 40 процентов, и наиболее предпочтительно в количестве, находящемся в интервале от 8 до 20 процентов, для лучшей активности в отношении удаления серы. Если активатор является биметаллическим активатором, то в таком активаторе соотношение двух образующих его металлов должно находиться в интервале от примерно 20:1 до примерно 1:20.

Материал, содержащий диоксид кремния, используемый при изготовлении композиций по данному изобретению и присутствующий в них, может быть в виде диоксида кремния или же в виде одного или нескольких материалов, содержащих диоксид кремния.

В такой композиции может быть использован любой подходящий материал, содержащий диоксид кремния, такой как, например, диатомит, вспученный перлит, коллоидный кремнезем, силикагель, осажденный кремнезем и т.п. и их комбинации. Кроме того, могут быть также использованы соединения кремния, преобразуемые в диоксид кремния, такие как кремниевая кислота, силикат аммония и т.п. и их комбинации.

Более предпочтительно использование в качестве материала, содержащего диоксид кремния, измельченного вспученного перлита. Термин «перлит», как он использован здесь, является петрографическим термином для кремнеземистой вулканической породы, которая встречается в природе в определенных регионах мира. Характерным признаком, который отличает эту породу от других вулканических минералов, является ее способность к расширению от четырех до двадцати раз по сравнению с первоначальным объемом при нагревании до определенной температуры. При нагревании выше 871,1°C дробленый перлит расширяется вследствие присутствия связанной воды в исходной перлитной породе. Связанная вода испаряется в процессе нагревания и создает множество очень маленьких пузырьков в стекловидных частицах, размягченных под воздействием тепла. Эти герметизированные пузырьки в стекловидном материале обусловливают его малую удельную массу. Вспученный перлит может быть измельчен для получения порошка с увеличенной пористостью и малой удельной массой, составляющей 2,5 фунта на кубический фут.

Типичный элементный анализ вспученного перлита следующий: 33,8% кремния, 7 % алюминия, 3,5% калия, 3,4% натрия, 0,6% кальция, 0,2% магния, 0,6% железа, 0,2% примесных элементов, 47,5% кислорода (по разности) и 3% связанной воды.

Типичные физические свойства вспученного перлита следующие: температура размягчения 1600-2000°F, температура плавления 2300-2450°F, pH 6,6-6,8 и плотность 2,2-2,4.

Термин «измельченный вспученный перлит» или «молотый вспученный перлит», как он использован здесь, означает такой вид вспученного перлита, которые вначале был подвергнут размалыванию до образования частиц размером от примерно 20 микрон до примерно 500 микрон, затем термообработан огневым нагревателем при температуре примерно 871,1°C и в заключение измельчен в молотковой мельнице.

Не имея намерений в отношении установления связи с какой-либо частной теорией, можно, по-видимому, считать, что форма частиц измельченного вспученного перлита влияет на активность конечной композиции, изготовленной способами, предлагаемыми в данном изобретении.

Композиции, полученные способами, предлагаемыми в данном изобретении, содержат материал, содержащий алюминий, выбранный из группы, включающей в себя оксид алюминия, алюминат и их комбинации. Для получения указанных композиций может быть использован оксид алюминия. В качестве такого оксида алюминия, используемого при изготовлении композиций, может быть использовано любое подходящее доступное для приобретения вещество, содержащее алюминий, по меньшей мере часть которого может быть преобразована прокаливанием в алюминат. Примеры включают в себя, однако не ограничиваются ими, хлориды алюминия, нитраты алюминия, коллоидные растворы оксида алюминия, гидратированные оксиды алюминия, пептизированные оксиды алюминия и обычно те соединения оксида алюминия, которые получены дегидратацией гидратов оксида алюминия. Предпочтительным оксидом алюминия является гидратированный оксид алюминия, такой как, например, бемит или псевдобемит, для лучшей активности и лучшего удаления серы. При воздействии на композицию высоких температур (например, во время прокаливания) по меньшей мере часть, предпочтительно большая часть, оксида алюминия может быть преобразована в алюминат, предпочтительно в алюмоцинковую шпинель.

Материал, содержащий алюминий, предпочтительно присутствует в композиции, полученный способами по данному изобретению, в количестве, находящемся в интервале от примерно 1,0 до примерно 30 процентов, предпочтительно в количестве в интервале от примерно 5 до примерно 25 процентов и наиболее предпочтительно в интервале от 10 до 22 процентов, в расчете на общую массу композиции.

Материал, содержащий диоксид кремния, предпочтительно присутствует в композиции, полученный способами по данному изобретению, в количестве, находящемся в интервале от примерно 10 до примерно 40 процентов материала, содержащего диоксид кремния, от общей массы композиции, более предпочтительно в количестве в интервале от примерно 12 до примерно 35 процентов и наиболее предпочтительно в интервале от 15 до 30 процентов. Композиция может представлять собой частицы в виде гранул, экструдатов, таблеток, шариков, катышков или микросфер. Предпочтительно частицы представляют собой микросферы, способные к образованию псевдоожиженного слоя.

В соответствии с первым вариантом осуществления данного изобретения композиция может быть получена следующим способом, предлагаемым в данном изобретении.

a) смешивание: 1) жидкости, 2) соединения, содержащего цинк, 3) материала, содержащего диоксид кремния, 4) оксида алюминия и 5) активатора с образованием смеси указанных компонентов;

b) сушка полученной смеси с образованием высушенной смеси;

c) прокаливание высушенной смеси с образованием прокаленной смеси;

d) восстановление прокаленной смеси подходящим восстановителем при подходящих условиях для получения композиции, содержащей активатор с пониженной валентностью, и

e) отделение полученной композиции.

В предлагаемом способе получения по первому варианту осуществления композиция может быть обычно получена смешиванием жидкости, соединения, содержащего цинк, материала, содержащего диоксид кремния, оксида алюминия и активатора в соответствующей пропорции любым подходящим способом или образом, который обеспечивает равномерное перемешивание таких компонентов с образованием в результате практически гомогенной их смеси, включающей в себя жидкость, соединение, содержащее цинк, материал, содержащий диоксид кремния, оксид алюминия и активатор. По выбору к такой смеси может быть также добавлен компонент, улучшающий сопротивление истиранию. Термин «смешивание», как он использован здесь, означает перемешивание компонентов в любом порядке и/или любой комбинации или субкомбинации. Однако в таком варианте осуществления, в котором смешивают жидкость, соединение, содержащее металл, материал, содержащий диоксид кремния и активатор, оксид алюминия добавляют к смеси после всех других компонентов. Любое подходящее средство для смешивания указанных компонентов композиции может быть использовано для достижения желаемой дисперсии этих компонентов. Примеры подходящих смесителей включают в себя, однако не ограничиваются ими, смесительные барабаны, смесители с неподвижными полками или лотками, смесители Eurostar, которые могут быть порционного или непрерывного типа, смесители ударного действия и т.п. Для данного случая предпочтительно использование смесителей Eurostar при смешивании компонентов композиции по данному изобретению.

Жидкость может быть любым растворителем, способным к диспергированию соединения, содержащего металл, материала, содержащего диоксид кремния, оксида алюминия и активатора; предпочтительно такая жидкость может быть выбрана из группы, включающей в себя воду, этанол, ацетон и любые их комбинации. Наиболее предпочтительной такой жидкостью является вода.

Соединение, содержащее металл (предпочтительно соединение, содержащее цинк), используемое при изготовлении композиции в первом, втором и третьем вариантах осуществления данного изобретения, может быть в виде оксида металла или в виде одного или нескольких соединений металла, которые могут быть преобразованы в оксид металла при описанных здесь условиях приготовления. Примеры подходящих соединений металла включают в себя, однако не ограничиваются ими, сульфид металла, сульфат металла, гидроксид металла, нитрат металла, формиат металла и т.п. и их комбинации. Предпочтительно такое соединение, содержащее металл, находится в виде порошкового оксида металла.

При изготовлении частиц из полученной смеси, предпочтительно сушкой распылением, может быть по выбору добавлен диспергатор, и может быть добавлено любое подходящее соединение, которое способствует сушке распылением смеси, предпочтительно используемой в виде суспензии. В частности, эти компоненты могут быть полезны для предотвращения осаждения, образования осадка, расслоения, образования агломератов, прилипания и спекания твердых частиц в текучей среде. Подходящие диспергаторы включают в себя, однако не ограничиваются ими, конденсированные фосфаты, сульфурированные полимеры и их комбинации. Термин «конденсированные фосфаты» относится к любому дегидратированному фосфату, содержащему более одного атома фосфора и имеющему связь фосфор-кислород-фосфор. Частные примеры подходящих диспергаторов включают в себя пирофосфат натрия, метафосфат натрия, сульфурированный сополимер стирола и малеинового ангидрида и их комбинации. Количество используемого диспергатора обычно находится в интервале от примерно 0,01 процента от суммарной массы компонентов до примерно 10 процентов. Предпочтительно количество используемого диспергатора обычно находится в интервале от примерно 0,1 процента до примерно 8 процентов.

При приготовлении композиции, высушенной предпочтительной сушкой распылением, может быть использован кислый компонент. Обычно кислота в таком кислом компоненте может являться органической кислотой или неорганической кислотой, такой как азотная кислота. Если кислый компонент является органической кислотой, то предпочтительно использование карбоновой кислоты. Если кислый компонент является неорганической кислотой, то предпочтительно использование азотной кислоты или фосфорной кислоты. Могут быть также использованы смеси этих кислот. Обычно кислоту используют вместе с водой для образования разбавленного водного раствора кислоты. Количество кислоты в кислом компоненте обычно находится в интервале от примерно 0,01 объемного процента в расчете на общий объем кислого компонента до примерно 20 объемных процентов.

Обычно, высушенный распылением материал имеет средний размер частиц в интервале от примерно 10 микрометров до примерно 1000 микрометров, предпочтительно в интервале от примерно 20 микрометров до примерно 150 микрометров.

Термин «средний размер частиц» относится к размеру частиц материала при его определении при использовании RO-TAP® Testing Sieve Shaker производства W.S. Tyler Inc., Mentor, Ohio или других сопоставимых сит. Материал для проведения измерений размещают в верхней части корпуса стандартной группы сит диаметром 8 дюймов с рамой из нержавеющей стали, имеющего поддон в донной части. Материал подвергают просеиванию в течение примерно 10 минут, после чего взвешивают часть материала, оставшегося на каждом из сит. Процент остатка на каждом сите рассчитывают делением массы материала, оставшегося на соответствующем сите, на общую массу исходного образца материала. Эту информацию используют для расчета среднего размера частиц.

Смесь затем сушат для получения высушенной смеси. Условия сушки, как это рассмотрено здесь, могут включать в себя температуру в интервале от примерно 65,5°C до примерно 550°C, предпочтительно в интервале от примерно 87,8°C до примерно 210°C и наиболее предпочтительно в интервале от 93,3°C до 176,7°C. Условия такой сушки могут также включать в себя промежуток времени, обычно в интервале от примерно 0,5 часа до примерно 60 часов, предпочтительно в интервале от примерно 1 часа до примерно 40 часов и наиболее предпочтительно в интервале от 1,5 часа до 20 часов. Условия такой сушки могут также включать в себя давление, обычно в интервале от примерно атмосферного давления (т.е. примерно 14,7 фунтов на квадратный дюйм абсолютного давления) до примерно 150 фунтов на квадратный дюйм абсолютного давления, предпочтительно в интервале от примерно атмо