Ферментативное получение четырехуглеродных спиртов
Иллюстрации
Показать всеИзобретение относится к биотехнологии и представляет собой способ получения изобутанола, включающий получение рекомбинантной микробной клетки-хозяина, содержащей ферментативный путь изобутанола, включающий молекулы ДНК, кодирующие набор полипептидов, которые катализируют следующие превращения субстрата в продукт: i) пирувата в ацетолактат; ii) ацетолактата в 2,3-дигидроксиизовалерат; iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат; iv) α-кетоизовалерата в изобутиральдегид; и v) изобутиральдегида в изобутанол, и контактирование клетки-хозяина с ферментируемым углеродным субстратом в среде ферментации в условиях, при которых продуцируется изобутанол. Изобретение позволяет получать изобутанол с высокой степенью эффективности. 3 н. и 51 з.п. ф-лы, 1 ил., 13 табл.
Реферат
Перекрестная ссылка на родственные заявки
По настоящей заявке испрашивается приоритет согласно своду законов США 35 § 119 предварительной заявки с порядковым No. 60/730290, поданной 26 октября 2005 г.
Область техники, к которой относится изобретение
Изобретение относится к области промышленной микробиологии и получения спиртов. Более конкретно, изобутанол получают путем промышленной ферментации рекомбинантного микроорганизма.
Предшествующий уровень техники
Бутанол является важным промышленным химическим соединением, пригодным в качестве присадки к топливу, химического сырья для промышленного получения пластмасс и в качестве экстрагирующего средства в пищевой промышленности и производстве ароматизаторов. Каждый год от 10 до 12 миллиардов фунтов бутанола получают с помощью нефтехимических способов и потребность в этом химическом продукте массового спроса будет, очевидно, расти.
Известны способы химического синтеза изобутанола, такие как оксосинтез, каталитическая гидрогенизация монооксида углерода (Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, 2003, Wiley-VCHVerlag GmbH and Co., Weinheim, Germany, Vol. 5, pp. 716-719) и конденсация метанола с н-пропанолом по Guerbet (Carlini et al., J. Mol. Catal. A:Chem. 220:215-220 (2004)). В этих способах применяют исходные реагенты, происходящие из нефтехимических продуктов, и они обычно дороги и не приемлемы с экологической точки зрения. Получение изобутанола из сырья растительного происхождения должно свести к минимуму выделение тепличного газа и должно представлять собой достижение в данной области техники.
Изобутанол получают биологически как побочный продукт ферментации дрожжей. Он является компонентом «сивушного масла», которое образуется в результате неполного метаболизма аминокислот этой группой грибов. Изобутанол специфически продуцируется в результате катаболизма L-валина. После того как аминогруппу L-валина собирают в качестве источника азота, оставшуюся α-кетокислоту декарбоксилируют и восстанавливают до изобутанола с помощью ферментов так называемого пути Эрлиха (Dickinson et al., J. Biol. Chem. 273(40):25752-25756 (1998)). Выходы сивушного масла и/или его компонентов, достигаемые в процессе ферментации напитков, обычно являются низкими. Например, концентрация изобутанола, получаемая при ферментации пива, как сообщается, составляет менее 16 частей на миллион (Garcia et al., Process Biochemistry 29:303-309 (1994)). Добавление экзогенного L-валина в систему ферментации повышает выход изобутанола, как описано Dickinson et al., выше, где сообщается, что выход изобутанола в 3 г/л получают при внесении L-валина в концентрации 20 г/л в систему ферментации. Однако применение валина в качестве промышленного сырья должно характеризоваться чрезвычайно высокой стоимостью для получения изобутанола в промышленном масштабе. Биосинтез изобутанола непосредственно из сахаров должен быть экономически целесообразным и должен представлять достижение в данной области техники. Сообщения о создании рекомбинантного микроорганизма, продуцирующего изобутанол, отсутствуют.
Следовательно, существует потребность в приемлемом для окружающей среды, рентабельном способе получения изобутанола в качестве единственного продукта. Настоящее изобретение обращено на эту потребность путем обеспечения рекомбинантным микробным хозяином-продуцентом, который экспрессирует компоненты пути биосинтеза изобутанола.
Краткое изложение сущности изобретения
В изобретении предлагается рекомбинантный микроорганизм, обладающий сконструированным путем биосинтеза изобутанола. Сконструированный микроорганизм может быть использован для промышленного получения изобутанола. Соответственно в одном осуществлении в изобретении предлагается рекомбинантная микробная клетка-хозяин, включающая по меньшей мере одну молекулу ДНК, кодирующую полипептид, который катализирует превращение субстрата в продукт, выбранное из группы, состоящей из
i) пирувата в ацетолактат (стадия a пути)
ii) ацетолактата в 2,3-дигидроксиизовалерат (стадия b пути)
iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат (стадия c пути)
iv) α-кетоизовалерата в изобутиральдегид (стадия d пути) и
v) изобутиральдегид в изобутанол (стадия e пути),
где по меньшей мере одна молекула ДНК является гетерологичной по отношению к указанной микробной клетке-хозяину и где указанная микробная клетка-хозяин продуцирует изобутанол.
В другом осуществлении в изобретении предлагается рекомбинантная микробная клетка-хозяин, включающая по меньшей мере одну молекулу ДНК, кодирующую полипептид, который катализирует превращение субстрата в продукт, выбранное из группы, состоящей из
i) пирувата в ацетолактат, (стадия a пути)
ii) ацетолактата в 2,3-дигидроксиизовалерат, (стадия b пути)
iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат, (стадия c пути)
iv) α-кетоизовалерата в изобутирил-КоА, (стадия f пути),
v) изобутирил-КоА в изобутиральдегид, (стадия g пути), и
vi) изобутиральдегид в изобутанол; (стадия e пути),
где по меньшей мере одна молекула ДНК является гетерологичной по отношению к указанной микробной клетке-хозяину и где указанная микробная клетка-хозяин продуцирует изобутанол.
В другом осуществлении в изобретении предлагается рекомбинантная микробная клетка-хозяин, включающая по меньшей мере одну молекулу ДНК, кодирующую полипептид, который катализирует превращение субстрата в продукт, выбранное из группы, состоящей из
i) пирувата в ацетолактат, (стадия a пути)
ii) ацетолактата в 2,3-дигидроксиизовалерат, (стадия b пути)
iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат, (стадия c пути)
iv) α-кетоизовалерата в валин, (стадия h пути)
v) валина в изобутиламин, (стадия i пути)
vi) изобутиламина в изобутиральдегид, (стадия j пути), и
vii) изобутиральдегида в изобутанол; (стадия e пути),
где по меньшей мере одна молекула ДНК является гетерологичной по отношению к указанной микробной клетке-хозяину и где указанная микробная клетка-хозяин продуцирует изобутанол.
В другом осуществлении в изобретении предлагается способ получения изобутанола, включающий
1) получение рекомбинантной микробной клетки-хозяина, включающей по меньшей мере одну молекулу ДНК, кодирующую полипептид, который катализирует превращение субстрата в продукт, выбранное из группы, состоящей из
i) пирувата в ацетолактат (стадия a пути)
ii) ацетолактата в 2,3-дигидроксиизовалерат (стадия b пути)
iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат (стадия c пути)
iv) α-кетоизовалерата в изобутиральдегид (стадия d пути), и
v) изобутиральдегида в изобутанол; (стадия e пути),
где по меньшей мере одна молекула ДНК является гетерологичной по отношению к указанной микробной клетке-хозяину; и
2) контактирование клетки-хозяина (1) с ферментируемым углеродным субстратом в ферментационной среде в условиях, при которых продуцируется изобутанол.
В другом осуществлении в изобретении предлагается способ получения изобутанола, включающий
1) получение рекомбинантной микробной клетки-хозяина, включающей по меньшей мере одну молекулу ДНК, кодирующую полипептид, который катализирует превращение субстрата в продукт, выбранное из группы, состоящей из
i) пирувата в ацетолактат, (стадия a пути)
ii) ацетолактата в 2,3-дигидроксиизовалерат, (стадия b пути)
iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат, (стадия c пути)
iv) α-кетоизовалерата в изобутирил-КоА, (стадия f пути)
v) изобутирил-КоА в изобутиральдегид, (стадия g пути), и
vi) изобутиральдегида в изобутанол; (стадия e пути),
где по меньшей мере одна молекула ДНК является гетерологичной по отношению к указанной микробной клетке-хозяину; и
2) контактирование клетки-хозяина (1) с ферментируемым углеродным субстратом в ферментационной среде в условиях, при которых продуцируется изобутанол.
В другом осуществлении в изобретении предлагается способ получения изобутанола, включающий
1) получение рекомбинантной микробной клетки-хозяина, включающей по меньшей мере одну молекулу ДНК, кодирующую полипептид, который катализирует превращение субстрата в продукт, выбранное из группы, состоящей из
i) пирувата в ацетолактат, (стадия a пути)
ii) ацетолактата в 2,3-дигидроксиизовалерат, (стадия b пути)
iii) 2,3-дигидроксиизовалерата в α-кетоизовалерат, (стадия c пути)
iv) α-кетоизовалерата в валин, (стадия h пути)
v) валина в изобутиламин, (стадия i пути)
vi) изобутиламина в изобутиральдегид; (стадия j пути), и
vii) изобутиральдегида в изобутанол; (стадия e пути),
где по меньшей мере одна молекула ДНК является гетерологичной по отношению к указанной микробной клетке-хозяину; и
2) контактирование клетки-хозяина (1) с ферментируемым углеродным субстратом в ферментационной среде в условиях, при которых продуцируется изобутанол.
В альтернативном осуществлении в изобретении предлагается ферментационная среда, содержащая изобутанол, продуцируемая с помощью способов изобретения.
Краткое описание фигур и описание последовательностей
Изобретение может быть понято более полно из последующего подробного описания, фигур и сопровождающего описания последовательностей, которые составляют часть этой заявки.
На чертеже представлено четыре различных пути биосинтеза изобутанола. Стадии, обозначенные «a», «b», «c», «d», «e», «f», «g», «h», «i», «j» и «k», представляют собой превращения субстрата в продукт, описанные ниже.
Следующие последовательности согласуются с 37 C.F.R. 1.821-1.825 («Requirements for Patent Applications Containing Nucleotide Sequences and/or Amino Acid Sequence Disclosures - the Sequence Rules») и совместимы со стандартом ST.25 (1998) Всемирной организации интеллектуальной собственности (WIPO), и с требованиями перечня последовательностей EPO и PCT (правила 5.2 и 49.5(a-бис) и раздел 208 и приложение C административных инструкций). Символы и формат, применяемые для данных по нуклеотидной и аминокислотной последовательностям, подчиняются правилам, установленным в 37 C.F.R. §1.822.
Таблица 1 | ||
Обзор номеров SEQ ID генов и белков | ||
Описание | SEQ ID NO:нуклеиновая кислота | SEQ ID NO:пептид |
Klebsiella pneumoniae budD (ацетолактатсинтаза) | 1 | 2 |
Bacillus subtilis alsS (ацетолактатсинтаза) | 78 | 178 |
Lactococcus lactis als (ацетолактатсинтаза) | 179 | 180 |
E. coli ilvC (редуктоизомераза ацетогидроксикислот) | 3 | 4 |
S. cerevisiae ILV5 (редуктоизомераза ацетогидроксикислот) | 80 | 181 |
M. maripaludis ilvC (редуктоизомераза кетокислот) | 182 | 183 |
B. subtilis ilvC (редуктоизомераза ацетогидроксикислот) | 184 | 185 |
E. coli ilvD (дегидратаза ацетогидроксикислот) | 5 | 6 |
S. cerevisiae ILV3 (дегидратаза дигидроксикислот) | 83 | 186 |
M. maripaludis ilvD (дегидратаза дигидроксикислот) | 187 | 188 |
B. subtilis ilvD (дегидратаза дигидроксикислот) | 189 | 190 |
Lactococcus lactis kivD (декарбоксилаза α-кетокислоты с разветвленной цепью), с оптимизированными кодонами | 7 | 8 |
Lactococcus lactis kivD (декарбоксилаза α-кетокислоты с разветвленной цепью) | 191 | 8 |
Lactococcus lactis kdcA (декарбоксилаза α-кетокислоты с разветвленной цепью) | 192 | 193 |
Salmonella typhimurium (индолпируватдекарбоксилаза) | 194 | 195 |
Clostridium acetobutylicum pdc (пируватдекарбоксилаза) | 196 | 197 |
E. coli yqhD (дегидрогеназа спиртов с разветвленной цепью) | 9 | 10 |
S. cerevisiae YPR1 (2-метилбутиральдегидредуктаза) | 198 | 199 |
S. cerevisiae ADH6 (НАДФН-зависимая циннамилалкогольдегидрогеназа) | 200 | 201 |
Clostridium acetobutylicum bdhA (НАДН-зависимая бутанолдегидрогеназа A) | 202 | 203 |
Clostridium acetobutylicum bdhB (бутанолдегидрогеназа) | 158 | 204 |
B. subtilis bkdAA (субъединица E1 дегидрогеназы кетокислот с разветвленной цепью) | 205 | 206 |
B. subtilis bkdAB (субъединица E1 дегидрогеназы альфа-кетокислот с разветвленной цепью) | 207 | 208 |
B. subtilis bkdB (субъединица E2 дегидрогеназы альфа-кетокислот с разветвленной цепью) | 209 | 210 |
B. subtilis lpdV (субъединица E3 дегидрогеназы альфа-кетокислот с разветвленной цепью) | 211 | 212 |
P. putida bkdA1 (субъединица E1-альфа дегидрогеназы кетокислот) | 213 | 214 |
P. putida bkdA2 (субъединица E1-бета дегидрогеназы кетокислот) | 215 | 216 |
P. putida bkdB аланин-пируват-трансацилаза | 217 | 218 |
P. putida 1pdV (липоамиддегидрогеназа) | 219 | 220 |
C. beijerinckii ald (коэнзим A-ацилирующая альдегиддегидрогеназа) | 221 | 222 |
C. acetobutylicum adhe1 (альдегиддегидрогеназа) | 223 | 224 |
C. acetobutylicum adhe (алкогольальдегиддегидрогеназа) | 225 | 226 |
P. putida nahO (ацетальдегиддегидрогеназа) | 227 | 228 |
T. thermophilus (ацетальдегиддегидрогеназа) | 229 | 230 |
E. coli avtA (валин-пируват-трансаминаза) | 231 | 232 |
B. licheniformis avtA (валин-пируват-трансаминаза) | 233 | 234 |
E. coli ilvE (аминотрансфераза аминокислот с разветвленной цепью) | 235 | 236 |
S. cerevisiae BAT2 (аминотрансфераза аминокислот с разветвленной цепью) | 237 | 238 |
M. thermoautotrophicum (аминотрансфераза аминокислот с разветвленной цепью) | 239 | 240 |
S. coelicolor (валиндегидрогеназа) | 241 | 242 |
B. subtilis bcd (лейциндегидрогеназа) | 243 | 244 |
S. viridifaciens (валиндекарбоксилаза) | 245 | 246 |
A. denitrificans aptA (омега-аминокислота:пируват-трансаминаза) | 247 | 248 |
R. eutropha (аланин-пируват-трансаминаза) | 249 | 250 |
S. oneidensis (бета-аланин-пируват-трансаминаза) | 251 | 252 |
P. putida (бета-аланин-пируват-трансаминаза) | 253 | 254 |
S. cinnamonensis icm (изобутирил-КоА-мутаза) | 255 | 256 |
S. cinnamonensis icmB (изобутирил-КоА-мутаза) | 257 | 258 |
S. coelicolor SCO5415 (изобутирил-КоА-мутаза) | 259 | 260 |
S. coelicolor SCO4800 (изобутирил-КоА-мутаза) | 261 | 262 |
S. avermitilis icmA (изобутирил-КоА-мутаза) | 263 | 264 |
S. avermitilis icmB (изобутирил-КоА-мутаза) | 265 | 266 |
SEQ ID NO:11-38, 40-69, 72-75, 85-138, 144, 145, 147-157, 159-176 представляют собой нуклеотидные последовательности клонированных олигонуклеотидов, скрининга или последовательностей праймеров, используемых в описанных здесь примерах.
SEQ ID NO:39 представляет собой нуклеотидную последовательность кластера генов cscBKA, описанную в примере 16.
SEQ ID NO:70 представляет собой нуклеотидную последовательность промотора глюкозоизомеразы 1.6Gl, описанную в примере 13.
SEQ ID NO:71 представляет собой нуклеотидную последовательность промотора 1.5Gl, описанную в примере 13.
SEQ ID NO:76 представляет собой нуклеотидную последовательность промотора GPD, описанную в примере 17.
SEQ ID NO:77 представляет собой нуклеотидную последовательность терминатора CYC1, описанную в примере 17.
SEQ ID NO:79 представляет собой нуклеотидную последовательность промотора FBA, описанную в примере 17.
SEQ ID NO:81 представляет собой нуклеотидную последовательность промотора ADH1, описанную в примере 17.
SEQ ID NO:82 представляет собой нуклеотидную последовательность терминатора ADH1, описанную в примере 17.
SEQ ID NO:84 представляет собой нуклеотидную последовательность промотора GPM, описанную в примере 17.
SEQ ID NO:139 представляет собой аминокислотную последовательность сахарозогидролазы (CscA).
SEQ ID NO:140 представляет собой аминокислотную последовательность D-фруктокиназы (CscK).
SEQ ID NO:141 представляет собой аминокислотную последовательность сахарозопермеазы (CscB).
SEQ ID NO:142 представляет собой нуклеотидную последовательность плазмиды pFP988DssPspac, описанную в примере 20.
SEQ ID NO:143 представляет собой нуклеотидную последовательность плазмиды pFP988DssPgroE, описанную в примере 20.
SEQ ID NO:146 представляет собой нуклеотидную последовательность фрагмента вектора pFP988Dss, описанную в примере 20.
SEQ ID NO:177 представляет собой нуклеотидную последовательность суммарного вектора pFP988, описанную в примере 21.
SEQ ID NO:267 представляет собой нуклеотидную последовательность плазмиды pC194, описанную в примере 21.
Подробное описание изобретения
Настоящее изобретение относится к способам получения изобутанола с применением рекомбинантных микроорганизмов. Настоящее изобретение удовлетворяет ряду коммерческих и промышленных потребностей. Бутанол является важным промышленным химическим продуктом с разнообразным применением, где его потенциал в качестве топлива или присадки к топливу особенно важен. Являясь только четырехуглеродным спиртом, бутанол обладает запасом энергии, сходным с таковым бензина, и может быть смешан с ископаемым топливом. Бутанол предпочтителен в качестве топлива или присадки к топливу, так как он дает выход только CO2 и не дает или дает мало SOx или NOx при сгорании в двигателе внутреннего сгорания. Дополнительно бутанол является менее коррозийным, чем этанол, наиболее предпочтительная присадка к топливу в настоящее время.
В дополнение к его применимости в качестве биотоплива или присадки к топливу бутанол обладает потенциалом влияния на проблемы распределения водорода в появляющейся индустрии топливных элементов. Топливные элементы в настоящее время представляют собой проблему для безопасности, связанную с транспортом и распределением водорода. Бутанол может быть легко перестроен в отношении его содержания водородов и может быть распределен между существующими бензозаправочными станциями в чистоте, требуемой либо для топливных элементов, либо для носителей.
Наконец, в настоящем изобретении изобутанол продуцируется из источников углерода, происходящих из растений, избегая воздействия на окружающую среду, связанного с нефтехимическими процессами получения бутанола.
Следующие определения и сокращения предназначены для применения при интерпретации формулы изобретения и описания.
Как здесь применяется, термин «изобретение» или «настоящее изобретение» представляет собой нелимитирующий термин и не предназначен для отнесения любого простого осуществления конкретного изобретения, но охватывает все возможные осуществления, как описано в описании и формуле изобретения.
Термин «путь биосинтеза изобутанола» относится к ферментативным путям получения изобутанола.
Термины «ацетолактатсинтаза» и «ацетолактатсинтетаза» применяются здесь взаимозаменяемо в отношении фермента, который катализирует превращение пирувата в ацетолактат и CO2. Предпочтительные ацетолактатсинтазы известны под номером EC 2.2.1.6 9 (Enzyme Nomenclature 1992, Academic Press, San Diego). Эти ферменты доступны из ряда источников, включая, но не ограничиваясь этим, Bacillus subtilis (GenBank NO: CAB15618 (SEQ ID NO:178), Z99122 (SEQ ID NO:78), аминокислотная последовательность NCBI (National Center for Biotechnology Information), нуклеотидная последовательность NCBI соответственно), Klebsiella pneumoniae [GenBank NO: AAA25079 (SEQ ID NO:2), M73842 (SEQ ID NO:1)) и Lactococcus lactis (GenBank NO: AAA25161 (SEQ ID NO:180), L16975; SEQ ID NO:179)).
Термины «изомероредуктаза ацетогидроксикислот» и «редуктоизомераза ацетогидроксикислот» применяются здесь взаимозаменяемо в отношении к ферменту, который катализирует превращение ацетолактата в 2,3-дигидроксиизовалерат с использованием НАДФН (восстановленного никотинамидадениндинуклеотид-фосфата) в качестве донора электронов. Предпочтительные изомероредуктазы ацетогидроксикислот известны под номером EC 1.1.1.86 и последовательности доступны из большого спектра микроорганизмов, включая, но не ограничиваясь этим, Escherichia coli (GenBank NO: NP_418222 (SEQ ID NO:4), NC_000913 (SEQ ID NO:3)), Saccharomyces cerevisiae (GenBank NO: NP_013459 (SEQ ID NO:181), NC_001144 (SEQ ID NO:80)), Methanococcus maripaludis (GenBank NO: CAF30210 (SEQ ID NO:183), BX957220 (SEQ ID NO:182)) и Bacillus subtilis (GenBank NO: CAB 14789 (SEQ ID NO:185), Z99118 (SEQ ID NO:184)).
Термин «дегидратаза ацетогидроксикислот» относится к ферменту, который катализирует превращение 2,3-дигидроксиизовалерата в α-кетоизовалерат. Предпочтительные дегидратазы ацетогидроксикислот известны под номером EC 4.2.1.9. Эти ферменты доступны из большого спектра микроорганизмов, включая, но не ограничиваясь этим, E. coli (GenBank NO: YP_026248 (SEQ ID NO:6), NC_000913 (SEQ ID NO:5)), S. cerevisiae (GenBank NO: NP_012550 (SEQ ID NO:186), NC_001142 (SEQ ID NO:83)), M. maripaludis (GenBank NO: CAF29874 (SEQ ID NO:188), BX957219 (SEQ ID NO:187)) и B. subtilis (GenBank NO: CAB14105 (SEQ ID NO:190), Z99115 (SEQ ID NO:189)).
Термин «декарбоксилаза α-кетокислоты с разветвленной цепью» относится к ферменту, который катализирует превращение α-кетоизовалерата в изобутиральдегид и CO2. Предпочтительные декарбоксилазы α-кетокислот с разветвленной цепью известны под номером EC 4.1.1.72 и доступны из ряда источников, включая, но не ограничиваясь этим, Lactococcus lactis (GenBank NO: AAS49166 (SEQ ID NO:193), AY548760 (SEQ ID NO:192); CAG34226 (SEQ ID NO:8), AJ746364 (SEQ ID NO:191), Salmonella typhimurium (GenBank NO: NP_461346 (SEQ ID NO:195), NC_003197 (SEQ ID NO:194)) и Clostridium acetobutylicum (GenBank NO: NP_149189 (SEQ ID NO:197), NC_001988 (SEQ ID NO:196)).
Термин «дегидрогеназа спиртов с разветвленной цепью» относится к ферменту, который катализирует превращение изобутиральдегида в изобутанол. Предпочтительные дегидрогеназы спиртов с разветвленной цепью известны под номером EC 1.1.1.265, но могут также классифицироваться как другие алкогольдегидрогеназы (конкретно, EC 1.1.1.1 или 1.1.1.2). Эти ферменты используют НАДН (восстановленный никотинамидадениндинуклеотид) и/или НАДФН в качестве донора электронов, и они доступны из ряда источников, включая, но не ограничиваясь этим, S. cerevisiae (GenBank NO: NP_010656 (SEQ ID NO:199), NC_001136 (SEQ ID NO:198); NP_0314051 (SEQ ID NO:201) NC_001145 (SEQ ID NO:200)), E. coli (GenBank NO: NP_417484 (SEQ ID NO:10), NC_000913 (SEQ ID NO:9)) и C. acetobutylicum (GenBank NO: NP_349892 (SEQ ID NO:203), NC_003030 (SEQ ID NO:202); NP_349891 (SEQ ID NO:204), NC_003030 (SEQ ID NO:158)).
Термин «дегидрогеназа кетокислот с разветвленной цепью» относится к ферменту, который катализирует превращение α-кетоизовалерата в изобутирил-КоА (изобутирил-коэнзим A) с использованием НАД+ (никотинамидадениндинуклеотида) в качестве акцептора электронов. Предпочтительные дегидрогеназы кетокислот с разветвленной цепью известны под номером EC 1.2.4.4. Эти дегидрогеназы кетокислот с разветвленной цепью включают четыре субъединицы и последовательности всех субъединиц доступны от большого набора микроорганизмов, включая, но не ограничиваясь этим, B. subtilis (GenBank NO: CAB14336 (SEQ ID NO:206), Z99116 (SEQ ID NO:205); CAB14335 (SEQ ID NO:208), Z99116 (SEQ ID NO:207); CAB14334 (SEQ ID NO:210), Z99116 (SEQ ID NO:209); и CAB14337 (SEQ ID NO:212), Z99116 (SEQ ID NO:211)) и Pseudomonas putida (GenBank NO: AAA65614 (SEQ ID NO:214), M57613 (SEQ ID NO:213); AAA65615 (SEQ ID NO:216), M57613 (SEQ ID NO:215); AAA65617 (SEQ ID NO:218), M57613 (SEQ ID NO:217); и AAA65618 (SEQ ID NO:220), M57613 (SEQ ID NO:219)).
Термин «ацилирующая альдегиддегидрогеназа» относится к ферменту, который катализирует превращение изобутирил-КоА в изобутиральдегид с использованием либо НАДН, либо НАДФН в качестве донора электронов. Предпочтительные ацилирующие альдегиддегидрогеназы известны под номерами EC 1.2.1.10 и 1.2.1.57. Эти ферменты доступны из множества источников, включая, но не ограничиваясь этим, Clostridium beijerinckii (GenBank NO: AAD31841 (SEQ ID NO:222), AF157306 (SEQ ID NO:221)), C. acetobutylicum (GenBank NO: NP_149325 (SEQ ID NO:224), NC_001988 (SEQ ID NO:223); NP_149199 (SEQ ID NO:226), NC_001988 (SEQ ID NO:225)), P. putida (GenBank NO: AAA89106 (SEQ ID NO:228), U13232 (SEQ ID NO:227)) и Thermus thermophilus (GenBank NO: YP_145486 (SEQ ID NO:230), NC_006461 (SEQ ID NO:229)).
Термин «трансаминаза» относится к ферменту, который катализирует превращение α-кетоизовалерата в L-валин с использованием либо аланина, либо глутамата в качестве донора амина. Предпочтительные трансаминазы известны под номерами EC 2.6.1.42 и 2.6.1.66. Эти ферменты доступны из ряда источников. Примеры источников для ферментов, зависимых от аланина, включают, но не ограничиваются этим, E. coli (GenBank NO: YP_026231 (SEQ ID NO:232), NC_000913 (SEQ ID NO:231)) и Bacillus licheniformis (GenBank NO: YP_093743 (SEQ ID NO:234), NC_006322 (SEQ ID NO:233)). Примеры источников для ферментов, зависимых от глутамата, включают, но не ограничиваются этим, E. coli (GenBank NO: YP_026247 (SEQ ID NO:236), NC_000913 (SEQ ID NO:235)), S. cerevisiae (GenBank NO: NP_012682 (SEQ ID NO:238), NC_001142 (SEQ ID NO:237)) и Methanobacterium thermoautotrophicum (GenBank NO: NP_276546 (SEQ ID NO:240), NC_000916 (SEQ ID NO:239)).
Термин «валиндегидрогеназа» относится к ферменту, который катализирует превращение α-кетоизовалерата в L-валин с использованием НАД(Ф)Н в качестве донора электронов и аммиака в качестве донора амина. Предпочтительные валиндегидрогеназы известны под номерами EC 1.4.1.8 и 1.4.1.9 и доступны из ряда источников, включая, но не ограничиваясь этим, Streptomyces coelicolor (GenBank NO: NP_628270 (SEQ ID NO:242), NC_003888 (SEQ ID NO:241)) и B. subtilis (GenBank NO: CAB14339 (SEQ ID NO:244), Z99116 (SEQ ID NO:243)).
Термин «валиндекарбоксилаза» относится к ферменту, который катализирует превращение L-валина в изобутиламин и CO2. Предпочтительные валиндекарбоксилазы известны под номером EC 4.1.1.14. Эти ферменты найдены в Streptomycetes, таких как, например, Streptomyces viridifaciens (GenBank NO: AAN10242 (SEQ ID NO:246), AY116644 (SEQ ID NO:245)).
Термин «омега-трансаминаза» относится к ферменту, который катализирует превращение изобутиламина в изобутиральдегид с использованием подходящей аминокислоты в качестве донора амина. Предпочтительные омега-трансаминазы известны под номером EC 2.6.1.18 и доступны из ряда источников, включая, но не ограничиваясь этим, Alcaligenes denitrificans (AAP92672 (SEQ ID NO:248), AY330220 (SEQ ID NO:247)), Ralstonia eutropha (GenBank NO: YP_294474 (SEQ ID NO:250), NC_007347 (SEQ ID NO:249)), Shewanella oneidensis (GenBank NO: NP_719046 (SEQ ID NO:252), NC_004347 (SEQ ID NO:251)) и P. putida (GenBank NO: AAN66223 (SEQ ID NO:254), AE016776 (SEQ ID NO:253)).
Термин «изобутирил-КоА-мутаза» относится к ферменту, который катализирует превращение бутирил-КоА- в изобутирил-КоА. Этот фермент использует коэнзим B12 в качестве кофактора. Предпочтительные изобутирил-КоА-мутазы известны под номером EC 5.4.99.13. Эти ферменты найдены в ряде Streptomycetes, включая, но не ограничиваясь этим, Streptomyces cinnamonensis (GenBank NO: AAC08713 (SEQ ID NO.256), U67612 (SEQ ID NO:255); CAB59633 (SEQ ID NO:258), AJ246005 (SEQ ID NO:257)), S. coelicolor (GenBank NO: CAB70645 (SEQ ID NO:260), AL939123 (SEQ ID NO:259); CAB92663 (SEQ ID NO:262), AL939121 (SEQ ID NO:261)) и Streptomyces avermitilis (GenBank NO: NP_824008 (SEQ ID NO:264), NC_003155 (SEQ ID NO:263); NP_824637 (SEQ ID NO:266), NC_003155 (SEQ ID NO:265)).
Термин «факультативный анаэроб» относится к микроорганизму, который может расти как в аэробных, так и в анаэробных условиях.
Термин «углеродный субстрат» или «ферментируемый углеродный субстрат» относится к источнику углерода, способному метаболизироваться организмами-хозяевами настоящего изобретения, и особенно к источникам углерода, выбранным из группы, состоящей из моносахаридов, олигосахаридов, полисахаридов и одноуглеродных субстратов или их смесей.
Термин «ген» относится к фрагменту нуклеиновой кислоты, который способен экспрессироваться в виде конкретного белка, необязательно включая регуляторные последовательности перед (5'-некодирующие последовательности) и после (3'-некодирующие последовательности) кодирующей последовательности. «Природный ген» относится к гену, в том виде как он находится в природе, с его собственными регуляторными последовательностями. «Химерный ген» относится к любому гену, который не является природным геном, включающему регуляторные и кодирующие последовательности, которые вместе не находят в природе. Соответственно химерный ген может включать регуляторные последовательности и кодирующие последовательности, которые происходят из различных источников, или регуляторные последовательности и кодирующие последовательности, которые происходят от одного и того же источника, но располагаются отличным от природного образом. «Эндогенный ген» относится к природному гену в своей природной локализации в геноме организма. «Чужеродный ген» или «гетерологичный ген» относится к гену, не обнаруживаемому в организме-хозяине в норме, но введенному в организм-хозяин с помощью переноса гена. Чужеродные гены могут включать природные гены, вставленные в неприродный организм или химерные гены. «Трансген» представляет собой ген, который введен в геном с помощью метода трансформации.
Используемый здесь термин «кодирующая последовательность» относится к последовательности ДНК, которая кодирует конкретную аминокислотную последовательность. «Подходящие регуляторные последовательности» относятся к нуклеотидным последовательностям, расположенным выше (5'-некодирующие последовательности), внутри или ниже (3'-некодирующие последовательности) кодирующей последовательности, которые влияют на транскрипцию, процессинг, или стабильность РНК, или трансляцию связанной кодирующей последовательности. Регуляторные последовательности могут включать промоторы, лидирующие последовательности трансляции, интроны, последовательности распознавания полиаденилирования, сайт процессинга РНК, эффекторный связывающий сайт и структуру основа-петля.
Термин «промотор» относится к последовательности ДНК, способной регулировать экспрессию кодирующей последовательности или функциональной РНК. В целом, кодирующая последовательность расположена на 3'-конце по отношению к промоторной последовательности. Промоторы могут происходить целиком из природного гена или состоять из различных элементов, происходящих из различных промоторов, существующих в природе, или даже включать синтетические сегменты ДНК. Специалистам в данной области техники понятно, что различные промоторы могут направлять экспрессию гена в разных тканях или клеточных типах, или на разных стадиях развития, или в ответ на различные условия окружающей среды или физиологические условия. Промоторы, которые заставляют ген экспрессироваться в большинстве клеточных типах большую часть времени, обозначают как «конститутивные промоторы». Очевидно также, что, так как в большинстве случаев точные границы регуляторных последовательностей полностью не определены, фрагменты ДНК различной длины могут иметь идентичную промоторную активность.
Термин «оперативно связанный» относится к связи последовательностей нуклеиновой кислоты на одиночном фрагменте нуклеиновой кислоты, так что функция одной влияет на другую. Например, промотор оперативно связан с кодирующей последовательностью, когда он способен влиять на экспрессию этой кодирующей последовательности (т.е. когда кодирующая последовательность находится под транскрипционным контролем промотора). Кодирующие последовательности могут быть оперативно связаны с регуляторными последовательностями в смысловой или антисмысловой ориентации.
Используемый здесь термин «экспрессия» относится к транскрипции и стабильной аккумуляции смысловой (мРНК) или антисмысловой РНК, происходящей от фрагмента нуклеиновой кислоты изобретения. Экспрессия может также относиться к трансляции мРНК в полипептид.
Используемый здесь термин «трансформация» относится к переносу фрагмента нуклеиновой кислоты в организм-хозяин, что приводит к генетически стабильному наследованию. Организмы-хозяева, содержащие трансформированные фрагменты нуклеиновой кислоты, обозначаются как «трансгенные», или «рекомбинантные», или «трансформированные» организмы.
Термины «плазмида», «вектор» и «кассета» относятся к внехромосомному элементу, часто несущему гены, которые не являются частью центрального метаболизма клетки, и обычно в форме кольцевых фрагментов двуспиральной ДНК. Такие элементы могут представлять собой автономно реплицирующиеся последовательности, интегрирующиеся в геном последовательности, фаг или нуклеотидные последовательности, линейные или кольцевые, одно- или двуспиральные ДНК или РНК, происходящие из любого источника, в котором ряд нуклеотидных последовательностей соединен или рекомбинирован в единую конструкцию, которая способна вводить в клетку промоторный фрагмент и последовательность ДНК для выбранного продукта гена совместно с подходящей 3'-нетранслируемой последовательностью. «Трансформационная кассета» относится к конкретному вектору, содержащему чужеродный ген и обладающему элементами в дополнение к чужеродному гену, которые облегчают трансформацию конкретной клетки-хозяина. «Экспрессионная кассета» относится к конкретному вектору, содержащему чужеродный ген и обладающему элементами в дополнение к чужеродному гену, которые позволяют усиливать экспрессию гена в чужеродном хозяине.
Используемый здесь термин «вырожденность кодона» относится к природе генетического кода, допускающей вариацию нуклеотидной последовательности без влияния на аминокислотную последовательность кодируемого полипептида. Специалист в данной области техники хорошо осведомлен о «предпочтительности кодона», проявляемом конкретной клеткой-хозяином при использовании кодонов нуклеотидов для определения данной аминокислоты. Следовательно, при синтезе гена для улучшенной экспрессии в клетке-хозяине желательно создавать ген так, чтобы частота использования его кодонов приближалась к частоте использования предпочтительных кодонов клеткой-хозяином.
Термин «кодон-оптимизированный», когда это относится к генам или кодирующим областям молекул нуклеиновой кислоты для трансформации различных хозяев, относится к изменению кодонов в гене или кодирующих областях молекул нуклеиновой кислоты, отражающих типичное использование кодонов организмом-хозяином без изменения полипептида, кодируемого ДНК.
Стандартные способы рекомбинантной ДНК и молекулярного клонирования, применяемые здесь, хорошо известны в данной области техники и описаны Sambrook, J., Fritsch, E.F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989) (здесь далее "Maniatis"); и Silhavy, T.J., Bennan, M.L. and Enquist, L.W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1984); и Ausubel, F.M. et al., Current Protocols in Molecular Biology, опубликованной Greene Publishing Assoc., and Wiley-lnterscience (1987).
Пути биосинтеза изобутанола
Микроорганизмы, использующие углеводы, осуществляют путь Embden-Meyerhof-Parnas (EMP), путь Entner-Doudoroff и пентозофосфатный цикл в качестве центральных метаболических путей обеспечения энергией и клеточными предшественниками для роста и поддержания жизнеспособности. Эти пути имеют общий промежуточный продукт глицеральдегид-3-фосфат и в конечном итоге образуется пируват, прямо или в сочетании с путем EMP. В последующем пируват трансформируется в ацетил-коэнзим A (ацетил-КоА) с помощью различных способов. Ацетил-КоА служит в качестве ключевого промежуточного соединения, например, при получении жирных кислот, аминокислот и вторичных метаболитов. Сочетанные реакции превращения сахаров в пируват дают энергию (например, аденозин-5'-трифосфат, АТФ) и восстановленные эквиваленты (например, восстановленный никотинамидадениндинуклеотид, НАДН, и восстановленный никотинамидаденидинуклеотидфосфат, НАДФН). НАДН и НАДФН могут быть рециклизованы до их окисленных форм (НАД+ и НАДФ+ соответственно). В присутствии неорганических акцепторов электронов (например, O2, NO3 - и SO4 2-) восстанавливающие эквиваленты могут быть использованы для пополнения пула энергии; альтернативно может быть образован восстановленный углеродный побочный продукт.
Изобретение дает возможность получать изобутанол из углеводных источников с помощью рекомбинантных микроорганизмов путем предоставления четырех полных путей реакций, как показано на чертеже. Три из этих путей включают превращение пирувата в изобутанол через серии ферментативных стадий. Предпочтительный путь биосинтеза изобутанола (чертеж, стадии a-e) включает следующие превращения субстрата в продукт:
a) пирувата в ацетолактат, катализируемого, например, ацетолактатсинтазой,
b) ацетолактата в 2,3-дигидроксиизовалерат, катализируемого, например, изомероредуктазой ацетогидроксикислот,
c) 2,3-дигидроксиизовалерата в α-кетоизовалерат, катализируемого, например, дегидратазой ацетогидроксикислот,
d) α-кетоизовалерата в изобутиральдегид, катализируемого, например, декарбоксилазой кетокислот с разветвленной цепью, и
e) изобутиральдегида в изобутанол, катализируемого, например, дегидрогеназой спиртов с разветвленной цепью.
В этом пути сочетаются ферменты, известные как вовлеченные в хорошо охарактеризованные пути биосинтеза валина (пируват в α-кетоизовалерат) и катаболизма валина (α-кетоизовалерат в изобутанол). Так как многие ферменты биосинтеза валина также катализируют аналогичные реакции в пути биосинтеза изолейцина, при выборе источников гена главным соображением является специфичность субстрата. По этой причине главными интересующими генами для фермента ацетолактатсинтазы являются таковые от Bacillus (alsS) и Klebsiella (budB). Эти конкретные ацетолактатсинтазы известны как участвующие в ферментации бутандиола в этих организмах и демонстрируют повышенное сродство к пирувату по сравнению с кетобутиратом (Gollop et al., J. Bacteriol. 172(6):3444-3449 (1990); Holtzclaw et al., J. Bacteriol. 121(3):917-922 (1975)). Вторая и третья стадии пути катализируются редуктоизомеразой и дегидратазой ацетогидроксикислот соответственно. Эти ферменты охарактеризованы из ряда источников, таких как, например, E. coli (Chunduru et al., Biochemistry 28(2):486-493 (1989); Flint et al., J. Biol. Chem. 268(29): 14732-14742 (1993)). Две конечные стадии предпочтительного пути биосинтеза изобутанола известны как встречающиеся у дрожжей, которые могут использовать валин в качестве источника азота и в процессе с