Ферментационный способ получения дифтерийного токсина
Иллюстрации
Показать всеИзобретение касается способа изготовления дифтерийного токсина или его мутанта или фрагмента, включающего ферментационную стадию выращивания штамма Corynebacterium diphtheriae в среде в ферментаторе при условиях перемешивания, достаточных для поддержания гомогенной культуры, и ограниченной аэрации, так что парциальное давление кислорода (рО2) в культуре падает до уровня менее 4% на протяжении большей части ферментационной стадии, и выделение дифтерийного токсина или его мутанта или фрагмента из культуры. Изобретение касается также способа изготовления фармацевтической композиции для лечения или профилактики дифтерии, включающего стадию ферментативного получения токсина и после выделения смешивания его с фармацевтически приемлемым носителем. Использование изобретения приводит к более высоким выходам дифтерийного токсина или мутанта, например, CRM197, а также обеспечивает сохранение высокого выхода дифтерийного токсина в тех случаях, когда питательная среда содержит добавленное железо или сложные исходные вещества варьирующего качества. 2 н. и 18 з.п. ф-лы, 6 ил., 8 табл.
Реферат
Настоящее изобретение относится к области дифтерийных антигенов, в частности токсинов (включая мутантные формы дифтерийного токсина, такие как CRM197), и к ферментационным способам производства смешанных культур таких антигенов.
Дифтерийный токсин представляет собой белковый экзотоксин, продуцируемый бактерией Corynebacterium diphtheria. Он продуцируется в виде одиночного полипептида, который легко подвергается сплайсингу с образованием двух субъединиц, связанных дисульфидной связью, фрагмента А и фрагмента В, в результате расщепления по остатку 190, 192 или 193 (Moskaug et al., Biol. Chem. 264: 15709-15713, 1989). Фрагмент А представляет собой каталитически активную часть и представляет собой NAD-зависимую ADP-рибозилтрансферазу, специфической мишенью которой является фактор синтеза белка EF-2, посредством этого она инактивирует EF-2 и прекращает синтез белка в клетке.
Иммунитет к бактериальному токсину, такому как дифтерийный токсин, может быть приобретенным естественным путем во время инфекции, либо искусственно путем инъекции детоксифицированной формы токсина (анатоксина) (Germanier, er, Bacterial Vaccines, Academic Press, Orlando, FI., 1984). Анатоксины традиционно получали путем химической модификации нативных токсинов (Lingood et al., Brit. J. Exp.Path. 44; 177, 1963), делая их нетоксичными при сохранении антигенности, что защищает вакцинированное животное против последующего заражения природным токсином. В качестве альтернативы описали несколько мутантных дифтерийных токсинов с пониженной токсичностью (US 4709017, US 4950740).
CRM197 представляет собой нетоксичную форму дифтерийного токсина, но является иммунологически неотличимым от дифтерийного токсина. CRM197 продуцируется С.diphtheriae, инфицированной нетоксигенным фагом β197tox-, созданным путем нитрозогуанидинового мутагенеза токсигенного каринефага b (carynephage b) (Uchida et al., Nature New Biology (1971) 233; 8-11). Белок CRM197 имеет ту же самую молекулярную массу, что и дифтерийный токсин, но отличается от него одиночной заменой основания в структурном гене. Это приводит к замене аминокислоты глицин на глутамин в положении 52, что делает фрагмент А неспособным связывать NAD и, следовательно, нетоксичным (Pappenheimer 1977, Ann Rev, Biochem. 46; 69-94, Rappuoli Applied and Environmental Microbiology Sept 1983, p.560-564).
Дифтерийный анатоксин и мутантная форма с пониженной токсичностью, CRM197, являются компонентами во многих вакцинах, обеспечивающих иммунитет против Corynebacterium diphtheriae. Известно несколько комбинированных вакцин, которые могут предупреждать заболевания, вызванные Bordetella pertussis, Clostridium tetani, Corynebacterium diphtheriae и возможно вирусом гепатита В и/или Haemophilus influenzae типа b (смотри, например, WO 93/24148 и WO 97/00697, WO 02/055105).
Дифтерийный токсин и мутантные формы, включая CRM197, также использовали в вакцинах в качестве безопасных и эффективных носителей сахаридов, зависимых от Т-клеток. CRM197 в настоящее время используют в конъюгатной вакцине CRM197 с олигосахаридом Haemophilus influenzae типа b (HibTitre®; Lederle Praxis Biologicals, Rochester, N.Y.).
Способы получения дифтерийного анатоксина (DT) хорошо известны в данной области техники. Например, DT можно получить путем очистки токсина из культуры Corynebacterium diphtheriae с последующей химической детоксификацией, или можно получить путем очистки рекомбинантного или генетически детоксифицированного аналога данного токсина (например, CRM197 или других мутантов, как описано в US 4709017, US 5843711, US 5601827 и US 5917017). Corynebacterium diphtheriae культивируют при аэробных условиях. Rappuoli et al., (Biotechnology February 1985, p.161-163) полагают, что pO2 следует регулировать на уровне 25% путем аэрации смесью воздуха и кислорода, которая автоматически регулируется так, чтобы поддерживать желательное pO2.
Продуцирование значительных количеств дифтерийных токсинов, таких как CRM197, для применения в вакцинах была затруднена из-за малого относительного количества белка. Ранее эту проблему решали путем введения дополнительных копий гена, кодирующего дифтерийный токсин или мутантную форму, в Corynebacterium diphtheriae (US 4925792; US 5614382). Такие способы приводят к увеличению продуцирования примерно в три раза. Способы дополнительного повышения выхода дифтерийного токсина воспроизводимым образом были бы полезными для обеспечения более высоких уровней продуцирования этих ценных антигенов.
Соответственно, в настоящей заявке предложен улучшенный способ ферментации, включающий ферментационную стадию выращивания штамма Corynebacterium diphtheriae в среде в ферментаторе при условиях перемешивания, достаточных для поддержания гомогенной культуры, и ограниченной аэрации, так что парциальное давление кислорода (рO2) в культуре падает до уровня менее 4% на протяжении большей части ферментационной стадии.
Данная ферментация происходит в аэробных условиях, но при ограниченной аэрации, так что кислород используется, как только он поступает в культуру, на протяжении большей части ферментации, то есть после исходной фазы, на которой плотность С.diphtheriae является относительно низкой и уровни pO2 могут быть более высокими. Авторы данного изобретения обнаружили, что культура в таких условиях дает более эффективную и/или согласованную экспрессию дифтерийного токсина или мутанта по сравнению со способами ферментации, осуществляемыми при более высоком pO2. Способ по изобретению является более надежным, чем ферментация при более высоких уровнях кислорода, и обеспечивает сохранение высокого выхода дифтерийного токсина даже в том случае, когда культуральная среда содержит добавленное железо, или когда используют сложные исходные вещества варьирующего качества.
Во втором аспекте данного изобретения предложен способ изготовления препарата дифтерийного токсина или его мутанта, включающий проведение способа ферментации по изобретению и выделение дифтерийного токсина или его мутанта из культуры. Несмотря на то, что здесь описаны дифтерийный токсин и его мутанты, предусматривается, что любой антиген С.diphtheriae можно выделить с использованием способа по изобретению.
Применение такого способа приводит к более высоким выходам дифтерийного токсина или мутанта, например CRM197, по сравнению с условиями, при которых рO2 поддерживают на уровне 5% или выше, например 20%.
В третьем аспекте данного изобретения предложен дифтерийный токсин или его мутант, выделенный способом по изобретению.
В четвертом аспекте данного изобретения предложена фармацевтическая композиция, содержащая дифтерийный токсин или его мутант по изобретению и фармацевтически приемлемый носитель.
В дополнительном аспекте данного изобретения предложен дифтерийный токсин или его мутант для применения в терапии, в частности для лечения или предупреждения бактериального заболевания, такого как заболевание, вызванное С.diphtheriae.
В еще одном аспекте данного изобретения предложено применение дифтерийного токсина или его мутанта по изобретению в изготовлении лекарственного средства для лечения или предупреждения бактериального заболевания, в частности заболевания, вызванного С.diphtheriae.
В другом аспекте данного изобретения предложен способ предупреждения или лечения бактериальной инфекции, в частности инфекции, вызванной С.diphtheriae, включающий введение пациенту фармацевтической композиции по изобретению.
Описание графических материалов
Фиг.1 - графики, показывающие профиль насыщения кислородом и его использование в определении KLa ферментации. Панель А показывает динамику насыщения кислородом после перевода с азота на кислород. Панель Б показывает график ln(100-рO2) против времени, который дает возможность оценить KLa путем определения градиента линии.
Фиг.2 - обзор схемы ферментационного способа для С.diphtheriae.
Фиг.3 - график, показывающий типичную кинетику роста культуры С.diphtheriae. Линия с круглыми маркерами показывает оптическую плотность (ОП) при 650 нм через различные периоды времени культивирования. Линия с ромбовидными маркерами показывает рН культуры.
Фиг.4 - электрофорез в полиакриламидном геле с додецилсульфатом натрия (SDS-PAGE) супернатантов культуры. Полоса 1 - маркеры молекулярной массы, полоса 2 - 1 мкг стандарта CRM197, полоса 3 - 0,5 мкг стандарта CRM197, полоса 4 - 0,25 мкг стандарта CRM197, полосы 5 - 11 - супернатанты от ферментаций С.diphtheriae. Гель А показывает супернатанты от CDT082 в полосе 5, CDT198 в полосах 6-8 (линия 6 - супернатант удаляли в момент 22,5 часа, линия 7 - в момент 24 часа и линия 8 - в момент 28 часов), CDT199 в полосах 9, 10 и 11 (полоса 9 - супернатант удаляли в момент 22 часа 45 минут, линия 10 - в момент 24 часа 45 минут и линия 11 - после последовательных микрофильтрации и фильтрации). Гель Б показывает супернатанты от CDT082 в линии 5, от CDT205 в линиях 6-9 (линия 7 - после 21 часа 43 минут ферментации, линия 8 - после 23 часов ферментации, линия 9 - после 24 часов ферментации) и от CDT206 в линиях 10-13 (линия 10 - после 22 часов 10 мин ферментации, линия 11 - после 23 часов 49 минут ферментации, линия 12 - после 24 часов 30 мин ферментации, линия 13 - после микрофильтрации и фильтрации).
Фиг.5 - График, показывающий KLa 150-литрового ферментатора при разных скоростях перемешивания в условиях аэрации 23 литра в минуту.
Подробное описание изобретения
Авторы данного изобретения подразумевают, что термины «содержащий», «содержат» и «содержит» в каждом случае можно заменить, соответственно, терминами «состоящий из», «состоят из» и «состоит из».
Один аспект данного изобретения представляет собой способ ферментации, включающий ферментационную стадию выращивания штамма Corynebacterium diphtheriae в среде в ферментаторе при условиях перемешивания, достаточных для поддержания гомогенной культуры (например, достаточных для достижения времени смешивания менее 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 или 1 секунды), и ограниченной аэрации, так что pO2 в культуре падает до уровня менее 5%, 4%, 3%, 1% или 0,5% на протяжении большей части ферментационной стадии. В предпочтительном воплощении рO2 падает до уровня, близкого к нулю, предпочтительно на протяжении большей части ферментационной стадии.
Например, рO2 в культуре падает до уровня менее 5%, 4%, 3%, 1% или 0,5% с момента времени, когда Corynebacterium diphtheriae выращена до плотности, достаточной для потребления большей части кислорода, как только кислород поступает в культуру (латентный период, например, от по меньшей мере 1, 2, 3, 4, 5 или 6 часов после начала ферментации), до момента ферментации, когда концентрация рO2 вновь возрастает, близко к концу ферментационной стадии (например, через 16, 18, 20, 22 или 24 часа после латентного периода).
Ферментация обычно заканчивается, и культуру собирают, когда рO2 возрастает до уровней, превышающих условия ограниченной аэрации. Следует отметить, что при разных условиях инокуляции, например, когда ферментатор инокулируют значительно большим количеством культуры С.diphtheriae, условия ограниченной аэрации начинаются вскоре после начала ферментации (например, через 1, 5, 10, 20, 30, 40 или 60 минут после начала ферментации).
100%-ное рO2 представляет собой количество кислорода, присутствующее, когда среда (в отсутствие культуры) насыщена кислородом после барботирования сжатым воздухом через данную среду при 34,5°С и давлении 0,5 бар (50 кПа). Для 150-литрового ферментатора скорость аэрации и скорость перемешивания следует устанавливать на 23 литр/мин и 240 об/мин, тогда как для 20-литрового ферментатора скорость аэрации и скорость перемешивания следует устанавливать на 3 литр/мин и 300 об/мин, рO2 можно определить как количество кислорода, присутствующего в полностью аэрированной ферментационной среде перед инокуляцией.
Гомогенная культура представляет собой культуру, в которой бактерии равномерно диспергированы во всем ферментаторе, так что по меньшей мере 3, 4, 5, 6, 7, 8, 9 или 10% бактерий присутствует в верхних 10% культуральной среды.
Ферментационную стадию определяют как стадию, на которой Corynebacterium diphtheriae культивируют в ферментаторе. Ферментационная стадия начинается с момента введения в ферментатор предкультуры и заканчивается, когда при условиях ограниченной аэрации, описанных здесь, рO2 в итоге возрастает до уровня, превышающего 10%. Ферментационная стадия обычно продолжается в течение более 12, 14, 16, 18, 20 или 24 часов, например от 16 до 40 часов или, например, от 22 до 28 часов.
Смешивание проводят путем перемешивания культуры в ферментаторе, но его можно осуществлять любым другим подходящим способом, например путем встряхивания, при помощи вибросмесителя и/или путем барботирования газа. Перемешивание является достаточным для получения времени смешивания культуры менее 20, 15, 10, 8, 7, 6, 5, 4, 3, 2 или 1 секунды.
Время смешивания культуры можно измерить в стеклянном ферментаторе. Оно представляет собой время, затраченное после введения окрашенного водного раствора на то, чтобы этот окрашенный водный раствор был равномерно диспергирован во всей культуральной среде.
Ферментатор представляет собой любую установку для промышленного получения бактериальных культур. Однако этот термин не включает культуральные колбы, которые обычно используют для выращивания бактерий в меньшем масштабе.
Большую часть ферментационной стадии определяют как время, превышающее 50%, 60%, 70%, 80% или 90% общей продолжительности ферментационной стадии. Ферментацию обычно проводят при условиях ограниченной аэрации в течение 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26 или 28 часов.
Термин «ограниченная аэрация» описывает условия аэрации, которые позволяют С.diphtheriae использовать аэробное дыхание и все же лимитируют количество доступного кислорода, так что после увеличения плотности культуры (например, после по меньшей мере 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 часов ферментации) кислород потребляется очень быстро после поступления в культуру, так что рO2 составляет менее 5, 4, 3, 2, 1 или 0,5%. Следует отметить, что путем увеличения количества культуры, используемой для инокуляции ферментатора, условия ограниченной аэрации могли бы достигаться очень быстро после инокуляции (например, через 1, 5, 10, 20 или 30 минут после начала ферментации).
Такие условия ограниченной аэрации приводят к устойчивой экспрессии токсина, такого как дифтерийный токсин или его мутанты.
Падение рО2 до приближения к нулю достигается скоростью аэрации и перемешивания, которые являются такими, что кислород, введенный в культуру, используется культурой для дыхания вскоре после его введения в данную культуру, так что несмотря на аэрацию культуры рO2 считывается датчиком кислорода как равный нулю или близкий к нулю.
На протяжении ферментационной стадии значение рO2 будет отсчитываться с более высокого уровня для заданных установок перемешивания и скорости аэрации. Это происходит из-за того, что в начале ферментационной стадии плотность бактерий в культуре является низкой и увеличивается на протяжении ферментационной стадии. Обычно требуется период времени (например, вплоть до 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 часов), перед тем как pO2 упадет до уровня менее 5%. Начиная с этого момента pO2 остается на уровне менее 5, 4, 3, 2, 1 или 0,5%, предпочтительно на уровне, близком к нулю, до момента, близкого к концу ферментационной стадии, например, до сбора культуры из ферментатора.
Возможно, ферментационную стадию проводят при постоянном значении объемного коэффициента массопередачи кислорода (KLa) на протяжении всей ферментационной стадии. Альтернативно, ферментационную стадию проводят при одном или более чем одном KLa, так что ограниченная аэрация достигается при значениях KLa, сохраняющихся на протяжении большей части (например, 50%, 60%, 70%, 80%, 90%, 95%) ферментационной стадии.
KLa представляет собой меру скорости, с которой кислород поступает в культуру. Чем выше KLa, тем больше скорость, с которой кислород вводят в культуру. Несколько факторов, включая объем и состав среды, перемешивание, аэрацию, давление, температуру, положение и характеристики подвижных частей ферментатора, будут влиять на KLa конкретной ферментационной стадии.
Обычно кислород вводят в ферментационную культуру путем барботирования сжатого воздуха через культуру. Когда в воздухе, вводимом в культуру, присутствуют разные концентрации кислорода, скорость потока следует адаптировать с учетом этого. Например, когда в культуру вводят источник 100%-ного кислорода, тогда скорость потока должна быть, соответственно, ниже. Когда в культуру вводят газ, содержащий меньше кислорода, чем воздух, тогда можно использовать более высокую скорость потока.
KLa можно измерить, используя способ, описанный в Примере 1. Данный способ включает установку в ферментаторе условий объема среды, температуры, давления, перемешивания и аэрации, при которых следует измерить KLa, откачивание газа путем замещения воздуха газообразным азотом, закачивание газа путем восстановления аэрации воздуха и измерение скорости, с которой рO2 возвращается до его стационарного уровня.
ln(100-pO2)=-KLa.T+C
При построении графика ln(100-pO2) от времени, градиент (или угловой коэффициент) линии представляет собой KLa.
На значение KLa ферментационной стадии влияет ряд факторов, включающих степень перемешивания культуры и скорость аэрации культуры. Постоянный KLa можно поддерживать, например, при снижении перемешивания культуры и увеличении скорости аэрации или наоборот. Однако в одном воплощении как перемешивание культуры, так и скорость аэрации на протяжении ферментационной стадии являются постоянными.
Ферментационную стадию проводят, например, при KLa 10-200 ч-1, 10-150 ч-1, 10-100 ч-1, 10-80 ч-1, 10-50 ч-1, 10-40 ч-1, 10-30 ч-1, 20-150 ч-1, 20-100 ч-1, 20-50 ч-1, 20-60 ч-1, 20-80 ч-1, 20-30 ч-1, 20-40 ч-1, 30-60 ч-1, 60-80 ч-1, 60-150 ч-1 или 60-200 ч-1.
Значение KLa способа ферментации по изобретению может отличаться в зависимости от размера ферментационной культуры. Для культур 10-30 литров можно использовать KLa 10-30 ч-1, 15-30, 20-30 или 22-28 ч-1. Для культур 30-250 литров можно использовать KLa 30-60 или 40-50 ч-1. Для культур 250-800 литров можно использовать KLa 30-50, 40-50, 40-60, 30-60, 30-80 или 60-150 ч-1. Для культур 800-3000 литров можно использовать KLa 30-50, 40-50, 40-60, 30-60, 30-80, 60-150 или 60-200 ч-1.
Для размера ферментационной культуры 10-30 литров KLa 10-30 ч-1, например, достигается при использовании потока воздуха или скорости аэрации 1-5 литр/мин и скорости перемешивания 200-400 об/мин, например, скорости аэрации 2-4 литр/мин и скорости перемешивания 250-350 об/мин.
Для ферментационной культуры 30-250 литров KLa 30-60 ч-1 достигается, например, при использовании скорости потока воздуха 15-25 литр/мин и скорости перемешивания 150-250 об/мин, например, при использовании скорости потока воздуха 20-25 литр/мин и скорости перемешивания 200-250 об/мин, например, при использовании скорости потока воздуха 15-20 литр/мин и скорости перемешивания 200-250 об/мин.
рН культуры С.diphtheriae в среде CY во время ферментационной стадии зависит от условий аэрации и перемешивания данной культуры (Nikolajewski et al., J. Biological Standardization, 1982, 10; 109-114). В начале ферментационной стадии рН среды CY составляет 7,4. В случае пониженной аэрации или KLa, рН падает до значения около 5. В случае повышенной аэрации рН возрастает вплоть до значения около 8,5. В одном воплощении данного изобретения С.diphtheriae культивируют в среде CY или в среде SOC (Sambrook J et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), либо в аналогичной среде. рН от 7,0 до 7,8 может поддерживаться в ферментаторе интенсивностью аэрации, возможно без необходимости добавления кислоты или основания.
Способ по изобретению можно использовать с любым штаммом Corynebacterium diphtheriae. Такие штаммы могут продуцировать дифтерийный токсин дикого типа, слитые белки, включающие дифтерийный токсин или его фрагмент (например, белки, описанные в US 5863891), или мутантные формы, или фрагменты дифтерийного токсина, предпочтительно те, которые имеют пониженную токсичность. Примерами таких мутантных токсинов являются CRM176, CRM197, CRM228, CRM45 (Uchida et al., J. Biol. Chem. 218; 3838-3844, 1973); CRM9, CRM45, CRM102, CRM103 и CRM107, и другие мутации, описанные Nicholls and Youle в Genetically Engineered Toxins, Ed: Frankel, Maecel Dekker Inc. 1992; делеция или мутация Glu-148 на Asp, Gln или Ser и/или Ala-158 на Gly и другие мутации, раскрытые в US 4709017 или US 4950740; мутация по меньшей мере одного или более чем одного остатка Lys 516, Lys 526, Phe 530 и/или Lys 534, и другие мутации, раскрытые в US 5917017 или в US 6455673; или фрагмент, раскрытый в US 5843711. В одном воплощении штамм С.diphtheriae продуцирует CRM197.
В одном воплощении в способах по изобретению используют следующие штаммы С.diphtheriae: АТСС39255, АТСС39526, АТСС11049, АТСС11050, АТСС11051, АТСС11951, АТСС11952, АТСС13812, АТСС14779, АТСС19409, АТСС27010, АТСС27011, АТСС27012, АТСС296, АТСС43145, АТСС51280 или АТСС51696.
Среда для использования в данном изобретении может содержать один или более чем один из следующих компонентов: 5-20 г/л, 10-16 г/л или 10 г/л казаминовых кислот или гидролизата казеина, 5-20 г/л, 7-15 г/л или 9-12 г/л соевого пептона и/или 10-40 г/л, 14-32 г/л или 18-22 г/л дрожжевого экстракта.
Известно, что содержание железа в ростовой среде может влиять на рост С.diphtheriae и влиять на продуцирование токсина (смотри WO 00/50449). Железо является необходимым для роста бактерий, однако, было показано, что железо в больших концентрациях ингибирует продуцирование токсина. На протяжении процесса по изобретению содержание железа в среде имеет нижнюю границу 10, 50, 75, 100, 120 или 150 млрд-1 и верхнюю границу 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000 или 5000 млрд-1. Например, концентрации железа в среде составляют: 50-1000 млрд-1, 100-1000 млрд-1, 200-1000 млрд-1, 400-1000 млрд-1, 500-1500 млрд-1, 700-1300 млрд-1, 50-2000 млрд-1, 100-2000 млрд-1, 200-2000 млрд-1, 400-2000 млрд-1, 700-2000 млрд-1, 50-3000 млрд-1, 100-3000 млрд-1, 200-3000 млрд-1, 400-3000 млрд-1, 700-3000 млрд-1, 1000-3000 млрд-1, 1500-3000 млрд-1, 1700-3000 млрд-1, 50-4000 млрд-1, 100-4000 млрд-1, 200-4000 млрд-1, 400-4000 млрд-1, 700-4000 млрд-1, 1000-4000 млрд-1, 1500-4000 млрд-1, 1700-4000 млрд-1 или 2000-4000 млрд-1. Железо может находиться в форме Fe2+ и/или Fe3+.
В одном воплощении способ по изобретению является достаточно устойчивым к присутствию в среде солей железа, так что перед применением не требуется обработка среды для удаления железа.
Ферментационная стадия проходит при температуре, подходящей для культуры С.diphtheriae, например при 25-45°С, 25-40°С, 30-38°С или 34-35°С.
Ферментационная стадия подвержена образованию большого количества пены. Для контролирования образования пены в ферментатор возможно добавляют пеногаситель. Возможно, в ферментаторе используют датчик пены или механический противовспениватель, например, наряду с пеногасителем.
Второй аспект данного изобретения представляет собой способ изготовления препарата антигена, например дифтерийного токсина или его мутанта или фрагмента, включающий стадии осуществления способа ферментации по изобретению, как описано выше, и выделения антигена, например дифтерийного токсина или его мутанта или фрагмента из культуры.
Третий аспект данного изобретения представляет собой дифтерийный токсин или его мутант или фрагмент (например, CRM197), выделенный способом по изобретению.
Токсичность дифтерийного токсина возможно понижена посредством химической обработки, включающей обработку перекрестносшивающими реагентами для образования анатоксина. Ссылки на токсин включают анатоксины.
Дополнительный аспект данного изобретения представляет собой фармацевтическую композицию, содержащую дифтерийный токсин или его мутант (например, CRM197) или фрагмент по изобретению и фармацевтически приемлемый носитель.
Фармацевтическая композиция по изобретению возможно дополнительно содержит дополнительные антигены в комбинированной вакцине. В одном воплощении антиген(ы), подлежащие объединению с дифтерийным токсином, его мутантом или фрагментом, как описано выше, включают один или более чем один столбнячный анатоксин, цельноклеточный коклюшный антиген (Pw), бесклеточный коклюшный антиген (Ра) (как описано ниже), поверхностный антиген вируса гепатита В, вируса гепатита А, полисахариды или олигосахариды Haemophilus influenzae b, нейссериальные (например, N. meningitidis) полисахариды или олигосахариды, белки N. meningitidis серотипа В, возможно в виде части везикулы наружной мембраны, полисахариды или олигосахариды пневмококков, белки пневмококков или любые из антигенов, перечисленных ниже. Бактериальные полисахариды могут быть конъюгированы с белком-носителем. Дифтерийный токсин или анатоксин или мутанты дифтерийного токсина, такие как CRM197 или его фрагменты, например, полученные с использованием способа по изобретению, можно использовать в качестве белков-носителей. Однако также можно использовать другие белки-носители, такие как столбнячный анатоксин, фрагмент С столбнячного анатоксина, пневмолизин, Белок D (US 6342224). Данная фармацевтическая композиция возможно содержит множество полисахаридов или олигосахаридов, конъюгированных с разными белками-носителями.
Дифтерийный токсин или его мутант, например CRM197, или его фрагмент, полученный с использованием способа по изобретению, можно приготовить в виде препарата с капсульными полисахаридами или олигосахаридами, происходящими из одного или более чем одного из Neisseria meningitidis, Haemophilus influenzae b, Streptococcus pneumoniae, стрептококков группы А, стрептококков группы В, Staphylococcus aureus или Staphylococcus epidermidis. Например, фармацевтическая или иммуногенная композиция может содержать капсульные полисахариды, происходящие из одной или более чем одной серогруппы А, С, W-135 и Y Neisseria meningitidis. Например, серогруппы А и С; А и W, А и Y; С и W, С и Y, W и Y; А, С и W; А, С и Y; A, W и Y; С, W и Y или А, С, W и Y могут быть приготовлены в виде препарата с CRM197. В другом примере данная иммуногенная композиция содержит капсульные полисахариды, происходящие из Streptococcus pneumoniae. Пневмококковые капсульные полисахаридные антигены предпочтительно выбраны из серотипов 1, 2, 3, 4, 5, 6В, 7F, 8, 9N, 9V, 10A, 11А, 12F, 14, 15В, 17F, 18С, 19А, 19F, 20, 22F, 23F и 33F (наиболее предпочтительно из серотипов 1, 3, 4, 5, 6В, 7F, 9V, 14, 18С, 19F и 23F). Еще один пример содержит полирибозилрибитолфосфат (PRP) капсульных полисахаридов (или олигосахаридов) Haemophilus influenzae типа b. Дополнительный пример содержит капсульные полисахариды Типа 5, Типа 8, 336, поли-N-ацетилглюкозамин (PNAG или его деацетилированная форма dPNAG) Staphylococcus aureus. Дополнительный пример содержит капсульные полисахариды Типа I, Типа II, Типа III или PIA Staphylococcus epidermidis. Дополнительный пример содержит капсульные полисахариды Типа Ia, Типа Ic, Типа II или Типа III стрептококков группы В. Дополнительный пример содержит капсульные полисахариды стрептококков группы А, возможно дополнительно содержащие по меньшей мере один белок М и, более предпочтительно, множество типов белка М.
Бактериальные полисахариды для применения в данном изобретении могут быть полноразмерными, представляя собой очищенные нативные полисахариды. Альтернативно, данные полисахариды могут иметь размер в 2-20 раз, например в 2-5 раз, 5-10 раз, 10-15 раз или 15-20 раз меньше для более легкого обращения с ними. Олигосахариды обычно содержат от 2 до 20 повторяющихся единиц.
Такие капсульные полисахариды могут быть неконъюгированными или конъюгированными с белком-носителем, таким как столбнячный анатоксин, фрагмент С столбнячного анатоксина, дифтерийный анатоксин или CRM197 (оба, например, получены способом по изобретению), пневмолизин или белок D (US 6342224). Столбнячный токсин, дифтерийный токсин и пневмолизин детоксифицируют или генетической мутацией и/или химической обработкой.
Полисахаридный или олигосахаридный конъюгат можно получить любой известной методикой сочетания. Например, полисахарид можно получить сочетанием через тиоэфирную связь. Этот способ конъюгации основан на активации полисахарида тетрафторборатом 1-циано-4-диметиламинопиридиния (CDAP) с образованием цианатного эфира. Активированный полисахарид, таким образом, можно получить сочетанием непосредственно или через спейсерную группу с аминогруппой на белке-носителе. Возможно, цианатный эфир получают сочетанием с гександиамином, и аминопроизводное полисахарида конъюгируют с белком-носителем, используя химию гетеролигирования, включая образование тиоэфирной связи. Такие конъюгаты описаны в опубликованной РСТ заявке WO 93/15760 Uniformed Services University.
Данные конъюгаты также можно получить способами прямого восстановительного аминирования, как описано в US 4365170 (Jennings) и US 4673574 (Anderson). Другие способы описаны в ЕР-0161188, ЕР-208375 и ЕР-0477508.
Дополнительный способ включает сочетание активированных бромцианом полисахаридов, дериватизированных гидразидом адипиновой кислоты (ADH), с белком-носителем путем карбодиимидной конденсации (Chu С. et al., Infect. Immunity, (1983) 245; 256).
В конкретных примерах дифтерийный токсин или его фрагмент или мутант (например, CRM197) конъюгируют с 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 дополнительными антигенами фармацевтической композиции. В одном воплощении его конъюгируют с полисахаридным(и) компонентом(ами), например, с бактериальными полисахаридами, включающими полисахариды, перечисленные выше.
Фармацевтическая или иммуногенная композиция по изобретению кроме того может содержать дополнительные белковые компоненты. Ее возможно изготавливают в виде препарата с антигенами, обеспечивающими защиту против одной или более чем одной инфекции, вызванной столбнячными бактериями и Bordetella pertussis. Коклюшный компонент может представлять собой убитый цельноклеточный В. pertussis (Pw) или бесклеточный коклюшный компонент (Ра), который содержит по меньшей мере один антиген (предпочтительно два или все три) из РТ, FHA и 69 кДа пертактина. Некоторые другие бесклеточные коклюшные препараты также содержат агглютиногены, такие как Fim2 и Fim3, и эти вакцины также рассматриваются для применения в данном изобретении. Обычно антигеном, обеспечивающим защиту против столбняка, является столбнячный анатоксин, который представляет собой либо химически инактивированные токсины (например, после обработки формальдегидом), либо инактивированные введением одной или более чем одной точечной мутации(ий).
Фармацевтическая или иммуногенная композиция по изобретению возможно содержит белковые антигены пневмококков, например те белки пневмококков, которые экспонированы на наружной поверхности пневмококка (которые могут распознаваться иммунной системой хозяина на протяжении по меньшей мере части жизненного цикла пневмококка), или представляют собой белки, которые секретируются или высвобождаются пневмококком. Например, данный белок может представлять собой токсин, адгезин, двухкомпонентный переносчик сигнала или липопротеин Streptococcus pneumoniae, или их фрагменты. Примеры таких белков включают: пневмолизин (предпочтительно детоксифицированный химической обработкой или мутацией) [Mitchell et al. Nucleic Acids Res. 1990 Jul; 18(13): 4010 "Comparison of pneumolysin genes and proteins from Streptococcus pneumoniae types 1 and 2.", Mitchell et al. Biochim Biophys Acta 1989 Jan 23; 1007(1): 67-72 "Expression of the pneumolysin gene in Escherichia coli: rapid purification and biological properties", WO 96/05859 (A. Cyanamid), WO 90/06951 (Paton et al.), WO 99/03884 (NAVA)]; PspA и его варианты с трансмембранной делецией (US 5804193 - Briles et al.); PspC и его варианты с трансмембранной делецией (WO 97/09994 - Briles et al.); PsaA и его варианты с трансмембранной делецией (Веrrу & Paton, Infect Immun 1996 Dec; 64(12):5255-62 "Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesion essential for virulence of Streptococcus pneumoniae"); белки пневмококков, связывающие холин, и их варианты с трансмембранной делецией; СbрА и его варианты с трансмембранной делецией (WO 97/41151; WO 99/51266); глицеральдегид-3-фосфат-дегидрогеназа (Infect. Immun. 1996 64:3544); HSP70 (WO 96/40928); PcpA (Sanchez-Beato et al. FEMS Microbiol Lett 1998, 164:207-14); М-подобный белок (ЕР 0837130) и адгезин 18627 (ЕР 0834568), но не ограничены ими. Дополнительные белковые антигены пневмококков для включения в иммуногенную композицию представляют собой антигены, раскрытые в WO 98/18931, WO 98/18930 и PCT/US 99/30390.
Примеры нейссериальных белков, предназначенных для включения в иммуногенную композицию по изобретению, включают TbpA (WO 93/06861; ЕР 586266; WO 92/03467; US 5912336), ТbрВ (WO 93/06861; ЕР 586266), Hsf (WO 99/31132), NspA (WO 96/29412), Нар (РСТ/ЕР 99/02766), PorA, PorB, OMP85 (также известный как D15) (WO 00/23595), PilQ (PCT/EP 99/03603), PldA (РСТ/ЕР 99/06718), FrpB (WO 96/31618, смотри SEQ ID NO:38), FrpA или FrpC либо консервативную часть, общую для обоих, из по меньшей мере 30, 50, 100, 500, 750 аминокислот (WO 92/01460), LbpA и/или LbpB (PCT/EP 98/05117; Schryvers et al. Med. Microbiol. 1999 32: 1117), FhaB (WO 98/02547 SEQ ID NO:38), HasR (PCT/EP 99/05989), lipo02 (PCT/EP 99/08315), MltA (WO 99/57280) и ctrA (PCT/EP 00/00135). Нейссериальные белки возможно добавляют в виде очищенных белков или в виде части препарата наружной мембраны.
Фармацевтическая или иммуногенная композиция по изобретению возможно содержит один или более чем один антиген, который может защищать хозяина против нетипируемого Haemophilus influenzae, RSV и/или один или более чем один антиген, который может защищать хозяина против вируса гриппа.
Примеры белковых антигенов нетипируемого Н.influenzae включают белок фимбрин (US 5766608) и слитые белки, содержащие пептиды, происходящие из него (например, слияние LB1) (US 5843464 - Ohio State Reserch Foundation), OMP26, P6, белок D, TbpA, TbpB, Hia, Hmw1, Hmw2, Нар и D15.
Примеры антигенов вируса гриппа включают целый живой или инактивированный вирус, расщепленный вирус гриппа, выращенный в яйцах или в клетках MDCK, или в клетках Vero, или целые виросомы гриппа (как описано R. Gluck, Vaccine, 1992, 10, 915-920), или их очищенные или рекомбинантные белки, такие как белки НА, NP, NA или М, или их комбинации.
Примеры антигенов RSV (респираторно-синцитиальный вирус) включают гликопротеин F, гликопротеин G, белок HN, белок М или его производные.
Следует принимать во внимание, что антигенные композиции по данному изобретению могут содержать один или более чем один капсульный полисахарид из одного вида бактерий. Антигенные композиции также могут содержать капсульные полисахариды, происходящие из одного или более чем одного вида бактерий.
Дополнительный аспект данного изобретения включает иммуногенные композиции или вакцины, содержащие дифтерийный токсин, его фрагмент или мутант (например, CRM197), полученные способами по изобретению, и фармацевтически приемлемый носитель.
Иммуногенная композиция или вакцина возможно содержит количество адъюванта, достаточное для усиления иммунного ответа на иммуноген. Подходящие адъюванты включают соли алюминия, смеси сквалена (SAF-1), мурамилпептид, производные сапонина, препараты клеточных стенок микобактерий, монофосфориллипид А, производные миколовой кислоты, поверхностно-активные вещества на основе неионных блоксополимеров, Quil А, субъединицу В холерного токсина, полфосфазен и производные и иммуностимулирующие комплексы (ISCOMs), такие как комплексы, описанные Takahashi et al. (1990) Nature 344:873-875, но не ограничены ими. Для ветеринарного применения и для получения антител у животных можно использовать митогенные компоненты адъюванта Фрейнда.
Как и во всех иммуногенных композициях или вакцинах, иммунологически эффективные количества иммуногенов определяют эмпирически. Факторы, которые следует рассматривать, включают иммуногенность, будет или нет иммуноген образовывать комплексы либо ковалентно связываться с адъювантом или белком-носителем или с другим носителем, путь введения и число иммунизирующих дозировок, подлежащих введению. Такие факторы известны в области вакцин, и проведение таких определений без излишнего экспериментирования безусловно находится в пределах квалификации иммунологов.
Активный агент в фармацевтической композиции или вакцине по изобретению может присутствовать в разных концентрациях. Обычно минимальная концентрация вещества представляет собой количество, необходимое для достижения его целевого применения, тогда как максимальная концентрация представляет собой максимальное количество, которое будет оставаться в растворе или будет гомогенно суспендированным в исходной смеси. Например, минимальное количество терапевтического агента предпочтительно представляет собой количество, которое будет давать одну терапевтически эффективную дозировку. Для биологически активных веществ минимальная концентрация представляет собой количество, необходимое для биологической активности при растворении, и максимум концентрации находится в точке, в которой не может поддерживаться гомогенная суспензия. В случае однодозовых единиц данное количество представляет собой количество для однократного терапевтического применения. Обычно ожидают, что каждая доза будет содержать 1-100 мкг белкового антигена, предпочтительно 5-50 мкг и наиболее предпочтительно 5-25 мкг. Предпочтительные дозы бактериальных полисахаридов представляют собой 10-20 мкг, 10-5 мкг, 5-2,5 мкг или 2,5-1 мкг. Предпочтительное количество вещества варьирует от вещества к веществу, но его может легко определить квалифицированный специалист в данной области