Обнаружение сигнала в системе беспроводной связи

Иллюстрации

Показать все

Изобретение относится к технике связи и может быть использовано для обнаружения сигнала в системе беспроводной связи. Каждая базовая станция передает первый мультиплексированный с временным разделением каналов (TDM) пилот-сигнал, основанный на первой последовательности псевдослучайных чисел (PN) последовательности, и второй TDM пилот-сигнал, основанный на второй PN-последовательности. Каждой базовой станции назначают конкретную вторую PN-последовательность, которая уникально идентифицирует эту базовую станцию. Терминал использует первый TDM пилот-сигнал для обнаружения наличия сигнала и использует второй TDM пилот-сигнал для идентификации базовых станций и получения точной синхронизации. При обнаружении сигналов терминал выполняет корреляцию с задержкой принимаемых выборок и определяет, присутствует ли сигнал. Если сигнал обнаружен, терминал выполняет прямую корреляцию принимаемых выборок с помощью первых PN-последовательностей для K1 различных смещений по времени и идентифицирует K2 наиболее мощных экземпляров первого TDM пилот-сигналов. При синхронизации по времени терминал выполняет прямую корреляцию принимаемых выборок с помощью вторых PN-последовательностей для обнаружения второго TDM пилот-сигнала. Технический результат - повышение эффективности обнаружения сигнала. 5 н. и 34 з.п. ф-лы, 8 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится, в общем, к обмену данными и, более конкретно, к методикам выполнения обнаружения сигнала в системе беспроводной связи.

Уровень техники

В системе связи базовая станция обрабатывает (к примеру, кодирует и выполняет символьное преобразование) данные для получения символов модуляции и дополнительно обрабатывает символы модуляции для генерирования модулированного сигнала. Затем базовая станция передает модулированный сигнал посредством канала связи. Система может использовать схему передачи, посредством которой данные передаются в кадрах, при этом каждый кадр имеет конкретную продолжительность. Различные типы данных (к примеру, данные трафика и пакетные данные, служебные и управляющие данные и т.п.) могут отправляться в различных частях каждого кадра.

Беспроводной терминал в системе может знать о том, какие базовые станции рядом с ним (если таковые имеются) осуществляют передачу. Более того, терминал может не знать о начале каждого кадра для данной базовой станции, времени передачи каждого кадра базовой станцией или задержке на распространения, создаваемой в канале связи. Терминал осуществляет обнаружение сигнала для распознавания передач от базовых станций в системе и синхронизации по времени и частоте с каждой интересующей распознанной базовой станцией. Посредством процесса обнаружения сигнала терминал может установить синхронизацию каждой распознанной базовой станции и надлежащим образом выполнить соответствующую демодуляцию для этой базовой станции.

Базовые станции типично расходуют системные ресурсы на поддержку обнаружения сигнала с сигналом, и терминалы также потребляют ресурсы для выполнения обнаружения сигнала. Поскольку обнаружение сигнала - это дополнительные служебные данные, необходимые для передачи данных, желательно минимизировать объем ресурсов, используемый базовыми станциями и терминалами при обнаружении сигнала.

Следовательно, в данной области техники существует потребность в методиках эффективного выполнения обнаружения сигнала с сигналом в системе беспроводной связи.

Сущность изобретения

В данном документе описываются методики эффективного выполнения обнаружения сигнала в системе беспроводной связи. В варианте осуществления каждая базовая станция передает два пилот-сигнала, мультиплексированных с частотным разделением каналов (TDM). Первый пилот-сигнал TDM (или "TDM пилот-сигнал 1") состоит из нескольких экземпляров последовательности пилот-сигнала 1, которая генерируется с помощью первой последовательности псевдослучайных чисел (PN) (или PN1-последовательности). Каждый экземпляр последовательности пилот-сигнала 1 - это копия или реплика последовательности пилот-сигнала 1. Второй пилот-сигнал TDM (или "TDM пилот-сигнал 2") состоит из нескольких экземпляров последовательности пилот-сигнала 2, которая генерируется с помощью второй PN-последовательности (или PN2-последовательности). Каждой базовой станции назначается конкретная PN2-последовательность, которая уникально идентифицирует базовую станцию из соседних базовых станций. Для снижения объема вычислений при обнаружении сигнала с сигналом доступные PN2-последовательности в системе могут упорядочиваться в M1 наборов. Каждый набор содержит M2 PN2-последовательностей и ассоциативно связан с другой PN1-последовательностью. Таким образом, в системе доступно M1 PN1-последовательностей и M1•M2 PN2-последовательностей.

Терминал может использовать TDM пилот-сигнал 1 для обнаружения наличия сигнала, получения синхронизации и оценки погрешности частоты. Терминал может использовать TDM пилот-сигнал 2 для идентификации конкретной базовой станции, передающей TDM пилот-сигнал 2. Использование двух TDM пилот-сигналов для обнаружения сигналов и синхронизации по времени позволяет уменьшить объем обработки, необходимой для обнаружения сигнала.

В варианте осуществления обнаружения сигналов терминал выполняет корреляцию с задержкой принимаемых выборок в каждом периоде выборки, вычисляет показатель корреляции с задержкой для периода выборки и сравнивает этот показатель с первым порогом для определения того, присутствует ли сигнал. Если сигнал обнаружен, то терминал получает приблизительную синхронизацию на основе пика корреляции с задержкой. После этого терминал выполняет прямую корреляцию для принимаемых выборок с PN1-последовательностями для K1 различных сдвигов по времени в рамках окна неопределенности и идентифицирует K2 наиболее мощных экземпляров TDM пилот-сигналов 1, где K1>1 и K2>1. Если каждая PN1-последовательность ассоциативно связана с M2 PN-последовательностями, то каждый экземпляр обнаруженного TDM пилот-сигнала 1 ассоциативно связывают с M2 гипотезами пилот-сигналов 2. Каждая гипотеза пилот-сигнала 2 соответствует конкретному сдвигу по времени и конкретной PN2-последовательности для TDM пилот-сигнала 2.

В варианте осуществления для синхронизации по времени терминал выполняет прямую корреляцию для принимаемых выборок с PN2-последовательностями различных гипотез пилот-сигналов 2 для обнаружения TDM пилот-сигнала 2. Терминалу требуется оценить только M2 PN-последовательностей для каждого экземпляра обнаруженного TDM пилот-сигнала 1 вместо M1•M2 вероятных PN2-последовательностей. Терминал вычисляет показатель прямой корреляции для гипотезы пилот-сигнала 2 и сравнивает этот показатель со вторым порогом для определения того, присутствует ли TDM пилот-сигнал 2. Для каждого экземпляра обнаруженного TDM пилот-сигнала 2 базовая станция, передающая TDM пилот-сигнал 2, идентифицируется на основе PN2-последовательности для гипотезы пилот-сигнала 2, и синхронизация для базовой станции задается посредством смещения по времени для гипотезы.

Далее подробно описаны различные аспекты и варианты осуществления изобретения.

Краткое описание чертежей

Признаки и характер настоящего изобретения станут более явными из изложенного ниже подробного описания, рассматриваемого вместе с чертежами, на которых одинаковые символы ссылок определяются соответствующим образом по всему документу.

Фиг. 1 иллюстрирует сеть беспроводной связи.

Фиг. 2A иллюстрирует TDM пилот-сигналы 1 и 2, генерируемые во временной области.

Фиг. 2B иллюстрирует TDM пилот-сигналы 1 и 2, генерируемые в частотной области.

Фиг. 3A иллюстрирует синхронную передачу пилот-сигналов по линии прямой связи.

Фиг. 3B иллюстрирует смещенную передачу пилот-сигналов по линии прямой связи.

Фиг. 3C иллюстрирует асинхронную передачу пилот-сигналов по линии прямой связи.

Фиг. 3D иллюстрирует изменяющуюся во времени передачу пилот-сигналов по линии прямой связи.

Фиг. 4 иллюстрирует процесс, выполняемый терминалом при обнаружении сигнала.

Фиг. 5 иллюстрирует блок-схему базовой станции и терминала.

Фиг. 6 иллюстрирует процесс передаваемых (TX) пилот-сигналов в базовой станции.

Фиг. 7 иллюстрирует блок синхронизации в терминале.

Фиг. 8A иллюстрирует блок корреляции с задержкой для TDM пилот-сигнала 1.

Фиг. 8B иллюстрирует блок прямой корреляции для TDM пилот-сигнала 1.

Подробное описание изобретения

Слово "примерный" используется в данном документе, чтобы обозначать "служащий в качестве примера, отдельного случая или иллюстрации". Любой вариант осуществления или проект, описанный в данном документе как "типичный", не обязательно должен быть истолкован как предпочтительный или преимущественный по сравнению с другими вариантами осуществления или проектами.

Описанные в данном документе методики обнаружения сигнала могут использоваться в системах связи с одной несущей и с несколькими несущими. Более того, один или более TDM пилот-сигналов могут использоваться для упрощения обнаружения сигнала. Для простоты конкретные аспекты методик описываются ниже для конкретной схемы передачи TDM пилот-сигналов в системе с несколькими несущими, которая использует ортогональное частотное разделение каналов (OFDM). OFDM - методика модуляции с несколькими несущими, которая эффективно разделяет общую полосу частот системы на несколько (NF) ортогональных частотных поддиапазонов. Эти поддиапазоны также называются тонами, поднесущими, элементами разрешения и частотными каналами. В OFDM каждый поддиапазон ассоциативно связан с соответствующей поднесущей, которая может быть модулирована с помощью данных.

Фиг. 1 иллюстрирует систему 100 беспроводной связи. Система 100 включает в себя определенное число базовых станций 110, которые поддерживают обмен данными для ряда беспроводных терминалов 120. Базовая станция - это стационарная станция, используемая для обмена данными с терминалами, и она может также указываться как точка доступа, узел B или каким-либо другим термином. Терминалы 120 распределены по системе, и каждый терминал может быть стационарным или мобильным. Терминал также может упоминаться как мобильная станция, абонентское оборудование (UE), устройство беспроводной связи или каким-либо другим термином. Каждый терминал может обмениваться данными с одной или несколькими базовыми станциями по линии прямой и обратной связи в любой данный момент времени. Линия прямой связи (или нисходящая линия связи) относится к линии связи от базовых станций к терминалам, а линия обратной связи (или восходящая линия связи) относится к линии связи от терминалов к базовым станциям. Для простоты фиг. 1 показывает только передачу по линии прямой связи.

Каждая базовая станция 110 предоставляет покрытие связи для соответствующей географической зоны. Термин "сота" может относиться к базовой станции или ее области охвата (покрытия), в зависимости от контекста, в котором используется термин. Для повышения пропускной способности область покрытия каждой базовой станции может быть разбита на несколько секторов (к примеру, три сектора). Каждый сектор может обслуживаться соответствующей базовой приемо-передающей подсистемой (BTS). Термин "сектор" может относиться к BTS или ее области покрытия, в зависимости от контекста, в котором используется термин. Для разбитой на секторы соты базовая станция типично включает в себя BTS всех секторов этой соты. Для простоты в последующем описании термин "базовая станция" используется обобщенно для стационарной станции, которая обслуживает соту, и стационарной станции, которая обслуживает сектор. Таким образом, "базовая станция" в последующем описании может быть предназначена для соты или сектора, в зависимости от того, имеет система не разбитые на секторы или разбитые на секторы соты соответственно.

Фиг. 2A иллюстрирует примерную схему передачи пилот-сигналов и данных по линии прямой связи в системе 100. Каждая базовая станция передает данные и пилот-сигналы в кадрах, причем каждый кадр 210 имеет заранее определенную продолжительность. Кадр также может упоминаться как временной интервал или каким-либо другим термином. В варианте осуществления каждый кадр 210 включает в себя поле 220 для TDM пилот-сигналов и поле 230 для данных. В общем, кадр может включать в себя любое число полей для любого типа передачи. Интервал передачи относится к интервалу времени, в течение которого TDM пилот-сигналы передаются один раз. В общем, интервал передачи может иметь фиксированную продолжительность (к примеру, кадр) или переменную продолжительность.

Для варианта осуществления, показанного на фиг. 2A, поле 220 включает в себя подполе 222 для TDM пилот-сигнала 1 и подполе 224 для TDM пилот-сигнала 2. TDM пилот-сигнал 1 имеет общую длину T1 выборок и содержит S1 идентичных последовательностей пилот-сигналов 1, где, в общем, S1≥1. TDM пилот-сигнал 2 имеет общую длину в T2 выборок и содержит S2 идентичных последовательностей пилот-сигналов 2, где, в общем, S2≥1. Таким образом, может быть один или несколько экземпляров последовательностей пилот-сигналов 1 для TDM пилот-сигнала 1 и один или несколько последовательностей пилот-сигналов 2 для TDM пилот-сигнала 2. TDM пилот-сигналы 1 и 2 могут генерироваться во временной области или частотной области (к примеру, с помощью OFDM).

Фиг. 2A также иллюстрирует вариант осуществления TDM пилот-сигналов 1 и 2, генерируемых во временной области. Для этого варианта осуществления каждая последовательность пилот-сигналов 1 генерируется с помощью PN1-последовательности, имеющей L1 элементарных PN-сигналов, где L1>1. Каждый элементарный PN-сигнал может принимать значение +1 или -1 и передается в одном периоде выборки и элементарного сигнала. TDM пилот-сигнал 1 содержит S1 полных последовательностей пилот-сигналов 1, и если S1•L1<T1, то частичную последовательность пилот-сигналов 1 длины C1, где C1=T1-S1•L1. Общая длина TDM пилот-сигнала 1, таким образом, составляет T1=S1•L1+C1. Для варианта осуществления, показанного на фиг. 2A, TDM пилот-сигнал 2 содержит одну полную последовательность пилот-сигналов 2, сгенерированную с помощью PN2-последовательности длины T2. В общем, TDM пилот-сигнал 2 может содержать S2 полных последовательностей пилот-сигналов 2, сгенерированных с помощью PN2-последовательности длины L2, и если S2•L2<T2, то частичную последовательность пилот-сигналов 2 длины C2, где C2=T2-S2•L2. В таком случае общая длина TDM пилот-сигнала 2 составляет T2=S2•L2+C2.

При использовании в данном документе PN-последовательностью может быть любая последовательность элементарных сигналов, которая может быть сгенерирована любым способом и предпочтительно имеет хорошие свойства корреляции. Например, PN-последовательность может генерироваться с помощью порождающего полинома, как известно в данной области техники. PN-последовательностью для каждой базовой станции (к примеру, каждого сектора) также может быть код скремблирования, используемый для перемешивания данных. В этом случае TDM пилот-сигналы могут генерироваться посредством применения кода скремблирования к последовательности из всех единиц или всех нулей.

Фиг. 2B иллюстрирует вариант осуществления TDM пилот-сигналов 1 и 2, генерируемых в частотной области с помощью OFDM. Для этого варианта осуществления TDM пилот-сигнал 1 содержит L1 символов пилот-сигнала, которые передаются по L1 поддиапазонам, один символ пилот-сигнала на поддиапазон, используемый для TDM пилот-сигнала 1. L1 поддиапазонов равномерно распределены по общему числу NF поддиапазонов и равномерно разнесены на S1 поддиапазонов, где S1=NF/L1 и S1≥1. Например, если NF=512, L1=256 и S1=2, то 256 символов пилот-сигнала передается по 256 поддиапазонам, которые разнесены на два поддиапазона. Другие значения также могут быть использованы для NF, L1 и S1. L1 символов пилот-сигнала для L1 поддиапазонов и NF-L1 значений сигнала нуля для оставшихся поддиапазонов преобразуются во временную область с помощью NF-точечного обратного дискретного преобразования Фурье (IDFT) для генерирования "преобразованного" символа, который содержит NF выборок временной области. Этот преобразованный символ имеет S1 идентичных последовательностей пилот-сигналов 1, причем каждая последовательность пилот-сигналов 1 содержит L1 выборок временной области. Последовательность пилот-сигналов 1 также может быть сгенерирована посредством выполнения L1-точечного IDFT над L1 символов пилот-сигнала для TDM пилот-сигнала 1. В OFDM C самых правых выборок преобразованного символа часто копируются и присоединяются в начало преобразованного символа для генерирования OFDM-символа, который содержит NF+C выборок. Повторяющаяся часть часто называется цикличным префиксом и используется для преодоления межсимвольных помех (ISI). Например, если NF=512 и C=32, то каждый OFDM-символ содержит 544 выборки. Другие структуры поддиапазонов OFDM с различным общим числом поддиапазонов и длины цикличного префикса также могут использоваться.

PN1-последовательность может применяться в частотной области посредством умножения L1 символов пилот-сигнала с L1 элементарными сигналами PN1-последовательности. PN1-последовательность также может применяться во временной области посредством умножения L1 выборок временной области для каждой последовательности пилот-сигналов 1 с L1 элементарными сигналами PN1-последовательности.

TDM пилот-сигнал 2 может генерироваться в частотной области способом, аналогичным вышеописанному для TDM пилот-сигнала 1. Для TDM пилот-сигнала 2 L2 символов пилот-сигнала передается по L2 поддиапазонам, равномерно разнесенным на S2 поддиапазонов, где S2=N/L2 и S2≥1. PN2-последовательность может применяться во временной или частотной области. Если TDM пилот-сигналы 1 и 2 сгенерированы в частотной области, то последовательности пилот-сигналов 1 и пилот-сигналов 2 содержат комплексные значения вместо ±1. Для показанного на фиг. 2B варианта осуществления TDM пилот-сигналы 1 и 2 отправляют в рамках одного OFDM-символа. В общем, каждый TDM пилот-сигнал может включать в себя любое число OFDM-символов.

Соседние базовые стации могут использовать одинаковые или различные PN1-последовательности для TDM пилот-сигнала 1. Набор из M1 PN1-последовательностей может быть сформирован, и каждая базовая станция может использовать любую из M1 PN1-последовательностей в этом наборе. Для снижения сложности M1 может выбираться равным небольшому положительному числу. В варианте осуществления соседние базовые станции используют различные PN2-последовательности для TDM пилот-сигнала 2, и PN2-последовательность для каждой базовой станции используется для уникальной идентификации этой базовой станции из соседних базовых станций.

Для снижения объема вычислений при обнаружении сигнала каждая PN1-последовательность может быть ассоциативно связана с различным набором из M2 PN2-последовательностей. В таком случае доступен составной набор из M1•M2 различных PN2-последовательностей. Каждой базовой станции может назначаться одна из PN2-последовательностей в составном наборе, а также PN1-последовательность, ассоциативно связанная с PN2-последовательностью, назначенной базовой станции. Каждая базовая станция, таким образом, использует пару PN1- и PN2-последовательностей, которая отличается от пар PN1- и PN2-последовательностей, используемых соседними базовыми станциями. M1 и M2 могут выбираться имеющими небольшие значения для снижения сложности, но при этом достаточно большие для обеспечения того, что терминалы не будут обнаруживать две базовые станции с одинаковой PN2-последовательностью (к примеру, M1•M2=256).

Терминал может использовать TDM пилот-сигнал 1 для обнаружения наличия сигнала, получения приблизительной синхронизации и оценки погрешности частоты. Терминал может использовать TDM пилот-сигнал 2 для идентификации конкретной базовой станции, передающей TDM пилот-сигнал 2, и получения более точной синхронизации (или синхронизации по времени). Использование двух отдельных TDM пилот-сигналов для обнаружения сигналов и синхронизации по времени позволяет снижать объем обработки, требуемой для обнаружения сигнала, как описано выше. Продолжительность или длина каждого TDM пилот-сигнала может выбираться на основе компромисса между производительностью обнаружения и объемом служебных данных, требуемых для этого TDM пилот-сигнала. В варианте осуществления TDM пилот-сигнал 1 содержит две полные последовательности пилот-сигналов 1, причем каждая из них имеет длину в 256 элементарных сигналов (или S1=2 и L1=256), а TDM пилот-сигнал 2 содержит одну полную последовательность пилот-сигналов 2 длиной 512 или 544 элементарных сигнала (или S2=1 и L2=544 для фиг. 2A, и L2=512 для фиг. 2B). В общем, TDM пилот-сигнал 1 может содержать любое число последовательностей пилот-сигналов 1, которые могут иметь любую длину, и TDM пилот-сигнал 2 также может содержать любое число последовательностей пилот-сигналов 2, которые также могут иметь любую длину.

Фиг. 3A иллюстрирует схему синхронной передачи пилот-сигналов по линии прямой связи. Для этой схемы базовые станции в системе являются синхронными и передают свои TDM пилот-сигналы примерно в одно время. Терминал может принимать TDM пилот-сигналы от всех базовых станций примерно в одно время с перекосом синхронизации между базовыми станциями вследствие разницы в задержках на распространение и, возможно, других факторов. Посредством синхронизации TDM пилот-сигналов от различных базовых станций помехи посредством TDM пилот-сигналов от одной базовой станции на передачи данных другими базовыми станциями устраняются, что позволяет повысить производительность обнаружения данных. Более того, помехи от передач данных на TDM пилот-сигналы также устраняются, что позволяет повысить производительность обнаружения сигнала.

Фиг. 3B иллюстрирует схему смещенной передачи пилот-сигналов по линии прямой связи. Для этой схемы базовые станции в системе являются синхронными, но выполняют передачу своих TDM пилот-сигналов в различное время, так чтобы TDM пилот-сигналы смещались. Базовые станции могут идентифицироваться посредством времени, в которое они передают свои TDM пилот-сигналы. Одна PN-последовательность может использоваться для всех базовых станций, и обработка для обнаружения сигнала может существенно снижаться, поскольку все базовые станции используют одну PN-последовательность. В этой схеме передача пилот-сигналов от каждой базовой станции сталкивается с помехами передач данных от соседних базовых станций.

Фиг. 3A иллюстрирует схему асинхронной передачи пилот-сигналов по линии прямой связи. Для этой схемы базовые станции в системе являются асинхронными, и каждая базовая станция передает свои TDM пилот-сигналы на основе своей синхронизации. TDM пилот-сигналы от различных базовых станций, таким образом, могут поступать в терминал в различное время.

В схеме синхронной передачи пилот-сигналов, показанной на фиг. 3A, передача TDM пилот-сигналов от каждой базовой станции может сталкиваться с одинаковыми помехами от передач TDM пилот-сигналов от соседних базовых станций в каждом кадре. В этом случае усреднение TDM пилот-сигналов по нескольким кадрам не предоставляет усреднение усиления, поскольку одинаковые помехи присутствуют в каждом кадре. Помехи могут варьироваться за счет изменения TDM пилот-сигналов в кадрах.

Фиг. 3D иллюстрирует схему изменяющейся во времени передачи пилот-сигналов по линии прямой связи. В этом схеме каждой базовой станции назначается набор из MB PN1-последовательностей для TDM пилот-сигнала 1, где MB>1. Каждая базовая станция использует одну PN1-последовательность для TDM пилот-сигнала 1 по каждому кадру и циклически проходит через MB PN1-последовательностей в MB кадров. Различным базовым станциям назначаются различные наборы из MB PN1-последовательностей.

Набор из MB PN1-последовательностей для каждой базовой станции может рассматриваться "длинный код", который охватывает несколько кадров. Каждая из MB PN1-последовательностей может рассматриваться как сегмент длинного кода и может генерироваться с помощью различного порождающего полинома длинного кода. Для снижения сложности обработки в приемном устройстве один длинный код может использоваться по всем базовым станциям, и каждой базовой станции может назначаться различный сдвиг длинного кода. Например, базовой станции i может быть назначен сдвиг длинного кода в ki, где ki находится в диапазоне от 0 до MB-1. PN1-последовательности базовой станции i, начиная с указанного кадра, в таком случае задаются как: PN1ki, PN1ki+1, PN1ki+2 и т.д. Обнаружение данной PN1-последовательности или сдвига длинного кода, наряду с кадром, в котором обнаружена PN1-последовательность относительно указанного кадра, позволяет идентифицировать набор PN1-последовательностей, которому принадлежит обнаруженная PN1-последовательность.

В общем, повышенная производительность обнаружения сигнала может достигаться, если все базовые станции в системе синхронизированы и передают свои TDM пилот-сигналы одновременно. Тем не менее, это не является обязательным условием, и все или поднабор базовых станций в системе может быть асинхронным. Для простоты в большей части последующего описания предполагается, что базовые станции являются синхронными.

Фиг. 2A и 2B иллюстрируют использование двух TDM пилот-сигналов или TDM пилот-сигналов 1 и 2. В общем, любое количество TDM пилот-сигналов может быть использовано для упрощения обнаружения сигнала терминалами. Каждый TDM пилот-сигнал может быть ассоциативно связан с различным набором PN-последовательностей. Иерархическая структура может быть использована для PN-последовательностей. Например, TDM пилот-сигнал 1 может быть ассоциативно связан с M1 возможных PN1-последовательностей (или M1 возможных наборов PN1-последовательностей), каждая PN1-последовательность может быть ассоциативно связана с M2 возможных PN2-последовательностей, каждая PN2-последовательность может быть ассоциативно связана с M3 возможных PN3-последовательностей и т.д. Каждая PN1-последовательность может назначаться значительному числу базовых станций в системе, каждая PN2-последовательность может назначаться меньшему числу базовых станций и т.д. В общем, каждый TDM пилот-сигнал может генерироваться с PN-последовательностью или без PN-последовательности. Для простоты в последующем описании предполагается использование двух TDM пилот-сигналов, сгенерированных с помощью двух PN-последовательностей, выбранных из двух различных наборов PN-последовательностей.

Терминал выполняет различную обработку для обнаружения сигнала и синхронизации по времени. Использование двух различных PN-последовательностей для TDM пилот-сигналов 1 и 2 позволяет терминалу разделить обработку этих двух задач, как описано ниже.

1. Корреляция с задержкой для TDM пилот-сигнала 1

В терминале принимаемая выборка для каждого периода выборки может быть выражена как:

r(n =h(n) s(n)+w(n)=y(n)+w(n), уравнение (1)

где n - это индекс периода выборки;

s(n) - это выборка временной области, отправленная базовой станцией в периоде выборки n;

h(n) - это совокупное канальное усиление, обнаруживаемое выборкой s(n);

r(n) - это принимаемая выборка, полученная терминалом в периоде выборки n;

w(n) - это шум для периода выборки n;

y(n)=h(n) s(n); и

обозначает операцию свертывания.

TDM пилот-сигнал 1 - это периодический сигнал, состоящий из S1 экземпляров последовательности пилот-сигналов 1. Терминал может выполнять корреляцию с задержкой для обнаружения наличия базового периодического сигнала (к примеру, TDM пилот-сигнала 1) в принимаемом сигнале. Корреляция с задержкой может быть выражена следующим образом:

, уравнение (2)

где C(n) - это результат корреляции с задержкой для периода выборки n;

N1 - это длина или продолжительность корреляции с задержкой; и

"*" обозначает комплексно сопряженное число.

Длина корреляции с задержкой (N1) может быть задана равной общей длине TDM пилот-сигнала 1 (T1) минус длина последовательности пилот-сигналов 1 (L1) и минус допустимое искажение сигнала (Q1), учитывающее ISI-эффекты по фронту TDM пилот-сигнала 1, или N1=T1-L1-Q1. Для варианта осуществления, показанного на фиг. 2A и 2B, когда TDM пилот-сигнал 1 содержит две последовательности пилот-сигналов 1, длина корреляции с задержкой N1 может быть задана равной длине последовательности пилот-сигналов 1 или N1=L1.

Уравнение (2) вычисляет корреляцию между двумя принимаемыми выборками r(n-i) и r(n-i-L1), которые разнесены на L1 периодов выборки, что равно длине последовательности пилот-сигналов 1. Эта корреляция, c(n-i)=r*(n-i)•r(n-i-L 1 ), устраняет эффект канала связи без необходимости оценки канального усиления. N1 корреляций вычисляются для N1 различных пар принимаемых выборок. В таком случае уравнение (2) накапливает N1 результатов корреляции от c(n) до c(n-N1+1) для получения результата корреляции с задержкой C(n), который является комплексным значением.

Показатель корреляции с задержкой может задаваться как квадрат модуля результата корреляции с задержкой следующим образом:

S(n)=|C(n)| 2, уравнение (3)

где |x|2 обозначает квадрат модуля x.

Терминал может объявить наличие TDM пилот-сигнала 1, если выполняется следующее условие:

S(n)>λ |E n | 2 , уравнение (4)

где Erx - это энергия принимаемых выборок, а λ - пороговое значение. Энергия Erx может быть вычислена на основе принимаемых выборок, используемых для корреляции с задержкой, и она указывает временно локальную энергию. Уравнение (4) выполняет нормализованное сравнение, где нормализация основана на энергии принимаемых выборок TDM пилот-сигнала 1, если он присутствует. Пороговое значение λ может выбираться на основе компромисса между вероятностью обнаружения и вероятностью ложного аварийного оповещения для TDM пилот-сигнала 1. Вероятность обнаружения - это вероятность корректного указания наличия TDM пилот-сигнала 1, когда он присутствует. Вероятность ложного оповещения - это вероятность некорректного указания наличия TDM пилот-сигнала 1, когда он отсутствует. Желательны высокая вероятность обнаружения и низкая вероятность ложного оповещения. В общем, более высокое пороговое значение снижает и вероятность обнаружения, и вероятность ложного оповещения.

Уравнение (4) показывает использование основанного на энергии порога для распознавания TDM пилот-сигнала 1. Другие схемы задания порогов также могут быть использованы для обнаружения TDM пилот-сигналов. Например, если механизм автоматической регулировки усиления (AGC) автоматически нормализует энергию принимаемых выборок, то абсолютный порог может использоваться для обнаружения TDM пилот-сигналов.

Если терминал оснащен несколькими (R) антеннами, то результат корреляции с задержкой C j (n) может вычисляться для каждой антенны j, как показано в уравнении (2). Результаты корреляции с задержкой для всех антенн могут когерентно объединяться следующим образом:

, уравнение (5)

Квадрат модуля объединенного результата корреляции с задержкой, или |C total (n)|2, может сравниваться с нормализованным порогом , где Ej - это принимаемая энергия для антенны j.

Терминал вычисляет N1-точечную корреляцию с задержкой C(n) для каждого периода выборки n на основе последовательности принимаемых выборок {r(n-i)} и последовательности задержанных принимаемых выборок {r(n-i-L1)}, как показано в уравнении (2). Если S1=2, то модуль корреляции с задержкой имеет треугольную форму при нанесении на график в сравнении с периодом выборки n. Результат корреляции с задержкой имеет пиковое значение в периоде выборки n p. Этот пик возникает, когда корреляция с задержкой охватывает продолжительность двух последовательностей пилот-сигналов 1. Если корреляция с задержкой выполняется так, как описано выше и в отсутствие шума, то период выборки n p "близко" к концу второй последовательности пилот-сигналов 1 для TDM пилот-сигнала 1. Эта погрешность позиции пика обусловлена ISI-эффектами во фронте TDM пилот-сигнала 1. Модуль результата корреляции с задержкой уменьшается постепенно по обеим сторонам периода выборки n p , поскольку сигнал является периодическим только в части продолжительности корреляции с задержкой для всех остальных периодов выборки.

Терминал объявляет наличие TDM пилот-сигнала 1, если показатель корреляции с задержкой S(n) пересекает заранее определенный порог в любом периоде выборки, как показано в уравнении (4). Этот период выборки возникает слева или во фронте треугольной формы. Терминал продолжает выполнять корреляцию с задержкой (к примеру, для следующих L1 периодов выборки) для обнаружения пика результата корреляции с задержкой. Если TDM пилот-сигнал 1 обнаружен, то позиция пика корреляции с задержкой используется в приблизительной оценке времени. Эта оценка времени может быть не очень точной, поскольку (1) результат корреляции с задержкой имеет постепенный пик, и позиция пика может быть неточной при наличии шума; и (2) ISI во фронте TDM пилот-сигнала 1 приводят к ухудшению результата корреляции с задержкой.

В альтернативном варианте осуществления корреляция с задержкой выполняется по всему кадру для получения показателя корреляции с задержкой для каждого периода выборки в каждом кадре. Наибольший показатель корреляции с задержкой в кадре затем предоставляется в качестве позиции обнаруженного TDM пилот-сигнала 1 и приблизительной оценки времени. Этот вариант осуществления выполняет обнаружение TDM пилот-сигналов 1 без использования порога и также может снижать ложные обнаружения пиков вследствие помех от, к примеру, мультиплексированного с частотным разделением каналов (FDM) пилот-сигнала, который передается постоянно по всей части данных в кадре соседними базовыми станциями или обнаруживаемой базовой станцией. Другие схемы (которые могут использовать более сложную логику обнаружения) также могут использоваться для обнаружения наличия TDM пилот-сигнала 1 и определения позиции пика корреляции с задержкой.

Корреляция с задержкой чаще всего используется для обнаружения наличия базового периодического сигнала. Таким образом, корреляция с задержкой невосприимчива к ухудшению качества вследствие многолучевого распространения, но при этом фиксирует разнесение многолучевого распространения. Это обусловлено тем, что периодический сигнал остается периодическим при наличии многолучевого распространения. Более того, если несколько базовых станций передают периодические сигналы одновременно, то композитный сигнал в терминале также является периодическим. Для синхронной передачи пилот-сигналов, показанной на фиг. 3A, TDM пилот-сигнал 1, по сути, не обнаруживает помех (для цели корреляции с задержкой), и на него оказывает влияние главным образом термический шум. Как результат, отношение "сигнал-шум" (SNR) или соотношение мощности несущей к помехам (C/I) для TDM пилот-сигнала 1 может быть выше SNR для других передач. Более высокий SNR для TDM пилот-сигнала 1 позволяет терминалу добиваться оптимальной производительности обнаружения при меньшей продолжительности TDM пилот-сигнала 1, что снижает передачу служебных сигналов.

Терминал может получать приблизительную оценку погрешности частоты на основе результата корреляции с задержкой C(n). Если частота радиочастотного (RF) генератора, используемого для преобразования с понижением частоты в терминале, смещена средней частотой принимаемого сигнала, то принимаемые выборки имеют кривую фазы во временной области и могут быть выражены следующим образом:

, уравнение (6)

где Δf - это сдвиг/погрешность частоты, а Tc - период одного элементарного сигнала. Уравнение (6) отличается от уравнения (1) кривой фазы , вызываемой погрешностью частоты Δf в RF-генераторе терминала.

Если выражение для принимаемых выборок в уравнении (6) используется для корреляции с задержкой в уравнении (2), то фаза результата корреляции с задержкой (при условии отсутствия шума) может быть выражена следующим образом:

, уравнение (7)

где arg{x} - это аргумент x, который является арктангенсом мнимой части x для действительной части x. Погрешность частоты Δf может быть получена посредством деления фазы результата корреляции с задержкой на