Схемный модуль и устройство связи по линии электропередачи

Иллюстрации

Показать все

Использование: в области электронной техники. Технический результат заключается в повышении надежности и защиты от шума. Схемный модуль монтируется с интегральной схемой (ИС), которая модулирует и демодулирует сигнал с несколькими несущими. Схемный модуль имеет многослойную плату, которая изнутри снабжается множеством проводящих слоев, уложенных с изолирующими слоями между ними, и ИС, которая снабжается множеством выводов заземления, которые нужно заземлить. Из множества проводящих слоев проводящий слой, представленный ближайшим к ИС, формирует слой заземления, электрически соединенный с множеством выводов заземления. 2 н. и 14 з.п. ф-лы, 39 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к схемному модулю (то есть основанию), конкретнее к монтажной конструкции полупроводниковой ИС (интегральной схемы), используемой в условиях эксплуатации, где борьба с шумом затруднена, например, в высокоскоростной связи по линии электропередачи (PLC) и т.п.

Предшествующий уровень техники

Из-за потребности в компактных электронных компонентах многочисленные интегральные микросхемы и компоненты ИС необходимо монтировать на схемном модуле, имеющем полупроводниковые ИС и компоненты ИС. Поэтому росла потребность эффективного использования пространства для разводки и монтажа. В частности, ИС модуляции/демодуляции, которая модулирует и демодулирует сигналы, снабжается большим количеством выводов заземления (площадок) с минимальным шагом, каждый из которых соединяется на монтажной плате. В качестве монтажной платы используется многослойная плата, которая включает в себя множество многослойных слоев разводки, включая изолирующий слой между ними (например, патент Японии № 3375555 и выложенная патентная публикация Японии № 2000-031329). Чтобы минимизировать прокладку проводов и снизить полное сопротивление, относящееся к самой разводке, линия электропередачи и линия заземления, включенные в слои разводки, обычно имеют плоскую форму и монтируются в многослойной плате как пластина питания и пластина заземления соответственно.

Когда такая обычная пластина питания или пластина заземления монтируется в многослойной плате в качестве внутреннего слоя, определение конкретного положения монтажа решается как вопрос дизайна. Когда пластина заземления, которая формирует слой 2200 заземления, предусматривается далеко от ИС 2100 модуляции/демодуляции, как показано, например, на фиг.19, необходимо предусмотреть переходное отверстие на заранее установленную глубину для электрического соединения между выводом заземления и пластиной заземления. Сквозное отверстие H (в дальнейшем называемое сквозным переходным отверстием), которое проходит сквозь всю многослойную плату 1000, легко произвести. Однако такое глубокое сквозное переходное отверстие требует большого плоского пространства и пространства на задней стороне, тем самым, расходуя пространства для монтажа и разводки. Кроме того, не может не учитываться вертикальное расстояние, и увеличение индуктивности, вызванное увеличенной толщиной многослойной платы, не является незначительной проблемой.

Можно обеспечить переходное отверстие только посередине, чтобы сберечь пространство монтажа. Это, однако, является проблемой, где чем дальше от вывода заземления ИС 2100 модуляции/демодуляции предусматривается слой заземления, тем больше ухудшается точность производства. К тому же увеличение индуктивности, вызванное увеличенной толщиной многослойной платы, является больше чем незначительной проблемой, как описано выше.

Раскрытие изобретения

Настоящее изобретение предоставляется, чтобы решить описанные выше проблемы. Цель настоящего изобретения - предоставить компактный схемный модуль, на который почти не воздействует шум, и который имеет высокую надежность. Другая цель настоящего изобретения - предоставить компактное, с низким уровнем шума и высокоскоростное устройство связи по линии электропередачи.

Первый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль, который включает в себя многослойную плату (10) и ИС (210); при этом многослойная плата имеет первый изолирующий слой (например, 17), первый проводящий слой (например, 12), нанесенный на первый изолирующий слой, второй изолирующий слой (17), нанесенный на первый проводящий слой, и второй проводящий слой (13), нанесенный на второй изолирующий слой; ИС монтируется на первом изолирующем слое и имеет множество выводов заземления. Первый проводящий слой электрически соединяется с множеством выводов заземления. Описанная выше структура обеспечивает минимальное расстояние между выводами заземления и слоем заземления и соединяет выводы заземления и слой заземления, в то же время не требуя сквозного отверстия, которое проходит сквозь многослойную плату, и сохраняя точность производства. В силу этого пространство монтажа на задней поверхности многослойной платы не уменьшается, при этом задняя поверхность является поверхностью, на которую никаких ИС не монтируется. Кроме того, минимизируется увеличение индуктивности, которое вызвано увеличенной толщиной многослойной платы. Проводящий слой, представленный здесь ближайшим к ИС, является ближайшим слоем, за исключением проводящего слоя, который формирует рисунок соединений в качестве контактной площадки на поверхности многослойной платы.

Второй аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно первому аспекту настоящего изобретения, в котором ИС (210) обрабатывает сигнал связи. Описанная выше структура обеспечивает минимальное расстояние между выводами заземления и слоем заземления и соединяет выводы заземления и слой заземления, в то же время, не требуя сквозного отверстия, которое проходит сквозь многослойную плату, и сохраняя точность производства. В силу этого ИС, которая обрабатывает сигнал связи, может монтироваться без сокращения пространства монтажа на задней поверхности многослойной платы, при этом задняя поверхность является поверхностью, на которую никаких ИС не монтируется. Кроме того, минимизируется увеличение индуктивности, которое вызвано увеличенной толщиной многослойной платы.

Третий аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно второму аспекту настоящего изобретения, в котором сигналом связи является сигнал с несколькими несущими. Описанная выше структура обеспечивает минимальное расстояние между выводами заземления и слоем заземления и соединяет выводы заземления и слой заземления, в то же время, не требуя сквозного отверстия, которое проходит сквозь многослойную плату, и сохраняя точность производства. В силу этого ИС, которая обрабатывает сигнал с несколькими несущими, может монтироваться без сокращения пространства монтажа на задней поверхности многослойной платы, при этом задняя поверхность является поверхностью, на которую никаких ИС не монтируется. Кроме того, минимизируется увеличение индуктивности, которое вызвано увеличенной толщиной многослойной платы.

Четвертый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно третьему аспекту настоящего изобретения, в котором ИС (210) выполняет по меньшей мере одно из модуляции и демодуляции сигнала с несколькими несущими. ИС может выполнять как модуляцию, так и демодуляцию.

Пятый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно четвертому аспекту настоящего изобретения, в котором сигнал с несколькими несущими является сигналом связи по линии электропередачи, передаваемым по линии (900) электропередачи. Схемный модуль дополнительно включает в себя фильтр (260), который монтируется на поверхности схемного модуля и который защищает заранее установленный частотный диапазон сигнала связи по линии электропередачи, при этом фильтр монтируется на поверхности, отличной от первого изолирующего слоя (17) многослойной платы. Описанная выше структура предусматривает ИС и фильтр на разных поверхностях многослойной платы, и в силу этого ИС и фильтр защищаются друг от друга посредством многослойной платы. Таким образом, не допускается, чтобы шум от ИС достиг фильтра. Кроме того, выводы заземления и слой заземления могут соединяться без использования сквозного переходного отверстия, тем самым, позволяя эффективно использовать обе поверхности многослойной платы в качестве пространства монтажа, даже когда пространство монтажа ИС или фильтра становятся большими из-за обработки сигнала с несколькими несущими, и, следовательно, делая возможным сокращение размера схемного модуля.

Шестой аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно пятому аспекту настоящего изобретения, в котором сигнал с несколькими несущими передается по линии (900) электропередачи, которая имеет пару линий. Линия электропередачи может иметь три или четыре линии.

Седьмой аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно шестому аспекту настоящего изобретения, в котором фильтр (260) обладает в основном равным полным сопротивлением от пары линий (900). Описанная выше структура монтирует симметричный фильтр на поверхности, которая повернута к интегральной микросхеме, тем самым, снижая влияние шума на симметричный фильтр. Симметричный фильтр обычно монтируется вместе с компонентами микросхемы, такими как индуктор микросхемы, бескорпусный конденсатор и т.п., и таким образом пространство его монтажа стремится стать большим. Однако описанная выше структура может уменьшить размер схемного модуля, даже когда пространство монтажа симметричного фильтра для связи по линии электропередачи становится большим.

Восьмой аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет устройство связи по линии электропередачи, которое осуществляет связь по линии электропередачи. Устройство связи по линии электропередачи включает в себя схемный модуль согласно шестому аспекту настоящего изобретения и разветвитель (270), который накладывает сигнал связи по линии электропередачи, выведенный из схемного модуля, на переменное напряжение, переданное по линии (900) электропередачи, и который отделяет сигнал связи по линии электропередачи от переменного напряжения, переданного с помощью линии электропередачи, с тем чтобы вывести сигнал к схемному модулю. Описанная выше структура может предоставлять устройство связи по линии электропередачи, допускающее высокоскоростной обмен информацией и достижение низкого уровня шума и высокой надежности.

Девятый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно первому аспекту настоящего изобретения. Схемный модуль дополнительно включает в себя вторую многослойную плату (30), которая имеет множество многослойных проводящих слоев (31, 32, 33 и 34), имеющих изолирующие слои (35) между ними, и которая отличается от первой многослойной платы (10); схемный компонент (например, 37), который монтируется на поверхности второй многослойной платы; и изолирующую пластину (20), которая имеет токопроводящую дорожку, предусмотренную между первой и второй многослойными платами, и электрически соединяет ИС и схемный компонент. Описанная выше структура может обеспечивать компактную ИС с низким уровнем шума.

Десятый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно девятому аспекту настоящего изобретения. Схемный модуль дополнительно включает в себя внутренний схемный компонент (260), который предоставляется изолирующей пластине (20) и который монтируется в схемном модуле, где внутренний схемный компонент окружается токопроводящей дорожкой (Q). Описанная выше структура создает токопроводящую дорожку с использованием проводящей пасты и т.п., тем самым, делая возможным надежное экранирование с простой структурой. Для покрытия может использоваться медная фольга.

Одиннадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно девятому аспекту настоящего изобретения, в котором первая и вторая многослойные платы (10 и 30) обладают одинаковой толщиной. Описанная выше структура предоставляет платы, обладающие одинаковой толщиной, таким образом, предотвращая разделение двух многослойных плат и изолирующей пластины, имеющей токопроводящую дорожку, когда тепловое расширение плат отличается вследствие изменения температуры, например теплового удара. В силу этого может быть повышена надежность соединения у токопроводящей дорожки, которая соединяет две многослойные платы.

Двенадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно девятому аспекту настоящего изобретения. Схемный модуль включает в себя по меньшей мере один внутренний схемный компонент (260), который предоставляется изолирующей пластине (20) и который монтируется в схемном модуле. Внутренний схемный компонент монтируется на более толстой многослойной плате из первой и второй многослойных плат (10 и 30). Описанная выше структура монтирует компонент схемы только на более толстую плату, даже когда плата тонкая, тем самым, предотвращая изгибание тонкой платы и повышая надежность соединения у токопроводящей дорожки, которая соединяет две многослойные платы, когда платы соединяются с изолирующей пластиной или композитной пластиной, имеющей токопроводящую дорожку.

Тринадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно девятому аспекту настоящего изобретения. Схемный модуль дополнительно включает в себя тепловыделяющую пластину (40), которой снабжается по меньшей мере одна из первой и второй многослойных плат (10 и 30). Описанная выше структура увеличивает тепловыделяющее пространство, таким образом эффективно рассеивая тепло от обеих поверхностей и повышая надежность.

Четырнадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно девятому аспекту настоящего изобретения, в котором изолирующая пластина (20) включает в себя неорганический наполнитель и отверждаемую смолу. Описанная выше структура может управлять степенью теплового расширения, диэлектрической проницаемостью и тепловой проводимостью путем выбора неорганического наполнителя, тем самым повышая надежность соединения у токопроводящей дорожки, которая соединяет две многослойные платы, и увеличивая рассеивание тепла.

Пятнадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно четырнадцатому аспекту настоящего изобретения, в котором неорганический наполнитель, включенный в изолирующую пластину (20), имеет диапазон процентного отношения веса от приблизительно 70% до приблизительно 95%. Описанная выше структура обеспечивает ту же степень теплового расширения, что и у двух многослойных плат, таким образом, предотвращая разделение двух многослойных плат и изолирующей пластины, имеющей токопроводящую дорожку, вследствие изменения температуры, например теплового удара, вызванного различием в тепловом расширении изолирующей пластины и двух многослойных плат. В силу этого может быть повышена надежность соединения у токопроводящей дорожки, которая соединяет две многослойные платы. Кроме того, структура снижает давление, оказываемое на компонент схемы, смонтированный на поверхности, которая соприкасается с изолирующей пластиной, когда изолирующая пластина и две многослойные платы изготавливаются, в силу этого предотвращая повреждение компонента схемы. Многослойная плата имеет изолирующий слой между проводящими слоями, созданный с помощью заранее установленного рисунка. Изолирующий слой может также формироваться с помощью неорганического наполнителя и отверждаемой смолы аналогичным образом. Когда изолирующая пластина содержит отверждаемую смолу, имеющую температуру затвердевания ниже, чем у изолирующего слоя, включенного в многослойную плату, изолирующий слой многослойной платы оберегается от разрушения, вызванного термообработкой, когда многослойные платы прочно скрепляются с изолирующей пластиной между ними.

Шестнадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно первому аспекту настоящего изобретения. Схемный модуль включает в себя вторую многослойную плату (30), которая имеет множество многослойных проводящих слоев (например, 31, 32, 33 и 34), имеющих изолирующие слои (20) между ними, и которая отличается от первой многослойной платы (10); и схемный компонент (например, 18 и 37), который монтируется на поверхности второй многослойной платы. Схемный компонент предоставляется между первой и второй многослойными платами и держит первую и вторую многослойные платы. Описанная выше структура упрощает построение и позволяет снижение издержек, не требуя никакой детали, например изолирующей пластины.

Семнадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль, который включает в себя многослойную плату (10) и ИС (210); при этом многослойная плата имеет первый изолирующий слой (например, 17), первый проводящий слой (например, 12), нанесенный на первый изолирующий слой, второй изолирующий слой (17), нанесенный на первый проводящий слой, и второй проводящий слой (13), нанесенный на второй изолирующий слой; ИС имеет множество выводов заземления и обрабатывает высокочастотный сигнал. ИС монтируется на первом изолирующем слое, и множество выводов заземления электрически соединяются с первым проводящим слоем. Описанная выше структура обеспечивает минимальное расстояние между выводами заземления и слоем заземления и соединяет выводы заземления и слой заземления, в то же время не требуя сквозного отверстия, которое проходит сквозь многослойную плату, и сохраняя точность производства. В силу этого пространство монтажа не уменьшается на задней поверхности многослойной платы, при этом задняя поверхность является поверхностью, на которую никаких ИС не монтируется. Кроме того, минимизируется увеличение индуктивности, которое вызывается увеличенной толщиной многослойной платы, в силу этого предотвращая затухание высокочастотного сигнала, обрабатываемого ИС. Проводящий слой, представленный здесь ближайшим к ИС, является ближайшим слоем, за исключением проводящего слоя, который формирует рисунок соединений в качестве контактной площадки на поверхности многослойной платы.

Восемнадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно семнадцатому аспекту настоящего изобретения, в котором высокочастотный сигнал является сигналом связи по линии электропередачи, переданным по линии (900) электропередачи. Схемный модуль дополнительно включает в себя фильтр (260), который монтируется на поверхности схемного модуля и который защищает заранее установленный частотный диапазон сигнала связи по линии электропередачи, при этом фильтр монтируется на поверхности, отличной от первого изолирующего слоя (17) многослойной платы. Описанная выше структура предусматривает ИС и фильтр на разных поверхностях многослойной платы, и в силу этого ИС и фильтр защищаются друг от друга посредством многослойной платы. Таким образом не допускается, чтобы шум от ИС достиг фильтра. Кроме того, выводы заземления и слой заземления могут соединяться без использования сквозного переходного отверстия, тем самым позволяя эффективно использовать обе поверхности многослойной платы в качестве пространства монтажа, даже когда пространство монтажа ИС или фильтр становятся большими из-за обработки сигнала с несколькими несущими, и, следовательно, делая возможным сокращение размера схемного модуля.

Девятнадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно восемнадцатому аспекту настоящего изобретения, в котором высокочастотный сигнал передается по линии (900) электропередачи, которая имеет пару линий. Линия электропередачи может иметь три или четыре линии.

Двадцатый аспект настоящего изобретения, предоставленного для решения описанных выше проблем, предоставляет схемный модуль согласно девятнадцатому аспекту настоящего изобретения, в котором высокочастотный сигнал передается по линии электропередачи, которая имеет пару линий, и фильтр (260) является симметричным фильтром, который обладает в основном равным полным сопротивлением от пары линий (900). Описанная выше структура монтирует симметричный фильтр на поверхности, которая повернута к интегральной микросхеме, тем самым снижая влияние шума на симметричный фильтр. Симметричный фильтр обычно монтируется вместе с компонентами микросхемы, такими как индуктор микросхемы, бескорпусный конденсатор и т.п., и таким образом пространство его монтажа стремится к увеличению. Однако описанная выше структура может уменьшить размер схемного модуля, даже когда пространство монтажа симметричного фильтра для связи по линии электропередачи становится большим.

ИС, согласно настоящему изобретению, не обязательно является ИС модуляции/демодуляции, например, главной ИС. ИС может применяться для монтажа ИС, имеющей многочисленные выводы заземления, такой как ВЧ-блок ИС (AFE IC).

Перечень чертежей

Фиг.1 - вид в разрезе, иллюстрирующий схемный модуль связи по линии электропередачи (PLC), который применяет монтажную плату ИС согласно первому варианту осуществления;

Фиг.2 - вид в перспективе, иллюстрирующий схемный модуль PLC согласно первому варианту осуществления;

Фиг.3А и 3В - внешние виды, иллюстрирующие модем PLC согласно первому варианту осуществления;

Фиг.4 - перспектива в разобранном виде, иллюстрирующая модем PLC согласно первому варианту осуществления;

Фиг.5 - блок-схема, иллюстрирующая аппаратный образец модема PLC согласно первому варианту осуществления;

Фиг.6 - общая функциональная блок-схема, иллюстрирующая образец цифрового процессора сигналов, предоставленного главной ИС 210 в модуле PLC, согласно первому варианту осуществления;

Фиг.7А-7С - равнозначные принципиальные схемы, иллюстрирующие симметричный фильтр, используемый в схемном модуле PLC согласно первому варианту осуществления;

Фиг.8А и 8В - виды спереди и сзади второй многослойной платы, используемой в схемном модуле PLC согласно первому варианту осуществления;

Фиг.9А и 9В - виды спереди и сзади первой многослойной платы, используемой в схемном модуле PLC согласно первому варианту осуществления;

Фиг.10А-10F - виды в перспективе, иллюстрирующие вариант осуществления процесса производства модуля PLC согласно первому варианту осуществления;

Фиг.11А-11F - виды в разрезе, иллюстрирующие вариант осуществления процесса производства модуля PLC согласно первому варианту осуществления;

Фиг.12A-12F - виды в разрезе, иллюстрирующие процесс производства первой многослойной платы, используемой в модуле PLC, согласно первому варианту осуществления;

Фиг.13 иллюстрирует схемный модуль PLC согласно второму варианту осуществления;

Фиг.14 иллюстрирует схемный модуль PLC согласно второму варианту осуществления;

Фиг.15 иллюстрирует схемный модуль PLC согласно третьему варианту осуществления;

Фиг.16 иллюстрирует схемный модуль PLC согласно четвертому варианту осуществления;

Фиг.17 иллюстрирует схемный модуль PLC согласно пятому варианту осуществления;

Фиг.18 иллюстрирует схемный модуль PLC согласно шестому варианту осуществления; и

Фиг.19 иллюстрирует общепринятый модуль PLC.

Наилучший вариант осуществления изобретения

Ниже поясняются варианты осуществления со ссылкой на описанные выше чертежи.

Первый вариант осуществления

В первом варианте осуществления модем 100 PLC объясняется как монтажная плата ИС, которая содержит в корпусе 101 плату PLC, используемую для высокоскоростной связи по линии электропередачи (PLC). Модем 100 PLC является образцом устройства PLC, которое может быть электрическим устройством, имеющим внутри модем PLC.

В первом варианте осуществления схемный модуль 200 PLC включает в себя две монтажные платы ИС, как показано на фиг.1 и 2. Точнее говоря, на первой многослойной плате 10, которая является одной из двух монтажных плат ИС, которые формируют схемный модуль 200 PLC, смонтированный в модеме 100 PLC, первый металлический слой 12 является проводящим слоем, предоставленным ближайшим к ИС 210 модуляции/демодуляции как ИС, и электрически соединен с выводом заземления у ИС 210 модуляции/демодуляции.

Как показано на фиг.1 и 2 (фиг.1 - срез по сечению А-А фиг.2), первая многослойная плата 10 прочно скреплена со второй многослойной платой 30, имея между собой композитную пластину 20 в качестве изолирующей пластины в первом варианте осуществления. Первая многослойная плата 10 монтируется с ИС 210 модуляции/демодуляции, которая является ИС, которая модулирует и демодулирует сигнал с несколькими несущими. На первой многослойной плате 10 из двух многослойных плат каждый слой с первого по четвертый металлических слоев 12-15 наносится и прочно скрепляется, включая изолирующий слой 17 между ними. Рисунки 11 и 16 разводки формируют разводку на передней и задней поверхностях многослойной платы. Рисунки разводки аналогичным образом обеспечиваются на первом-четвертом металлических слоях и работают как площадки для соединения. Ближайшим слоем является первый металлический слой 12. На второй многослойной плате 30 каждый слой из первого и второго металлических слоев 32 и 33, которые формируют рисунки разводки, наносится и прочно скрепляется, включая изолирующий слой 35 между ними. Рисунки 31 и 34 разводки формируют разводку на передней и задней поверхностях многослойной платы. Рисунки разводки аналогичным образом обеспечиваются на первом и втором металлических слоях и работают как площадки для соединения. Вторая многослойная плата 30, которая предоставляется аналогично первой многослойной плате 10, монтируется на ее поверхности вместе с AFE IC (ВЧ-блок ИС) 220 и симметричным фильтром 251 (260). Структура схемы схемного модуля 200 PLC, который включает в себя ИС 210 модуляции/демодуляции, будет описываться ниже.

Как показано на фиг.1 и 2, схемный модуль 200 PLC, снабженный двумя монтажными платами ИС и помещенный в модем 100 PLC, имеет первую многослойную плату 10 и вторую многослойную плату 30, которые прочно скреплены и изготовлены с изолирующей пластиной 20 между ними. ИС 210 модуляции/демодуляции монтируется на задней поверхности первой многослойной платы 10. Фильтр 251 нижних частот и полосовой фильтр 260, которые являются симметричными фильтрами, и AFE IC 220 монтируются на передней поверхности второй многослойной платы 30. Первая многослойная плата 10 включает в себя слои 11 и 16 разводки, которые включают в себя площадки на передней и задней поверхностях; и многослойные металлические слои 12, 13, 14 и 15, включающие изолирующий слой 17 между ними. Среди четырех металлических слоев первый металлический слой 12 предоставляется как слой заземления, ближайший к ИС модуляции/демодуляции на задней поверхности. Первый металлический слой 12 соединяется с площадкой B рисунка 11 соединений через сквозное отверстие Н1 и затем с ИС 210 модуляции/демодуляции.

Как описано выше, первая и вторая многослойные платы 10 и 30 используются как монтажные платы ИС, оборудованными в схемном модуле 200 PLC. Точнее говоря, первая многослойная плата 10, которая монтируется с ИС 210 модуляции/демодуляции в качестве ИС для модуляции и демодуляции сигнала с несколькими несущими, прочно прикреплена ко второй многослойной плате 30, в то же время имея композитную пластину 20 между ними в качестве изолирующей пластины. На второй многослойной плате 30 каждый из множества металлических слоев 32 и 33 наносится и прочно скрепляется, включая изолирующий слой 35 между ними. Вторая многослойная плата 30 также снабжается металлическими слоями 31 и 34, которые образуют площадки на передней и задней поверхностях (см. фиг.1).

Вышеупомянутая структура минимизирует расстояние между контактной площадкой (не показана на чертежах), которая является выводом заземления у ИС 210 модуляции/демодуляции, и первым металлическим слоем 12, который формирует слой заземления. Таким образом, структура позволяет соединять вывод заземления и слой заземления через мелкое внутреннее переходное отверстие H1, которое проходит только через поверхность изолирующего слоя 17, не требуя переходного отверстия для прохода через многослойную плату. В силу этого структура допускает соединение вывода заземления и слоя заземления, в то же время сохраняя точность производства. Следовательно, сквозное переходное отверстие не уменьшает пространство монтажа на задней поверхности многослойной платы, на которой никакой ИС не монтируется, даже когда оборудуется множество штырьков вывода заземления. Кроме того, минимизируется увеличение индуктивности, вызванное увеличенной толщиной многослойной платы.

Первый металлический слой 12, который формирует слой заземления первой многослойной платы 10, покрывается медной фольгой с тем, чтобы получить пространство в 80% поверхности платы или более. Со стороны верхнего слоя первого металлического слоя 12 (дальняя от ИС 210 модуляции/демодуляции сторона) оборудуется второй металлический слой 13, который аналогичным образом покрывается медной фольгой и формирует слой питания. Второй металлический слой 13 соединяется через внутреннее переходное отверстие с выводом питания (не показан на чертежах) ИС 210 модуляции/демодуляции, запоминающего устройства 240 и т.д.

Первая и вторая многослойные платы 10 и 30 снабжаются изолирующими слоями 17 и 35; металлическими слоями 12, 13, 14, 15, 32 и 33; и рисунками 11, 16, 31 и 34 разводки. Изолирующие слои помещаются между металлическими слоями, которые формируют рисунки, включая слой заземления, слой питания, слой разводки и т.п. Рисунки разводки формируют соединительные площадки на передней и задней поверхностях. Слои и рисунки электрически соединяются посредством сквозных отверстий, сделанных в изолирующем слое 17. Сквозные отверстия могут создаваться, например, путем лазерной обработки, сверления или штамповки. Предпочтительной является лазерная обработка, так как способ обеспечивает сквозные отверстия с малым шагом и не производит стружки. Лазерная обработка легко выполняется, когда используется лазер на диоксиде углерода или эксимерный лазер. Для электрического соединения может выполняться неэлектролитическая металлизация или может заливаться проводящее вещество.

Кроме того, для металлических слоев 11, 12, 13, 14, 15 и 16 (31, 32, 33 и 34) используется медная фольга, которые формируют рисунки разводки, слой заземления и слой питания. Тем не менее, может использоваться любое проводящее электричество вещество, например состав из проводящей смолы и т.п. Когда для рисунка соединений используется медная фольга, может применяться, например, электролитическая металлизированная медная фольга, имеющая толщину примерно от 12 мкм до 35 мкм. Чтобы улучшить прилипание медной фольги к изолирующим слоям 17 и 35, предпочтительно придать шероховатость поверхностям, которые контактируют с изолирующими слоями 17 и 35. Медная фольга, чья поверхность обработана связующим веществом или покрыта оловом, цинком или никелем, также может использоваться для улучшения прилипания и кислотостойкости. Для металлического слоя может использоваться выводная рамка, которая является вытравленной или перфорированной металлической пластиной. Использование выводной рамки позволяет легкое формирование, так как сырая пленка, которая делится и выдается на секцию путем печати и т.п., прочно закрепляется на выводной рамке; компоненты монтируются, как необходимо; наносится следующий изолирующий слой; наносится следующий металлический слой; слои потом наносятся аналогичным образом; и в конечном счете выводная рамка делится на многослойную плату модуля.

Композитная пластина в качестве изолирующей пластины 20, к которой прочно прикрепляются первая и вторая многослойные платы 10 и 30, имеет состав, который включает в себя неорганический наполнитель и отверждаемую смолу, и обычно называется сырой пленкой. Прокатывается незатвердевшая пластина, в которой делаются отверстия для компонента схемы или для токопроводящей дорожки, как необходимо. Пластина затем нагревается и высушивается при температуре около 200 градусов Цельсия и прокатывается с компонентом схемы или токопроводящей дорожкой на ней. Отверстия для компонента схемы или токопроводящей дорожки могут обеспечиваться, например, лазерной обработкой, сверлением или штамповкой. Предпочтительной является лазерная обработка, так как способ обеспечивает сквозные отверстия с малым шагом и не производит стружки. Лазерная обработка легко выполняется, когда используется лазер на диоксиде углерода или эксимерный лазер. Отверстие может делаться в то же время, когда формируется сырая пленка, используя смесь. В качестве неорганического наполнителя может использоваться, например, Al2O3, MgO, BN, AlN, SiO2 и т.п. Предпочтительно, чтобы неорганический наполнитель имел процентное отношение веса к смеси от 70% до 95%. Предпочтительно, чтобы неорганический наполнитель имел средний размер зерна от 0,1 мкм до 100 мкм или меньше. Предпочтительной отверждаемой смолой является, например, эпоксидная смола с высокой жаропрочностью, фенольная смола или циановокислая смола. Эпоксидная смола особенно предпочтительна, так как ее жаропрочность особенно высока. Смесь может включать в себя диспергатор, краситель, связующее вещество или разделитель.

Поскольку смесь из неорганического наполнителя и отверждаемой смолы используется в качестве материала для изолирующей пластины 20, в отличие от керамической платы, пластину не нужно отверждать при высокой температуре, и она может быть произведена путем сушки при температуре около 200 градусов Цельсия. Таким образом, производство является простым.

Далее, коэффициент линейного расширения, теплопроводность и диэлектрическая проницаемость изолирующей пластины 20 могут легко регулироваться путем выбора неорганического наполнителя для использования в изолирующей пластине 20. По существу, выравнивание коэффициента линейного расширения изолирующей пластины 20 и полупроводникового компонента может предотвратить излом и т.п., вызванный изменением температуры, тем самым обеспечивая сверхнадежную монтажную плату ИС. Улучшение теплопроводности изолирующей пластины 20 обеспечивает сверхнадежную монтажную плату ИС, даже когда компоненты схемы монтируются с высокой плотностью.

Плоская изолирующая пластина 20 может термически обрабатываться при температуре ниже температуры затвердевания отверждаемой смолы. Термическая обработка устраняет прилипание наряду с сохранением гибкости изолирующей пластины 20, тем самым позволяя легкую обработку в дальнейшем. Кроме того, термическая обработка смеси, в которой отверждаемая смола растворяется с помощью растворителя, частично удаляет растворитель.

Токопроводящая дорожка P, предусмотренная в изолирующей пластине 20, содержит, например, отверждаемое проводящее вещество. В качестве отверждаемого проводящего вещества может использоваться, например, составная смесь проводящей смолы из металлических частиц и отверждаемой смолы. В качестве металлических частиц может использоваться золото, серебро, медь или никель. Золото, серебро, медь и никель являются предпочтительными проводящими веществами вследствие их высокой проводимости. Медь особенно предпочтительна из-за ее высокой проводимости и ограниченной миграции. В качестве отверждаемой смолы может использоваться, например, эпоксидная смола, фенольная смола или циановокислая смола. Эпоксидная смола особенно предпочтительна из-за ее высокой жаропрочности.

Компоненты 18 и 37 схемы, размещенные в изолирующей пластине 20, могут быть либо активным компонентом, либо пассивным компонентом. В качестве активного компонента используется полупроводниковый компонент, например транзистор, ИС, БИС или т.п. Полупроводниковыми компонентами могут быть полупроводниковая бескорпусная ИС или герметизированный смолой полупроводниковый ко