Полиэтилен для литьевого формования

Иллюстрации

Показать все

Изобретение относится к полиэтилену и изделиям, полученным литьевым формованием полиэтилена. Полиэтилен содержит гомополимеры этилена и/или сополимеры этилена с молекулярно-массовым распределением Mw/Mn в интервале от 3 до 30, плотностью от 0,945 до 0,965 г/см3, средней молекулярной массой Mw от 50000 г/моль до 200000 г/моль, индексом расплава при повышенном напряжении сдвига (HLMI) от 10 до 300 г/10 мин. Полимер содержит от 0,1 до 15 разветвлений/1000 атомов углерода, причем от 1 до 15 мас.% полиэтилена с самыми высокими молекулярными массами имеет степень разветвленности более чем 1 ответвление боковых цепей с длиной выше СН3/1000 углеродных атомов. Причем полиэтилен получен с использованием каталитической композиции, содержащей, по меньшей мере, два различных катализатора полимеризации, где А) является, по меньшей мере, одним катализатором полимеризации на основе гафноцена (А2), и В) является, по меньшей мере, одним катализатором полимеризации на основе компонента железа, имеющего тридентатный лиганд, который содержит, по меньшей мере, два орто-, орто-дизамещенных арильных радикала (В). Полиэтилен по настоящему изобретению может подвергаться технологической обработке на стандартных аппаратах литьевого формования. Фактура изделий, полученных литьевым формованием, является однородной и может быть дополнительно улучшена повышением скорости литья под давлением или повышением температуры плавления. 3 н. и 6 з.п. ф-лы, 2 табл.

Реферат

Настоящее изобретение относится к новому полиэтилену, включающему гомополимеры этилена и/или сополимеры этилена и 1-алкенов и имеющему молекулярно-массовое распределение Mw/Mn в интервале от 3 до 30, плотность от 0,945 до 0,965 г/см3, средневесовую молекулярную массу от 50000 г/моль до 200000 г/моль, HLMI от 10 до 300 г/10 мин, который содержит от 0,1 до 15 разветвлений/1000 атомов углерода, где от 1 до 15 мас.% полиэтилена с самыми высокими молекулярными массами имеет степень разветвленности более 1 ответвления боковых цепей больше чем СН3/1000 атомов углерода, композиции катализатора и способу его получения, а также к изделиям, полученным литьевым формованием, в которых присутствует такой полиэтилен.

Смеси различных полиэтиленов известны и применяются для получения литьевым формованием изделий, обладающих высоким сопротивлением растрескиванию при напряжении, как описано в DE-C 3437116.

Ранее полиэтиленовые смеси использовались в литьевом формовании для получения различных типов винтовых затворов. Желательно, чтобы винтовые затворы сохраняли размер и форму в процессе охлаждения после литьевого формования, т.е. не давали усадку (низкая усадка). Низкая усадка в сочетании с сохранением формы является важным свойством пластмасс, которые предназначены для применения, например, для изготовления винтовых затворов с точным плотным прилеганием. Кроме того, способ литьевого формования обычно легче проводить, если композиции полиэтилена, подлежащего формованию, обладают хорошей текучестью в расплаве. К механической прочности изделий из полиэтилена, полученных литьевым формованием, предъявляются постоянно возрастающие требования. С другой стороны, необходимой является хорошая технологичность, позволяющая достигнуть высоких производительностей.

В публикации WO 00/71615 описываются контейнеры, полученные литьевым формованием из бимодального полиэтилена с плотностью в интервале от 0,950 до 0,98 г/см3, кристалличностью в интервале от 80 до 90%, состоящего, по меньшей мере, из 2 полиэтиленовых компонентов с различным молекулярно-массовым распределением, где, по меньшей мере, один компонент представляет собой сополимер этилена. Полиэтилен получен с использованием каскада реакторов или экструзией расплава двух компонентов.

Известные сополимерные этиленовые смеси все же оставляют желать лучшего в плане сочетания хороших механических свойств, высокой текучести расплава и хороших оптических свойств.

Неожиданно было обнаружено, что данная задача может быть решена путем использования специфической каталитической композиции, с помощью которой может быть получен полиэтилен, обладающий хорошими механическими свойствами, хорошей технологичностью и хорошими оптическими свойствами.

Соответственно, заявителями был получен полиэтилен, включающий гомополимеры этилена и/или сополимеры этилена с 1-алкенами, имеющий молекулярно-массовое распределение Mw/Mn в интервале от 3 до 30, плотность в интервале от 0,945 до 0,965 г/см3, средневесовую молекулярную массу Mw в интервале от 50000 до 200000 г/моль, HLMI в интервале от 10 до 300 г/10 мин, который содержит от 0,1 до 15 ответвлений/1000 атомов углерода, где от 1 до 15 мас.% полиэтилена с самыми высокими молекулярными массами имеют степень разветвленности более 1 ответвления боковых цепей более чем СН3/1000 атомов углерода.

Заявители также создали изделия, изготовленные литьевым формованием, крышки и затворы, в которых полиэтилен согласно настоящему изобретению присутствует в качестве основного компонента. Кроме того, заявители нашли применение полиэтиленов согласно настоящему изобретению для получения изделий методом литьевого формования.

Заявители также создали каталитическую систему для получения полиэтиленов согласно настоящему изобретению. Изобретение также относится к применению каталитической системы для полимеризации этилена и/или сополимеризации этилена с 1-алкенами и способу получения полиэтилена согласно настоящему изобретению полимеризацией этилена и/или сополимеризацией этилена с 1-алкенами в присутствии указанной каталитической системы.

Молекулярно-массовое распределение Mw/Mn полиэтилена согласно настоящему изобретению находится в интервале от 3 до 30, предпочтительно в интервале от 5 до 20 и особенно предпочтительно в интервале от 6 до 15. Плотность полиэтилена согласно настоящему изобретению находится в интервале от 0,945 до 0,965 г/см3, предпочтительно в интервале от 0,947 до 0,96 г/см3, особенно предпочтительно в интервале от 0,948 до 0,955 г/см3. Средневесовая молекулярная масса Mw полиэтилена согласно изобретению находится в интервале от 50000 г/моль до 200000 г/моль, предпочтительно в интервале от 70000 г/моль до 150000 г/моль и особенно предпочтительно в интервале от 80000 г/моль до 120000 г/моль. HLMI полиэтилена согласно настоящему изобретению находится в интервале от 10 до 300 г/10 мин, предпочтительно в интервале от 50 до 200 г/10 мин и особенно предпочтительно в интервале от 70 до 150 г/10 мин. В описании настоящего изобретения термин “HLMI” используется в своем известном значении и относится к индексу расплава при повышенном напряжении сдвига, который определен при 190°С c нагрузкой 21,6 кг (190°С/21,6 кг) в соответствии с ISO 1133.

Плотность [г/см3] определена в соответствии с ISO 1183. Определение молекулярно-массовых распределений, средних значений Mn, Mw и их производной величины Mw/Mn проводилось с помощью высокотемпературной гель-проникающей хроматографии на аппарате WATERS 150 C с использованием метода, основанного на DIN 55672, и последовательно соединенных колонок 3× SHODEX AT 806 MS, 1× SHODEX UT 807 и 1× SHODEX AT-G в следующих условиях: растворитель - 1,2,4-трихлорбензол (стабилизированным 0,025 мас.% 2,6-ди-трет-бутил-4-метилфенол), скорость истечения: 1 мл/мин, объем впрыска 500 мкл, температура 135°С, калибровка с использованием РЕ Standards. Оценка проводилась с использованием WIN-GPC.

Полиэтилен согласно настоящему изобретению содержит от 0,1 до 15 ответвлений/1000 атомов углерода, предпочтительно от 0,2 до 8 ответвлений/1000 атомов углерода, особенно предпочтительно от 0,3 до 3 ответвлений/1000 атомов углерода. Количество ответвлений/1000 атомов углерода определено с помощью 13С-ЯМР, как описано в публикации James. C. Randall, JMS-REV. Macromol. Chem. Phys., C29 (2&3), 201-317 (1989), и означает общее содержание СН3 групп/1000 атомов углерода.

Далее, полиэтилен согласно настоящему изобретению содержит от 1 до 15 мас.% полиэтилена с самыми высокими молекулярными массами, предпочтительно от 2 до 12 мас.%, и особенно предпочтительно от 3 до 8 мас.%, со степенью разветвленности выше 1 ответвления боковых цепей более чем СН3/1000 атомов углерода, предпочтительно в интервале от 2 до 20 разветвлений боковых цепей более чем СН3/1000 атомов углерода и особенно предпочтительно в интервале от 5 до 15 разветвлений боковых цепей более чем СН3/1000 атомов углерода. Эта характеристика может быть определена сольвентным-несольвентным фракционированием, которое позднее было названо фракционированием Холтрапа и описано в публикации W. Holtrup, Makromol. Chem. 178, 2335 (1977), в сочетании с ИК-исследованием различных фракций. В качестве растворителей фракционирования применялись ксилол и этиленгликольдиэтиловый эфир при 130°С. При этом образец полиэтилена массой 5 г был разделен на 8 фракций. Фракции последовательно исследовались 13С-ЯМР спектроскопией. Степень разветвленности различных фракций полимера может быть определена с помощью 13С-ЯМР в соответствии с публикацией James. C. Randall, JMS-REV. Macromol. Chem. Phys., C29 (2&3), 201-317 (1989). CDBI полиэтилена согласно настоящему изобретению предпочтительно составляет менее 50%, в частности находится в интервале от 10 до 45%. Способ определения CDBI описан, например, в WO 93/03093. TREF способ описан, например, в публикации Wild, Advances in Polymer Science, 98, p.1-47, 57 p. 153, 1992. CDBI определен как процент содержания сополимерных молекул из расчета на массу, в которых содержание сомономера составляет ±25% среднего значения общего молярного содержания сомономера. Ответвление боковых цепей более чем СН3 означает содержание боковых цепей/1000 атомов углерода без концевых групп.

Молекулярно-массовое распределение полиэтилена согласно настоящему изобретению может быть мономодальным, бимодальным или многомодальным. Термин «мономодальное молекулярно-массовое распределение» в описании настоящего изобретения означает, что молекулярно-массовое распределение имеет единственный максимум. Термин «бимодальное молекулярно-массовое распределение» в настоящей заявке означает, что молекулярно-массовое распределение имеет, по меньшей мере, две точки перегиба на профиле начиная с максимума. Молекулярно-массовое распределение предпочтительно является мономодальным или бимодальным, особенно предпочтительно бимодальным.

От 1 до 15 мас.% полиэтилена согласно изобретению с самыми высокими молекулярными массами, предпочтительно от 2 до 12 мас.%, особенно предпочтительно от 3 до 8 мас.% при фракционировании гель-проникающей хроматографией (ГПХ) с последующим анализом методом фракционирования с элюированием при повышении температуры (analytical temperature rising elution fractionation technique - TREF) предпочтительно не показывает пика полиэтилена высокой плотности с максимумом выше 80°С, предпочтительно выше 85°С и особенно предпочтительно выше 90°С. Концентрация полимера во фракциях, полученных при различных температурах, определена посредством инфракрасной спектроскопии. TREF результат может также калиброваться с помощью препаративно выделенных полиэтиленовых фракций с определенным количеством короткоцепочечных разветвлений. TREF метод описан, например, в публикации Wild, Advances in Polymer Science, 98, p.1-47, 57 p. 153, 1992.

Когда полиэтилен согласно настоящему изобретению анализируется методом TREF, фракции в максимум выше 80°С, предпочтительно выше 85°С и особенно предпочтительно выше 90°С при анализе ГПХ предпочтительно показывают только полиэтилен с молекулярными массами ниже 1 Mio г/моль в отличие от полиэтиленов, полученных с обычными катализаторами Циглера.

Полиэтилен согласно настоящему изобретению имеет степень длинноцепочечной разветвленности λ (лямбда) в интервале от 0 до 2 длинноцепочечных ответвлений/10000 атомов углерода и особенно предпочтительно от 0,1 до 1,5 длинноцепочечных ответвлений/10000 атомов углерода. Степень длинноцепочечной разветвленности λ (лямбда) определена рассеянием света, как описано, например, в публикациях ACS Series 521, 1993, Chromatography of Polymers, Ed. Theodore Provder, Simon Pang and Alfred Rudin: Size-Exclusion Chromatographic Assessment of Long-Chain Branch Frequency in Polyethylenes, page 254-269.

Предпочтительно 5-50 мас.% полиэтилена согласно изобретению, имеющего самые низкие молекулярные массы, предпочтительно 10-40 мас.% и особенно предпочтительно 15-30 мас.%, имеют степень разветвленности менее 10 ответвлений/1000 атомов углерода. Степень разветвленности части полиэтилена, имеющего самые низкие молекулярные массы, предпочтительно составляет от 0,01 до 9 ответвлений/1000 атомов углерода и особенно предпочтительно от 0,1 до 6 ответвлений/1000 атомов углерода. Эта характеристика может быть определена с помощью известного метода Холтрапа/13С-ЯМР. Степень разветвленности/1000 атомов углерода определена посредством 13С-ЯМР, как описано в публикации James. C. Randall, JMS-REV. Macromol. Chem. Phys., C29 (2&3), 201-317 (1989), и означает общее содержание СН3 групп/1000 атомов углерода.

Полиэтилен согласно настоящему изобретению содержит, по меньшей мере, 0,2 винильные группы/1000 атомов углерода, предпочтительно от 0,7 до 5 винильных групп/1000 атомов углерода и особенно предпочтительно от 0,9 до 3 винильных групп/1000 атомов углерода. Содержание винильных групп/1000 атомов углерода определено с помощью ИК-спектра в соответствии с ASTM D 6248-98. В описании настоящего изобретения выражение «винильные группы» относится к -СН=СН2 группам; винилиденовые группы и внутренние олефиновые группы не включены в данный термин. Винильные группы обычно относятся к реакции обрыва цепи полимера после введения этилена, в то время как винилиденовые концевые группы обычно образуются после реакции обрыва цепи полимера после введения сомономера.

Полиэтилен согласно настоящему изобретение предпочтительно содержит от 0,01 до 20 ответвлений боковых цепей более чем СН3/1000 атомов углерода, предпочтительно боковых цепей С26/1000 атомов углерода, предпочтительно от 1 до 15 ответвлений боковых цепей более чем СН3/1000 атомов углерода, предпочтительно боковых цепей С26/1000 атомов углерода, особенно предпочтительно от 2 до 8 ответвлений боковых цепей более чем СН3/1000 атомов углерода, предпочтительно боковых цепей С26/1000 атомов углерода. Количество ответвлений боковых цепей более СН3/1000 атомов углерода определено с помощью 13С-ЯМР в соответствии с публикацией James. C. Randall, JMS-REV. Macromol. Chem. Phys., C29 (2&3), 201-317 (1989), и данный термин означает общее содержание боковых цепей из более чем СН3 групп/1000 атомов углерода (без концевых групп). Особенно предпочтительно, чтобы в полиэтилене с 1-бутеном, 1-гексеном или 1-октеном в качестве α-олефина содержалось от 0,01 до 20 этильных, бутильных или гексильных боковых ответвлений/1000 атомов углерода, предпочтительно от 1 до 15 этильных, бутильных или гексильных боковых ответвлений/1000 атомов углерода и особенно предпочтительно от 2 до 8 этильных, бутильных или гексильных боковых ответвлений/1000 атомов углерода. Это относится к содержанию этильных, бутильных или гексильных боковых цепей/1000 атомов углерода без концевых групп.

В полиэтилене согласно настоящему изобретению часть полиэтилена с молекулярной массой менее 10000 г/моль, предпочтительно менее 20000, предпочтительно имеет степень разветвленности от 0 до 1,5 ответвлений боковых цепей более СН3/1000 атомов углерода, предпочтительно боковых цепей С26/1000 атомов углерода. Особенно предпочтительно часть полиэтилена с молекулярной массой менее 10000 г/моль, предпочтительно менее 20000, имеет степень разветвленности от 0,1 до 0,9 ответвлений боковых цепей более чем СН3/1000 атомов углерода, предпочтительно боковых цепей С26/1000 атомов углерода. Предпочтительно в полиэтилене согласно изобретению с 1-бутеном, 1-гексеном или 1-октеном в качестве 1-алкена часть полиэтилена с молекулярной массой менее 10000 г/моль, предпочтительно менее 20000 г/моль, предпочтительно имеет степень разветвленности от 0 до 1,5 этильных, бутильных или гексильных ответвлений боковых цепей/1000 атомов углерода. Особенно предпочтительна часть полиэтилена с молекулярной массой менее 10000 г/моль, предпочтительно менее 20000, имеющая степень разветвленности от 0,1 до 0,9 этильных, бутильных или гексильных разветвлений боковых цепей/1000 атомов углерода. Эта величина также может быть определена методом Холтрапа/13С-ЯМР, упомянутым выше.

Далее предпочтительно, что, по меньшей мере, 70% ответвлений боковых цепей более СН3 в полиэтилене согласно изобретению присутствуют в 50 мас.% полиэтилена с самыми высокими молекулярными массами. Это тоже может быть определено методом Холтрапа/13С-ЯМР, упомянутым выше.

Полиэтилен согласно настоящему изобретению предпочтительно имеет качество смешения, определенное в соответствии с ISO 13949, менее 3, в частности от 0 до 2,5. Эта величина определена для полиэтилена, отобранного непосредственно из реактора, т.е. порошка полиэтилена без предварительного плавления в экструдере. Данный полиэтиленовый порошок предпочтительно может быть получен полимеризацией в одном реакторе.

В качестве 1-алкенов, представляющих собой сомономеры, которые могут присутствовать в этиленовых сополимерах отдельно или в смеси одного с другим, помимо этилена в части сополимеров этилена полиэтилена согласно изобретению можно применять все 1-алкены, содержащие от 3 до 12 атомов углерода, например пропен, 1-бутен, 1-пентен, 1-гексен, 4-метил-1-пентен, 1-гептен, 1-октен и 1-децен. Сополимер этилена предпочтительно включает 1-алкены, содержащие от 4 до 8 атомов углерода, например 1-бутен, 1-пентен, 1-гексен, 4-метилпентен или 1-октен в сополимеризованной форме в качеств звена сомономера. Особенно предпочтительно применение 1-алкенов, выбранных из группы, состоящей из 1-бутена, 1-гексена и 1-октена. Полиэтилен согласно изобретению включает предпочтительно от 0,01 до 5 мас.%, предпочтительно от 0,1 до 3 мас.% сомономера.

Полиэтилен согласно изобретению может дополнительно включать от 0 до 6 мас.%, предпочтительно от 0,1 до 1 мас.% вспомогательных компонентов и/или добавок, известных в данной области техники, например стабилизаторов технологической переработки, стабилизаторов против воздействия света или высоких температур, традиционные добавки, например повышающие скольжение, антиоксиданты, антиадгезивы и антистатики, а также, если это подходит, красители. Квалифицированному специалисту будут известны тип и количество таких добавок.

Далее, было установлено, что технологические свойства полиэтиленов согласно настоящему изобретению могут быть дополнительно улучшены введением небольших количеств фторэластомеров или термопластичных сложных полиэфиров. Такие фторэластомеры известны в качестве добавок, улучшающих технологические свойства, и являются коммерчески доступными, например, под торговыми названиями Viton® и Dynamar® (см. также, например, US-A-3125547). Они предпочтительно добавляются в количестве от 10 до 1000 м.д., особенно предпочтительно от 20 до 20 м.д. из расчета на общую массу полимерной смеси согласно изобретению.

Обычно смешение добавок и полиэтиленов согласно изобретению может проводиться всеми известными способами. Оно может быть проведено, например, введением порошкообразных компонентов в аппарат гранулирования, например замесочную машину с двойным шнеком (ZSK), замесочную машину Фаррела (Farrel) или замесочную машину Коба (Kobe). Гранулированная смесь может также технологически перерабатываться непосредственно на установке производства пленки.

Заявителями настоящего изобретения был также предоставлен способ применения полиэтиленов согласно изобретению для производства изделий методом литьевого формования и предоставлены полученные литьевым формованием изделия, предпочтительно винтовые затворы, крышки, фланцы патрубков и технические детали, в которых полиэтилен согласно изобретению присутствует в качестве основного компонента.

Изделия, полученные литьевым формованием, винтовые затворы и крышки, фланцы патрубков и технические детали, в которых полиэтилен согласно настоящему изобретению присутствует в качестве основного компонента, представляют собой изделия, которые содержат от 50 до 100 мас.%, предпочтительно от 60 до 90 мас.% полиэтилена согласно изобретению из расчета на весь полимерный материал, использованный для производства. В частности, к ним относятся также изделия, полученные литьевым формованием, винтовые затворы и крышки, в которых один из слоев содержит от 50 до 100 мас.% полиэтилена согласно настоящему изобретению.

Матовость полиэтилена и изделий, полученных литьевым формованием согласно настоящему изобретению, толщиной 1 мм предпочтительна, как определено в соответствии с ASTM D 1003-00 на устройстве BYK Gardener Haze Guard Plus Device, по меньшей мере, на 5 кусках пленки 10×10 см, ниже 94%, предпочтительно находится в интервале от 10 до 92% и особенно предпочтительно в интервале от 50 до 91%. Сопротивление растрескиванию при напряжении (полное испытание на ползучесть разреза - full notch creep test - FNCT) полиэтилена и изделий, полученных литьевым формованием, как определено согласно ISO DIS2 16770 с давлением 3,5 Мбар при 80°С в 2 мас.% растворе Akropal (N=10) в воде, составляет предпочтительно, по меньшей мере, 5 часов, предпочтительно находится в интервале от 6 до 80 часов, особенно предпочтительно в интервале от 7 до 20 часов. Полиэтилен и изделия, полученные литьевым формованием согласно настоящему изобретению, толщиной 1 мм обладают предпочтительно ударной прочностью, равной, по меньшей мере, 12 Дж, как определено испытанием на удар падающим грузом согласно ISO 6603 при -20°С.

Полиэтилен может подвергаться технологической обработке на стандартных аппаратах литьевого формования. Фактура изделий, полученных литьевым формованием, является однородной и может быть дополнительно улучшена повышением скорости литья под давлением или повышением температуры плавления.

Характеристики текучести в условиях технологической обработки были установлены определением текучести в спиральной форме. Полиэтилен вводился при определенной температуре, давлении и скорости вращения шнека в форму для литьевого формования для получения спиралей с различными толщинами стенки. Длина полученной спирали может рассматриваться как мера текучести. Определение текучести в спиральной форме проводилось на аппарате Demag ET100-310 c запирающим давлением 100 т и мундштуком 3 мм.

Стабильность размеров и формы полиэтилена согласно изобретению испытывались литьевым формованием при температуре от 180 до 270°С крышек с резьбой с диаметром резьбы 28,2 мм. Затем крышки охлаждали и измеряли диаметр резьбы 50 образцов, вычисляли среднее значение диаметра и сравнивали с исходным диаметром резьбы. Образцы дополнительно обследовали визуально на стабильность формы и размера.

Полиэтилен согласно изобретению проявил высокие характеристики текучести с длинами спирали более 40 см, измеренными при исходной температуре 250°С, давлении впрыска 1000 бар, скорости вращения шнека 90 мм/с, температуре плавления 30°С и толщине стенки 2 мм.

Изделия, полученные литьевым формованием, предпочтительно затворы, крышки и винтовые затворы и крышки с резьбой, фланцы патрубков и технические детали, в которых полиэтилен согласно изобретению присутствует в качестве основного компонента, представляют собой изделия, которые содержат от 50 до 100 мас.%, предпочтительно от 60 до 90 мас.% полиэтилена согласно изобретению из расчета на весь полимерный материал, использованный для их производства. Крышки с резьбой и затворы предпочтительно используются для бутылок, предпочтительно бутылок для безалкогольных напитков.

Полиэтилен согласно изобретению может быть получен с использованием каталитической системы согласно изобретению и в особенности ее предпочтительных вариантов осуществления.

Настоящее изобретение дополнительно относится к каталитической композиции, включающей, по меньшей мере, два различных катализатора полимеризации, из которых А) представляет собой, по меньшей мере, один катализатор полимеризации на основе моноциклопентадиенильного комплекса металла 4-6 групп Периодической таблицы элементов, в котором циклопентадиенильная система замещена незаряженным (электронейтральным) донором (А1) или гафноценом (А2), и В) представляет собой, по меньшей мере, один катализатор полимеризации на основе компонента железа, включающий тридентатный лиганд, который содержит, по меньшей мере, два орто-, орто-дизамещенных арильных радикала (В).

Настоящее изобретение относится также к способу полимеризации олефинов в присутствии каталитической композиции согласно изобретению.

В соответствии с настоящим изобретением незаряженный донор представляет собой незаряженную (электронейтральную) функциональную группу, содержащую элемент группы 15 или 16 Периодической таблицы.

Гафноценовые компоненты катализатора представляют собой, например, циклопентадиенильные комплексы. Циклопентадиенильные комплексы могут представлять собой, например, мостиковые или немостиковые бисциклопентадиенильные комплексы, которые описаны, например, в публикациях ЕР 129368, ЕР 561479, ЕР 545304 и ЕР 576970, моноциклопентадиенильные комплексы, такие как мостиковые амидоциклопентадиенильные комплексы, описанные, например, в публикации ЕР 416815, многоядерные циклопентадиенильные комплексы, которые описаны в ЕР 632063, пи-лиганд-замещенные тетрагидропенталены, которые описаны в публикации ЕР 659758, или пи-лиганд-замещенные тетрагидроиндены, которые описаны в ЕР 661300.

Предпочтительны моноциклопентадиенильные комплексы (А1), содержащие следующие структурные отличительные признаки общей формулы Ср-YmMA (I), где переменные имеют следующие значения:

Ср представляет циклопентадиенильную систему,

Y представляет заместитель, который связан с Ср и содержит, по меньшей мере, один незаряженный донор, содержащий, по меньшей мере, один атом 15 или 16 группы Периодической таблицы,

МА представляет титан, цирконий, гафний, ванадий, ниобий, тантал, хром, молибден или вольфрам, особенно хром,

m равно 1, 2 или 3.

Подходящие моноциклопентадиенильные комплексы (А1) содержат структурный элемент общей формулы Ср-YmMA (I), где переменные принимают значения, определенные выше. Таким образом, дополнительные лиганды могут быть связаны с атомом металла МА. Число дополнительных лигандов зависит, например, от степени окисления атома металла. Данные лиганды не являются дополнительными циклопентадиенильными системами. Подходящие лиганды включают моноанионные и дианионные лиганды, например лиганды, описанные для Х. Кроме того, с центральным металлом М могут быть связаны основания Льюиса, такие как амины, простые эфиры, кетоны, альдегиды, сложные эфиры, сульфиды или фосфины. Моноциклопентадиенильные комплексы могут находиться в мономерной, димерной или олигомерной форме. Моноциклопентадиенильные комплексы предпочтительно представлены в мономерной форме.

МА представляет металл, выбранный из группы, состоящей из титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена или вольфрама. Степень окисления переходных металлов МА в каталитически активных комплексах обычно хорошо известна квалифицированному специалисту в данной области техники. Хром, молибден и вольфрам с большой вероятностью присутствуют со степенью окисления +3, цирконий и гафний - со степенью окисления +4 и титан - со степенью окисления +3 или +4. Однако возможно применять комплексы, степень окисления которых не соответствует степени окисления активного катализатора. Такие комплексы могут затем подвергаться подходящему восстановлению или окислению с помощью подходящих активаторов. МА предпочтительно представляет титан со степенью окисления 3, ванадий, хром, молибден или вольфрам. Особенное предпочтение отдано хрому со степенью окисления 2, 3 и 4, особенно 3.

m может быть равно 1, 2 или 3, то есть к Ср могут быть присоединены 1, 2 или 3 донорные группы Y, причем когда присутствуют 2 или 3 группы Y, они могут быть одинаковыми или разными. Предпочтительно только одна донорная группа Y связана с Ср (m=1).

Незаряженный донор Y представляет собой незаряженную функциональную группу, содержащую элемент 15 или 16 группы Периодической таблицы, например амин, имин, карбоксамид, сложный эфир карбоновой кислоты, кетон (оксо), простой эфир, тиокетон, фосфин, фосфит, фосфиноксид, сульфонил, сульфонамид или незамещенную, замещенную или конденсированную частично ненасыщенную гетероциклическую или ароматическую гетероциклическую систему. Донор Y может быть связан межмолекулярными или внутримолекулярными связями с переходным металлом МА или может не связываться с ним. Предпочтительно донор Y связан внутримолекулярно с переходным металлом МА. Особенно предпочтительны моноциклопентадиенильные комплексы, содержащие структурный элемент общей формулы Ср-YmMA.

Ср представляет циклопентадиенильную систему, которая может быть замещенной любым образом и/или может быть конденсированной с одним или несколькими ароматическими, алифатическими циклами, гетероциклами или ароматическими гетероциклами и содержит 1, 2 или 3 заместителя, предпочтительно 1 заместитель, образованный группой Y, и/или 1, 2 или 3 заместителя, предпочтительно 1 заместитель, замещенный группой Y и/или ароматическим, алифатическим, гетероциклическим или гетероароматическим конденсированным циклом, содержащим 1, 2 или 3 заместителя, предпочтительно 1 заместитель. Циклопентадиенильная структура сама представляет собой С5 циклическую систему, содержащую 6 π электронов, в которой один из атомов углерода может быть также замещен атомом азота или фосфора, предпочтительно атомом фосфора. Предпочтительно применение С5 циклических систем без замещения гетероатомом. Данная циклопентадиенильная структура может быть, например, конденсированной с гетероароматической структурой, содержащей, по меньшей мере, один атом, выбранный из группы, состоящей из атомов N, P, O и S, или с ароматической структурой. В контексте настоящего изобретения термин «конденсированный» означает, что гетероцикл и циклопентадиенильная структура имеют два общих атома, предпочтительно атома углерода. Циклопентадиенильная система соединена с МА.

Особенно подходящими моноциклопентадиенильными комплексами (А1) являются комплексы, в которых Y образован группой -Zk-A- и вместе с циклопентадиенильной системой Ср и МА образует моноциклопентадиенильный комплекс, содержащий структурный элемент общей формулы Ср-Zk-A-MA (II), где переменные имеют следующие значения:

Ср-Zk-A представляет собой

где переменные имеют следующие значения:

Е, каждый, представляют атом углерода или не более чем один из Е представляет собой атом фосфора.

R1A-R4A, каждый, независимо друг от друга, представляют водород, C1-C22-алкил, C2-C22-алкенил, C6-C22-арил, алкиларил, содержащий от 1 до 10 атомов углерода в алкильном радикале и 6-20 атомов углерода в арильном радикале, NR5A2, N(SiR5A3)2, OR5A, OSiR5A3, SiR5A3, BR5A2, где органические радикалы R1A-R4A могут быть замещены галогенами и два вицинальных радикала R1A-R4A могут быть соединены с образованием пяти-, шести- или семичленного цикла, и/или два вицинальных радикала R1A-R4A могут быть соединены с образованием пяти-, шести- или семичленного гетероцикла, содержащего, по меньшей мере, один атом, выбранный из группы, состоящей из атомов N, P, O и S,

радикалы R5A, каждый, независимо друг от друга, представляют водород, C1-C20-алкил, C2-C20-алкенил, C6-C20-арил, алкиларил, содержащий от 1 до 10 атомов углерода в алкильной части и 6-20 атомов углерода в арильной части и два парных радикала R5A также могут соединяться с образованием пяти- или шестичленного цикла,

Z представляет двухвалентный мостик между А и Ср, который выбран из следующих групп:

BR6A-, -BNR6AR7A-, -AlR6A- -Sn-, -O-, -S-, -SO-, -SO2-, -NR6A-, -CO-, -PR6A- или -P(O)R6A-,

где

L1A-L3A, каждый, независимо друг от друга, представляют атом кремния или германия,

R6A-R11A, каждый, независимо друг от друга, представляют водород, C1-C20-алкил, C2-C20-алкенил, C6-C20-арил, алкиларил, содержащий от 1 до 10 атомов углерода в алкильной части и 6-20 атомов углерода в арильной части, или SiR12A, где органические радикалы R6A-R11A могут быть замещены галогенами, или два парных или вицинальных радикала из R6A-R11A также могут соединяться с образованием пяти- или шестичленного цикла,

радикалы R12A, каждый, независимо друг от друга, представляют водород, C1-C20-алкил, C2-C20-алкенил, C6-C20-арил или алкиларил, содержащий от 1 до 10 атомов углерода в алкильной части и 6-20 атомов углерода в арильной части, С110-алкокси или С610-арилокси, и два радикала R12A могут соединяться с образованием пяти- или шестичленного цикла,

А представляет незаряженный донор, содержащий один или несколько атомов 15 и/или 16 группы Периодической таблицы элементов, предпочтительно незамещенную, замещенную или конденсированную ароматическую гетероциклическую систему,

МА представляет металл, выбранный из группы, состоящей из титана со степенью окисления 3, ванадия, хрома, молибдена и вольфрама, в особенности хрома, и

k равно 0 или 1.

В предпочтительных циклопентадиенильных системах Ср все Е представляют атом углерода.

На полимеризационные свойства комплексов металлов могут влиять различные заместители R1A-R4A. Число и тип заместителей могут влиять на доступность атома металла М для олефинов, подлежащих полимеризации. В этом случае можно изменять активность и селективность катализатора в отношении различных мономеров, в особенности объемных мономеров. Поскольку заместители могут также влиять на скорость реакций завершения роста полимерной цепи, таким образом можно изменять молекулярную массу производимых полимеров. Поэтому химическая структура заместителей R1A-R4A может изменяться в широкой области для достижения желаемого результата и для получения каталитической системы с заданными свойствами. Возможными углеродорганическими заместителями R1A-R4A являются, например, следующие: водород, C1-C22-алкил, который может быть линейным или разветвленным, например метил, этил, н-пропил, изопропил, н-бутил, изобутил, трет-бутил, н-пентил, н-гексил, н-гептил, н-октил, н-нонил, н-децил или н-додецил, 5-7-членный циклоалкил, который, в свою очередь, может содержать в качестве заместителя C1-C10-алкильную группу и/или C6-C10-арильную группу, например циклопропил, циклобутил, циклопентил, циклогексил, циклогептил, циклооктил, циклононил или циклододецил, C2-C22-алкенил, который может быть линейным, циклическим или разветвленным и в котором двойная связь может быть внутренней или концевой, например винил, 1-аллил, 2-аллил, 3-аллил, бутенил, пентенил, гексенил, циклопентенил, циклогексенил, циклооктенил или циклооктадиенил, C6-C22-арил, который может быть замещен дополнительными алкильными группами, например фенил, нафтил, бифенил, антранил, о-, м-, п-метилфенил, 2,3-, 2,4-, 2,5- или 2,6-диметилфенил, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,5-, 2,4,6- или 3,4,5-триметилфенил, или арилалкил, который может быть замещен дополнительными алкильными группами, например бензил, о-, м-, п-метилбензил, 1- или 2-этилфенил, где два радикала из R1A-R4A могут также соединяться с образованием 5-, 6- или 7-членного цикла и/или два вицинальных радикала из R1A-R4A могут соединяться с образованием пяти-, шести- или семичленного гетероцикла, содержащего, по меньшей мере, один атом, выбранный из группы, состоящей из атомов N, P, O и S, и/или органические радикалы R1A-R4A также могут быть замещены галогенами, такими как фтор, хлор или бром. Кроме того, R1A-R4A может представлять собой аминогруппу, NR5A2 или N(SiR5A3)2, алкокси или арилокси OR5A, например диметиламино, N-пирролидинил, пиколинил, метокси, этокси или изопропокси. Радикалы R5A в кремнийорганических заместителях SiR5A3 могут представлять собой углеродорганические радикалы, которые описаны выше для R1A-R4A, где два радикала R5A могут также соединяться с образованием 5- или 6-членного цикла, например триметилсилил, триэтилсилил, бутилдиметилсилил, трибутилсилил, три-трет-бутилсилил, триаллилсилил, трифенилсилил или диметилфенилсилил. Радикалы SiR5A3 могут также присоединяться к циклопентадиенильной структуре через атом кислорода или азота и представлять собой, например, триметилсилилокси, триэтилсилилокси, бутилдиметилсилилокси, трибутилсилилокси или три-трет-бутилсилилокси. Предпочтительными радикалами R1A-R4A являются водород, метил, этил, н-пропил, изопропил, н-бутил, изобутил, трет-бутил, н-пентил, н-гексил, н-гептил, н-октил, винил, аллил, бензил, фенил, орто-диалкил- или дихлорзамещенные фенилы, триалкил- или трихлорзамещенные фенилы, нафтил, бифенил и антранил. Возможными кремнийорганическими заместителями являются, в частности, триалкилсилильные группы, содержащие от 1 до 10 атомов углерода в алкильном радикале, в частности триметилсилильные группы.

Два вицинальных радикала из R1A-R4A вместе с содержащими их E1A-E5A могут образовывать гетероцикл, предпочтительно гетероароматический, содержащий, по меньшей мере, один атом, выбранный из группы, состоящей из атомов азота, фосфора, кислорода и серы, особенно предпочтительно азота и