Жаропрочный сплав
Иллюстрации
Показать всеИзобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым при изготовлении труб коллекторов высокотемпературных установок производства водорода, метанола, аммиака, работающим при температуре 800÷1000°С и давлении до 46 атмосфер. Жаропрочный сплав содержит мас.%: углерод >0,1÷0,14; кремний ≤0,80; марганец 0,50÷1,20; хром 22,0÷25,0; никель 33,0÷36,0; ниобий 0,90÷1,35; ванадий 0,005÷0,20; титан 0,005÷0,10; цирконий 0,10÷0,25; церий 0,005÷0,10; вольфрам 0,005÷0,10; сера ≤0,025; фосфор ≤0,025; свинец ≤0,007; олово ≤0,007; мышьяк ≤0,007; цинк ≤0,007; сурьма ≤0,007; азот ≤0,01; молибден ≤0,2; медь ≤0,2; железо - остальное, при выполнении следующих условий, мас.%: Ni+32×С+0,6×Мn+Сu=38,63÷41,40; Cr+3×Ti+V+Mo+1,6×Si+0,6×Nb+W=22,55÷25,13. В сплаве обеспечивается уменьшение относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах сплава, повышение однородности мелкодиспергированных частиц вторичных карбидов и их равномерности распределения. Повышается жаропрочность сплава. 2 ил.
Реферат
Изобретение относится к металлургии, в частности к составам жаропрочных высокоуглеродистых хромоникелевых сплавов аустенитного класса, и может быть использовано при изготовлении труб коллекторов высокотемпературных установок производства водорода, метанола, аммиака и др., с рабочими режимами при температуре 800÷1000°С и давлением до 46 атмосфер.
Известен жаропрочный сплав KHR32C японской фирмы KUBOTA, имеющий следующий состав: С 0,11÷0,16%; Si 1,2% (max), Mn 0,5% (max); Cr 19,0÷20,5%; Ni 33,5÷35,0%; Nb 0,6÷1,6%; (KUBOTA HEAT RESISTANT ALLOYS, Catalog, 1997).
Наиболее близким к заявляемому по технической сущности и достигаемому результату является жаропрочный сплав, описанный в опубликованной заявке на выдачу патента РФ №2149210 (заявка №98108871/02 от 08.05.1998 г.), кл. С22С 30/00, опубл. 20.05.2000 в БИ №14, и содержащий в мас.%: углерод 0,08÷0,14; хром 19,0÷21,0; никель 31,0÷34,0; ниобий 0,90÷1,35; кремний 0,0005÷0,79; марганец 0,5005÷1,21; ванадий 0,0005÷0,20; титан 0,0005÷0,10; алюминий 0,0005÷0,10, сера 0,03; фосфор 0,03; свинец 0,01; олово 0,01; мышьяк 0,01; цинк 0,01, молибден 0,5; медь 0,2; железо - остальное.
Известные жаропрочные высокоуглеродистые хромоникелевые сплавы выплавляются в индукционных печах с основной футеровкой.
Реакционные трубы и трубы коллекторов, предназначенные для нефтегазоперерабатывающих установок, обычно изготавливаются из хромоникелевых сплавов методом центробежного литья (ASTM [American Society for Testing and Materials], A608, Centrifugally Cast iron-chromium-nickel High Alloy Tubing for pressure application at high temperatures) с последующей механической обработкой полученных центробежнолитых трубных заготовок по внутренней поверхности для удаления дефектов металлургического происхождения (Yoshikazu Kuriyama, Yasuhisa Yamazaki, Iwao Kawashima, IHI, Engineering Review, 3, No. 5, September, 1970) и сваркой для получения реакционной трубы требуемой длины. Жаропрочные трубы из высокоуглеродистых хромоникелевых сплавов можно получить только методом центробежного литья, т.к. эти сплавы относятся к недеформируемым.
Срок службы центробежнолитых труб из известных сплавов в нефтегазоперерабатывающих установках, работающих при температурах 800÷1000°С, и давлениях до 46 атмосфер составляет от 20000 до 65000 часов, после чего их необходимо заменять, т.к. после такого длительного периода эксплуатации их прочность в рабочих условиях (температура, давление) резко понижается, что может привести к аварийному разрушению трубы и выходу из строя всей установки.
Повреждение реакционных труб и труб коллекторов в трубчатых печах производства водорода, метанола, аммиака и др. происходит вследствие комбинированного воздействия термических напряжений (из-за перепада температур на наружной и внутренней стенке трубы) и напряжений, возникающих из-за высокого давления технологического газа внутри трубы. Суммарные напряжения и вызывают ползучесть, которая в основном (в начальной стадии) проявляется в объеме жаропрочного сплава вблизи внутренней поверхности труб.
Известно, что ползучесть вызывается перемещением определенных групп атомов в структуре сплава. Эти группы атомов в процессе течения через массу металла скапливаются у границ зерен, что приводит к возникновению пустот, в дальнейшем выстраивающихся в линии и приводящих впоследствии к возникновению микротрещин.
Процесс формирования дефектов в структуре жаропрочного сплава (реакционных труб) от образования пустот и до возникновения микротрещин вплоть до появления сквозного свища принято рассматривать как трехстадийный, так и сам процесс ползучести.
Так, при первичной ползучести, которая фиксируется непосредственно с началом эксплуатации реакционных труб и труб коллекторов, в процессе упрочнения металла (непосредственно при высокотемпературной эксплуатации под внутренним давлением труб) скорость деформации снижается. При этом происходит замедление перемещения микроэлементов в структуре металла. На этой стадии ползучести происходит начало образования микропор на границе зерен и фаз.
При вторичной (стабильной) ползучести, фактически, в процессе обычного старения жаропрочного сплава (при расчетных значениях температуры и внутреннего давления в реакционных трубах) фиксируется увеличение диаметра труб с постоянной, крайне медленной скоростью. В конце этой стадии ползучести происходит рост и объединение микропор.
Третичная ползучесть характеризуется высокой скоростью деформации и объединением микротрещин в трещины, размером больше размеров аустенитного зерна. При этом дефекты (в виде пустот переходящих в трещины) в структуре жаропрочного сплава увеличиваются, что равносильно возрастанию нагрузки на бездефектные участки труб. Возрастающая скорость деформации в конечном итоге приводит к разрушению реакционной трубы и труб коллекторов из жаропрочного сплава.
Для увеличения работоспособности центробежнолитых труб из жаропрочных сплавов крайне важно определить момент окончания вторичной ползучести, а также отодвинуть процесс наступления третичной ползучести, при которой пустоты на границах зерен разрастаются вплоть до образования трещин в структуре металла.
Известно, что формирование карбидов в микроструктуре жаропрочного сплава приводит к устойчивости сплава к ползучести. Карбиды могут быть подразделены на два типа: первичные карбиды, которые образуются в процессе затвердевания в виде тонкой сетки на границах аустенитных зерен (см. Фиг.1) и вторичные карбиды (образуются уже при высокотемпературной нагрузке реакционных труб из жаропрочных сплавов - см. Фиг.2), которые в ходе эксплуатации труб осаждаются в виде мелкодиспергированных частиц не по границам, а в самих аустенитных зернах жаропрочного сплава (процесс старения). Каждая мелкодиспергированная частица вторичного карбида на уровне микроструктуры действует как препятствие, предотвращающее сдвиги, характерные для ползучих деформаций.
Именно благодаря вторичным карбидам (мелкодиспергированным частичкам) обеспечивается устойчивость жаропрочных хромоникелевых аустенитных сплавов к ползучести. В процессе ползучести эти вторичные карбиды не позволяют смещаться зернам металла, что предотвращает повреждение структуры.
Одними из возможных причин недостаточно высокой жаропрочности (способности материала противостоять механическим нагрузкам при высоких температурах) труб, изготовленных из известных жаропрочных хромоникелевых сплавов аустенитного класса, являются увеличенный относительный размер мелкодиспергированных частиц вторичных карбидов, низкая однородность мелкодиспергированных частиц вторичных карбидов и неравномерность распределения этих мелкодиспергированных частиц в аустенитных зернах жаропрочного сплава.
Основным техническим результатом, достигаемым при реализации заявляемого изобретения, является уменьшение относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, повышение однородности мелкодиспергированных частиц вторичных карбидов и повышение равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава.
Указанный технический результат достигается за счет того, что жаропрочный сплав, содержащий в мас.%: углерод 0,08÷0,14; хром 22,0÷25,0; никель 33,0÷36,0; ниобий 0,90÷1,35; ванадий 0,005÷0,20; титан 0,005÷0,10; кремний не более 0,80; марганец 0,50÷1,20; железо - остальное, дополнительно содержит в мас.%: цирконий 0,10÷0,25; церий 0,005÷0,10; вольфрам 0,005÷0,10. При этом обязательно должны одновременно выполняться два условия: %Ni+32×%С+0,6×%Mn+%Cu=38,63÷41,40%; %Cr+3×%Ti+%V+%Mo+1,6×%Si+0,6× %Nb+%W=22,55÷25,13%. Жаропрочный сплав может содержать фосфор, свинец, олово, мышьяк, цинк, сурьму, азот, молибден и медь в количествах, не превышающих следующие значения в мас.%: сера 0,025; фосфор 0,025; свинец 0,007; олово 0,007; мышьяк 0,007; цинк 0,007; сурьма 0,007; азот 0,01; молибден 0,2; медь 0,2.
Заявляемый высокоуглеродистый хромоникелевый жаропрочный сплав является чисто аустенитным и выплавляется только в индукционных печах с основной футеровкой и с использованием чистых шихтовых материалов (первородной шихты). Отходы, обрезь и другие загрязненные материалы при выплавке заявленного сплава не используются. Специфика нагрева и расплавления металла в индукционных печах без образования электрической дуги (в отличие от электродуговых печей) не требует наведения шлаков на поверхности жидкого металла с переводом ряда примесей в наведенный шлак и последующим его удалением. Кроме того, применение высокочастотного принципа нагрева в индукционной печи обеспечивает хорошее перемешивание компонентов сплава в процессе выплавки, что дополнительно снижает отрицательное воздействие ликвационных процессов. Плавление в индукционной печи происходит в футерованном индукторе. Таким образом, жаропрочный сплав защищен от любых загрязнений. Жаропрочный сплав, при плавлении в индукционных печах защищен от насыщения продуктами сгорания топлива (в отличие от плавления в мартеновских и др. печах), от науглероживающего влияния электродов (в отличие от плавления в электродуговых печах) и от насыщения газами (азотом и др.) из окружающей атмосферы (в отличие от плавления в электродуговых печах при наличии сверхвысокотемпературной электрической дуги).
Индукционная печь представляет собой своеобразный трансформатор, в котором металлическая шихта, подлежащая расплавлению, является вторичной обмоткой, а первичная обмотка трансформатора образована катушкой индуктора, через которую протекает переменный ток высокой частоты (более 1000 Гц). Ток, индуцируемый в металлической шихте, нагревает ее до расплавления. Это обстоятельство позволяет (в отличие от других методов плавления) легко регулировать температуру расплавленного металла в индукционной печи.
Заявленный жаропрочный сплав является литейным, поэтому не требуется дополнительных мер по существенному ограничению содержания вредных примесей, таких как сера и фосфор, резко снижающих пластичность сплава и не позволяющих производить его деформирование без разрушения. В свою очередь, сера и фосфор в заявленных количествах улучшают обрабатываемость сплава резанием.
Изделия на основе заявленного жаропрочного сплава получались из центробежнолитых трубных заготовок или отливок, изготовленных путем заливки расплавленного жаропрочного сплава во вращающийся кокиль (для центробежнолитой трубы) с внутренним диаметром, равным наружному диаметру получаемой трубы или путем заливки расплавленного жаропрочного сплава в специально подготовленную форму (для фасонной отливки). При производстве заявленного жаропрочного сплава, в расплавленный металл, непосредственно перед его выпуском (заливкой во вращающийся кокиль) вводят по специальным режимам некоторые легирующие компоненты (титан и др.) во избежание их окисления и угара. Последовательность и технология ввода легирующих компонентов в настоящей заявке не представлена и является отдельным (самостоятельным) «ноу-хау» на способ легирования. В дальнейшем, после кристаллизации жаропрочного сплава, полученные литые заготовки подвергались механической обработке без деформации структуры материала, т.е. путем снятия стружки.
Основные результаты исследований были получены нами при использовании сплава следующего состава в мас.%: углерод 0,12; хром 22,5; никель 35,5; ниобий 0,95; ванадий 0,10; титан 0,05; кремний 0,35; марганец 1,0; цирконий 0,19; церий 0,08; вольфрам 0,05; сера 0,020; фосфор 0,020; свинец 0,006; олово 0,006; мышьяк 0,006; цинк 0,0065; сурьма 0,0065; азот 0,008; молибден 0,15; медь 0,15; железо 38,731; %Ni+32×%С+0,6×%Mn+%Cu=40,09%; %Cr+3×%Ti+%V+%Мо+1,6×%Si+0,6×%Nb+%W=24,08%.
Величину зерна аустенита определяли в окуляре металлографического микроскопа на матовом стекле (ГОСТ 5639 «Сталь. Методы выявления и определения величины зерна»). Исследование проводилось на образцах, вырезанных из центробежнолитых труб, состаренных в течение 180 часов (при температуре 950°С и давлении в трубах 25 атмосфер) с активным осаждением мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава.
Равномерность распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава оценивали путем сравнения расстояний между соседними частицами вторичных карбидов, осажденных в аустенитном зерне.
Специально для этой процедуры был разработан компьютеризированный программный комплекс «Structure Analyser», работающий с фотографиями микроструктур высокой степени разрешения. Фотографии микроструктуры аустенитного жаропрочного сплава с выявленными зернами аустенита по ГОСТ 5639 переводили в электронный формат (удобный для работы в программе «Structure Analyser») и проводили анализ по следующему алгоритму. Программа «Structure Analyser» в первую очередь идентифицирует границы аустенитных зерен и все мелкодиспергированные частички вторичных карбидов в пределах границ каждого зерна. При этом предусмотрена возможность корректировки полученных данных со стороны специалиста-материаловеда. Далее анализу подвергались все мелкодиспергированные частички вторичных карбидов, попавшие в поле одного зерна аустенита за исключением частичек, близлежащих к границе аустенитного зерна. Для каждой частички определялся геометрический центр и проводился компьютерный анализ расстояний между центрами частиц. Для этого, от центра каждой частички Rn, описывалась окружность. В четырех секторах этой окружности (первый сектор окружности - от 0° до 90°; второй сектор окружности - от 90° до 180°; третий сектор окружности - от 180° до 270° и четвертый сектор окружности -от 270° до 360°) выявлялись наиболее приближенные (с минимальным расстоянием от центра анализируемой частички) к центру окружности соседние частички вторичных карбидов (для каждого сектора окружности определялось кратчайшее расстояние R1; R2; R3 и R4 между центрами частиц вторичных карбидов). Далее, из полученных расстояний R1; R2; R3 и R4, соответствующих своему сектору окружности, определяли минимальное R1-MIN и максимальное R1-MAX. Аналогичным образом определялись размеры R2-MIN и R2-MAX для второй частицы, и так - для всех частиц, расположенных в поле выявленного аустенитного зерна, в котором эти частицы вторичных карбидов осаждены. В последующем, из полученного массива данных R1-MIN; R2-MIN… R(n-1)-MIN; Rn-MIN и R1-MAX; R2-MAX… R(n-1)-MAX; Rn-MAX (где n - количество проанализированных частиц в поле аустенитного зерна) выявлялись минимальное RMIN и максимальное значение RMAX (т.е. минимальное и максимальное расстояние между мелкодиспергированными частичками вторичных карбидов). Далее с помощью программного комплекса «Structure Analyser» проводили анализ всех зерен аустенита в пределах подготовленного шлифа, что позволяло получить конечные значения RMAX и RMIN. Равномерность распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах оценивали коэффициентом K=(RMAX/RMIN), который в идеальном случае (при абсолютно равномерном распределении частиц) должен равняться 1. В известном сплаве-прототипе K=14,8. Для заявленного сплава K=5,25, что свидетельствует о повышении равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах заявленного жаропрочного сплава.
Однородность мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава оценивалась с помощью коэффициента однородности А, который определяется как отношение А=Lmax/Lmin, где Lmax и Lmin - максимальный и минимальный линейные размеры мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, соответственно (значения Lmax и Lmin также определялись с использованием программного комплекса «Structure Analyser»). В известном сплаве-прототипе А=4,557. Для заявленного сплава А=2,672, что свидетельствует о повышении однородности мелкодиспергированных частиц вторичных карбидов в аустенитных зернах заявленного сплава.
Относительный размер мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава оценивали с помощью коэффициента В, который определяется как отношение В=FBK/FAЗ, где FAЗ - средняя площадь аустенитного зерна жаропрочного сплава (для заявленного сплава FAЗ=0,0197 мм2) и FBK - средняя площадь мелкодиспергированной частицы вторичных карбидов в аустенитном зерне жаропрочного сплава (усредненные значения FAЗ и FBK также определялись с использованием программного комплекса «Structure Analyser»). В известном сплаве-прототипе В=0,0004294. Для заявленного сплава В=0,0001505, что свидетельствует об уменьшении относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах заявленного сплава.
Для проведения исследований жаропрочных свойств заявленного сплава от торцевой части изготовленной центробежнолитой трубной заготовки вырезали патрубок длиной 150 мм, из которого изготавливали образцы для испытаний. При этом направление оси вырезаемых образцов совпадало (было параллельно) с направлением оси центробежнолитой трубы.
Жаропрочность при различных температурах оценивали по длительной прочности, т.е. напряжению, вызывающему разрушение при данной температуре за данный отрезок времени.
Испытание на длительную прочность проводили на цилиндрических образцах с диаметром по расчетной длине 10 мм при температуре 950°С.
При длительных испытаниях в условиях высоких температур разрушение (разрыв) образца происходит в результате постоянного нагружения, которое осуществляют с помощью рычажного нагружения (Н.Д.Сазонова «Испытание жаропрочных материалов на ползучесть и длительную прочность, М.: Машиностроение, 1965 г.).
Технические требования к машинам для испытания металлов на длительную прочность соответствовали ГОСТ 15533.
Образец (тип IV по ГОСТ 1497), установленный в захватах испытательной машины и помещенный в печь, нагревали до заданной температуры (время нагрева не превышало 8 часов) и выдерживали при этой температуре не менее одного часа. После нагрева образца и выдержки при заданной температуре к образцу плавно прикладывали нагрузку для обеспечения требуемого напряжения испытания.
Основным показателем данного вида испытания является время до разрушения при заданной величине напряжения и температуры. Результаты выполненных испытаний наносили на график жаропрочности в координатах lgτ - lgσ (где τ - время до разрушения, σ - напряжение). Полученный график позволяет прогнозировать напряжение (длительную прочность, ), при котором изделие из данного сплава разрушилось бы за определенный промежуток времени (τ, час) при заданной температуре (t,°C).
С целью сокращения длительности испытаний, их проводили при высоких напряжениях (испытания на длительную прочность проводили при температуре 950°С и напряжениях σ 60; 50; 40 и 35 Н/мм2 в соответствии с ГОСТ 10145), что позволило определить из полученного графика жаропрочности (lgτ - lgσ) конкретные значения 100-часовой длительной прочности (), т.е. напряжения, при котором испытуемый при температуре 950°С образец разрушился бы через 100 часов.
Анализ результатов исследования длительной прочности показал, что достижение поставленного технического результата - уменьшение относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, повышение однородности мелкодиспергированных частиц вторичных карбидов и повышение равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава приводит к повышению его жаропрочности.
В результате проведенных комплексных исследований на 11 опытных плавках было выявлено, что в случае, если все компоненты сплава находятся в пределах, оговоренных в формуле изобретения, достигается ожидаемый технический результат, а 100-часовая длительная прочность () образцов труб, изготовленных из заявленного сплава, повышается с 25 до 31 Н/мм2, что в конечном итоге приводит к увеличению на 15% ресурса эксплуатации реакционных труб и труб коллекторов из заявленного жаропрочного сплава при прочих равных условиях. При этом механические свойства заявляемого сплава в исходном состоянии при комнатной температуре остаются такими же, как и у сплава-прототипа, т.е. предел прочности (σВ) не менее 440,0 Н/мм2; предел текучести (σ02) не менее 175,0 Н/мм2; относительное удлинение (δ5) не менее 30%.
Было установлено, что введение в состав сплава циркония, церия и вольфрама по отдельности или попарно не приводило к уменьшению относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, повышению однородности мелкодиспергированных частиц вторичных карбидов и повышению равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава. Было установлено, что только полная комбинация всех отличительных признаков (наличие в составе заявленного сплава циркония, церия и вольфрама в оговоренных пределах) приводит к уменьшению относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, повышению однородности мелкодиспергированных частиц вторичных карбидов и повышению равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава.
Результаты исследований показали также, что в случае, если будут полностью выполнены два условия, оговоренные в п.2 формулы изобретения, то это приведет к уменьшению коэффициента В с В=0,0001505 до В=0,0001355, приведет к повышению однородности мелкодиспергированных частиц вторичных карбидов в аустенитных зернах заявленного сплава (А=2,557), приведет к повышению равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава (K=4,99), а это, в свою очередь, приведет к увеличению длительной прочности сплава () с 31 до 33 Н/мм2 (что равносильно увеличению ресурса эксплуатации реакционных труб из заявленного жаропрочного сплава).
Кроме того, экспериментально подтверждено, что в случае превышения пределов содержания серы, фосфора, свинца, олова, мышьяка, цинка, сурьмы, азота, молибдена и меди, оговоренных в п.3 формулы изобретения, резко увеличивается коэффициент В=0,0001505 до В=0,0001654, приведет к понижению однородности мелкодиспергированных частиц вторичных карбидов в аустенитных зернах заявленного сплава (А=3,454), приведет к снижению равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава (K=8,9), а это в свою очередь приводит к уменьшению длительной прочности сплава () с 31 до 23 Н/мм2 (что равносильно снижению ресурса эксплуатации реакционных труб). При этом резко ослабляется положительный эффект от аддитивного воздействия всех отличительных признаков на замедление процесса зарождения трещин, т.е. на улучшение состояния границ зерен и на нейтрализацию в жаропрочном сплаве вредных примесей, способных образовывать легкоплавкие эвтектики.
Таким образом, исследования физических параметров заявленного сплава показали, что по механическим свойствам при комнатной температуре (σВ, σ02, δ5) он находится на уровне известных аналогов, а по показателям жаропрочности превосходит их за счет уменьшения относительного размера мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, повышения однородности мелкодиспергированных частиц вторичных карбидов и повышения равномерности распределения мелкодиспергированных частиц вторичных карбидов в аустенитных зернах жаропрочного сплава, при указанном в формуле изобретения содержании компонентов.
Жаропрочный сплав, содержащий углерод, кремний, марганец, хром, никель, ниобий, ванадий, титан, цирконий, церий, вольфрам, серу, фосфор, свинец, олово, мышьяк, цинк, сурьму, азот, молибден, медь и железо, отличающийся тем, что он содержит компоненты при следующем соотношении, мас.%:
углерод | >0,1÷0,14 |
кремний | ≤0,80 |
марганец | 0,50÷1,20 |
хром | 22,0÷25,0 |
никель | 33,0÷36,0 |
ниобий | 0,90÷1,35 |
ванадий | 0,005÷0,20 |
титан | 0,005÷0,10 |
цирконий | 0,10÷0,25 |
церий | 0,005÷0,10 |
вольфрам | 0,005÷0,10 |
сера | ≤0,025 |
фосфор | ≤0,025 |
свинец | ≤0,007 |
олово | ≤0,007 |
мышьяк | ≤0,007 |
цинк | ≤0,007 |
сурьма | ≤0,007 |
азот | ≤0,01 |
молибден | ≤0,2 |
медь | ≤0,2 |
железо | остальное, |