Атомно-лучевой стандарт частоты

Иллюстрации

Показать все

Изобретение относится к технике стабилизации частоты и может быть использовано в атомно-лучевых стандартах частоты. Техническим результатом является создание атомно-лучевого стандарта частоты, работающего по двухчастотной схеме, реализуемой с помощью одного лазерного модуля, и в котором осуществляется автоматическая установка начальных значений частот подстраиваемого кварцевого генератора и лазерного модуля в соответствии с частотами используемых атомных переходов. Стандарт частоты содержит атомно-лучевую трубку с источником атомного пучка, СВЧ резонатором и выходным фотодетектирующим устройством. Атомно-лучевая трубка имеет окно оптического детектирования и окно оптической накачки, оптически связанные с выходом лазерного модуля, причем вторая связь осуществлена через модулятор, входящий в состав блока формирования сигнала оптической накачки. Выход выходного фотодетектирующего устройства соединен через первое фотоприемное устройство и первый блок автоматической подстройки частоты с первым управляющим входом подстраиваемого кварцевого генератора, выход которого через блок формирования сигнала радиочастотного возбуждения соединен с радиочастотным входом СВЧ резонатора. Выход выходного фотодетектирующего устройства соединен также через второе фотоприемное устройство и второй блок автоматической подстройки частоты с первым управляющим входом управляемого стабилизатора тока, выход которого соединен с управляющим входом лазерного модуля. Опорные входы первого блока автоматической подстройки частоты и блока формирования сигнала радиочастотного возбуждения соединены с выходом первого низкочастотного генератора, причем второе из этих соединений осуществлено через первый электронный ключ. Опорные входы второго блока автоматической подстройки частоты и управляемого стабилизатора тока соединены с выходом второго низкочастотного генератора, причем второе из этих соединений осуществлено через второй электронный ключ. Блок формирования сигнала оптической накачки кроме указанного модулятора содержит третий электронный ключ и синтезатор частоты, причем вход синтезатора частоты соединен с выходом подстраиваемого кварцевого генератора, а выход синтезатора частоты через третий электронный ключ соединен с управляющим входом модулятора. Второй выход первого фотоприемного устройства соединен с вторым управляющим входом подстраиваемого кварцевого генератора через первое устройство автоматического поиска частоты, второй выход которого соединен с управляющими входами первого и второго электронных ключей. Второй выход второго фотоприемного устройства соединен с вторым управляющим входом управляемого стабилизатора тока через второе устройство автоматического поиска частоты, второй выход которого соединен с управляющими входами третьего электронного ключа и первого устройства автоматического поиска частоты. 1 з.п. ф-лы, 3 ил.

Реферат

Заявляемое изобретение относится к технике стабилизации частоты и может быть использовано в квантовых стандартах частоты пассивного типа с квантовым дискриминатором на основе атомно-лучевой трубки с лазерной накачкой и лазерным детектированием пучка рабочих атомов.

Принцип работы атомно-лучевого стандарта частоты основан на стабилизации частоты подстраиваемого кварцевого генератора относительно резонансной частоты спектральной линии, соответствующей определенному квантовому переходу рабочего вещества атомного пучка атомно-лучевой трубки, выполняющей функцию квантового дискриминатора, см., например, [1] - А.И.Пихтелев, А.А.Ульянов, Б.П.Фатеев и др. Стандарты частоты и времени на основе квантовых генераторов и дискриминаторов // М., Сов. радио, 1978, с.5.

Обобщенная структурная схема атомно-лучевого стандарта частоты содержит последовательно соединенные в замкнутое кольцо автоматической подстройки частоты подстраиваемый кварцевый генератор, блок формирования сигнала радиочастотного возбуждения, квантовый дискриминатор в виде атомно-лучевой трубки и блок автоматической подстройки частоты, формирующий управляющее напряжение для подстраиваемого кварцевого генератора, а также блок формирования опорных сигналов, связанный своими выходами с соответствующими входами блока автоматической подстройки частоты и блока формирования сигнала радиочастотного возбуждения, а входом - с выходом подстраиваемого кварцевого генератора, см., например, патент РФ [2] - RU 2220499 С2, H03L 7/16, H01S 3/10, 27.12.2003. Блок формирования сигнала радиочастотного возбуждения формирует па основе выходного сигнала подстраиваемого кварцевого генератора (гармонического сигнала с частотой f1) и соответствующего выходного сигнала блока формирования опорных сигналов модулированный по фазе (частоте) СВЧ сигнал радиочастотного возбуждения, номинальное значение несущей частоты f2 которого соответствует вершине контура спектральной линии атомно-лучевой трубки (контур линии Рамзея или Раби), определяемой резонансной частотой f0 контура спектральной линии взаимодействия рабочего вещества атомного пучка с сигналом радиочастотного возбуждения. Частота f0 стабильна и поэтому используется в качестве эталона для подстройки частоты подстраиваемого кварцевого генератора. На выходе атомно-лучевой трубки формируется сигнал, несущий информацию об отклонении текущего значения частоты f1 от частоты f0. Блок автоматической подстройки частоты на основе выходного сигнала атомно-лучевой трубки и соответствующего выходного сигнала блока формирования опорных сигналов формирует, например, путем синхронного детектирования сигнал ошибки, а затем путем интегрирования сигнала ошибки формирует управляющее напряжение для подстраиваемого кварцевого генератора. Под действием управляющего напряжения частота f1 выходного сигнала подстраиваемого кварцевого генератора и связанная с ней несущая частота f2 сигнала радиочастотного возбуждения изменяются в сторону уменьшения сигнала ошибки, осуществляя тем самым стабилизацию частоты выходного сигнала подстраиваемого кварцевого генератора относительно частоты f0.

Известен атомно-лучевой стандарт частоты, представленный в патенте США [3] - US 4943955, H03L 7/26, 24.07.1990, содержащий последовательно соединенные в замкнутое кольцо автоматической подстройки частоты подстраиваемый кварцевый генератор, блок формирования сигнала радиочастотного возбуждения, атомно-лучевую трубку с отклоняющей магнитной системой и устройство автоматической подстройки частоты, формирующее управляющее напряжение для подстраиваемого кварцевого генератора.

Блок формирования сигнала радиочастотного возбуждения содержит преобразователь частоты и связанный с ним программируемый синтезатор частоты. Сигнальный вход преобразователя частоты, образующий сигнальный вход блока формирования сигнала радиочастотного возбуждения, соединен с выходом подстраиваемого кварцевого генератора. Сигнальный выход преобразователя частоты, образующий сигнальный выход блока формирования сигнала радиочастотного возбуждения, соединен с радиочастотным входом атомно-лучевой трубки. Высокочастотный выход программируемого синтезатора частоты (выход фазомодулированного высокочастотного сигнала) соединен с опорным входом преобразователя частоты. Низкочастотный выход программируемого синтезатора частоты (выход низкочастотного сигнала, частота которого соответствует частоте модуляции) образует опорный выход блока формирования сигнала радиочастотного возбуждения, соединенный с опорным входом устройства автоматической подстройки частоты.

В качестве атомно-лучевой трубки используется цезиевая трубка традиционной конструкции с отклоняющей магнитной системой, примеры выполнения которой представлены в патентах США: [4] - US 4425653, H01S 3/091, 10.01.1984; [5] - US 4354108, H01S 1/00, 12.10.1982; [6] - US 3967115, H01S 1/00, 29.06.1976; [7] - US 3397310, US C1.250-41.3, 13.08.1968; [8] - US 3323008, US C1.315-111, 30.05.1967. Такая атомно-лучевая трубка содержит размещенные на одной оси источник атомного пучка, первый отклоняющий магнит, СВЧ резонатор, второй отклоняющий магнит и фотоэлектронный умножитель, при этом радиочастотный вход СВЧ резонатора образует радиочастотный вход атомно-лучевой трубки, а выход фотоэлектронного умножителя - выход атомно-лучевой трубки.

Устройство автоматической подстройки частоты содержит входной блок, выполняющий функции усиления и аналого-цифрового преобразования сигнала, центральный блок, выполняющий функцию цифрового синхронного детектирования, и выходной блок, выполняющий функции цифро-аналогового преобразования сигнала и интегрирования преобразованного сигнала. Сигнальный вход входного блока является сигнальным входом устройства автоматической подстройки частоты, соединенным с выходом атомно-лучевой трубки. Выход выходного блока является выходом устройства автоматической подстройки частоты, соединенным с управляющим входом подстраиваемого кварцевого генератора.

Работа атомно-лучевого стандарта частоты, представленного в [3], происходит следующим образом. Блок формирования сигнала радиочастотного возбуждения формирует из выходного сигнала подстраиваемого кварцевого генератора (гармонического сигнала с частотой f1) модулированный по фазе с частотой низкочастотной модуляции F1 СВЧ сигнал радиочастотного возбуждения, номинальное значение несущей частоты f2 которого соответствует резонансной частоте f0 контура спектральной линии атомно-лучевой трубки, определяемой взаимодействием рабочего вещества атомного пучка с сигналом радиочастотного возбуждения, а значение частоты низкочастотной модуляции F1 соответствует полуширине этого контура.

Сигнал радиочастотного возбуждения поступает на радиочастотный вход атомно-лучевой трубки, т.е. на радиочастотный вход СВЧ резонатора. Процессы, происходящие при этом в атомно-лучевой трубке, описываются на основе двухуровневой энергетической модели атомов рабочего вещества с частотой радиочастотного атомного перехода, равной f0. Суть этих процессов заключается в следующем. Начальное энергетическое распределение атомов пучка на выходе источника атомного пучка подчиняется распределению Больцмана и в первом приближении равновероятно. Далее в области размещения первого отклоняющего магнита происходит энергетическая сортировка атомов за счет различий в дипольных магнитных моментах. В результате такой сортировки в СВЧ резонатор влетают атомы, находящиеся в первом (нижнем) энергетическом состоянии. Взаимодействие этих атомов с сигналом радиочастотного возбуждения атомно-лучевой трубки является резонансным и описывается контуром спектральной линии Рамзея с центральной частотой радиочастотного атомного перехода, равной f0. В результате этого взаимодействия атомы пучка на выходе СВЧ резонатора оказываются преимущественно во втором (верхнем) энергетическом состоянии, т.е. происходит инвертирование населенности в энергетической структуре атомов. Количество атомов пучка, перешедших во второе энергетическое состояние, характеризует эффективность данного взаимодействия и, в конечном итоге, определяет величину сигнала, получаемого на выходе атомно-лучевой трубки (т.е. величину, пропорциональную количеству атомов пучка, поступающих на вход фотоэлектронного умножителя). Для максимизации выходного сигнала атомно-лучевой трубки атомы пучка с помощью второго отклоняющего магнита фокусируются на вход фотоэлектронного умножителя, выход которого является выходом атомно-лучевой трубки.

Получаемый таким образом выходной сигнал атомно-лучевой трубки содержит постоянную составляющую и гармоники с частотами, кратными частоте модуляции F1. Эти гармоники несут в своих амплитудах и фазах информацию об отклонении текущего значения частоты f2 от частоты f0. Первая из этих гармоник используется в качестве полезной составляющей выходного сигнала атомно-лучевой трубки для получения информации об отклонении текущего значения частоты f2 от частоты f0, т.е. для получения сигнала ошибки.

Сигнал ошибки получают в устройстве автоматической подстройки частоты в результате синхронного детектирования выходного сигнала атомно-лучевой трубки относительно опорного сигнала с частотой F1, поступающего на опорный вход устройства автоматической подстройки частоты с опорного выхода блока формирования сигнала радиочастотного возбуждения. Полученный сигнал ошибки далее интегрируется с получением управляющего напряжения для подстраиваемого кварцевого генератора, которое является выходным сигналом устройства автоматической подстройки частоты.

Под действием управляющего напряжения, поступающего на управляющий вход подстраиваемого кварцевого генератора с выхода устройства автоматической подстройки частоты, частота f1 выходного сигнала подстраиваемого кварцевого генератора и связанная с ней несущая частота f2 сигнала радиочастотного возбуждения изменяются в сторону уменьшения сигнала ошибки, осуществляя тем самым стабилизацию частоты выходного сигнала подстраиваемого кварцевого генератора относительно частоты f0 .

Достоинством рассмотренного атомно-лучевого стандарта частоты является простота реализации, а недостатком - существенная нестабильность частоты выходного сигнала, обусловленная низким отношением сигнала к шуму на выходе атомно-лучевой трубки, что связано с низкой эффективностью сортировки атомов и фокусировки атомного пучка с помощью отклоняющих магнитов.

Решение задачи улучшения отношения сигнала к шуму на выходе атомно-лучевой трубки и, соответственно, повышения стабильности частоты атомно-лучевого стандарта частоты обеспечивается в более сложных по реализации схемах атомно-лучевых стандартов частоты, использующих лазерную оптическую накачку и лазерное оптическое детектирование атомного пучка вместо магнитной сортировки и фокусировки.

Среди атомно-лучевых стандартов частоты, использующих лазерную оптическую накачку и лазерное оптическое детектирование атомного пучка, известны решения, в которых лазерная оптическая накачка и лазерное оптическое детектирование осуществляются на двух разных частотах, см., например, статью [9] - С.Sallot, М.Baldy, D.Gin, R.Petit. 3·10-12·τ-1/2 on industrial optically pumped cesium beam frequency standard. // 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointy with the 17th European Frequency and Time Forum. 2003, pp.100-104, а также патент США [10] - US 4684900, H03E 7/26, 04.08.1987.

Суть двухчастотной схемы лазерной оптической накачки и лазерного оптического детектирования атомного пучка состоит в следующем. Лазерная оптическая накачка производится одномодовым лазерным излучением с первой частотой ν1 на участке траектории до влета атомов пучка в СВЧ резонатор, при этом частоте ν1 соответствует резонансная частота используемого поглощающего оптического атомного перехода между энергетическими уровнями атомов. Лазерное оптическое детектирование производится одномодовым лазерным излучением со второй частотой ν2 на участке траектории после вылета атомов пучка из СВЧ резонатора, при этом частоте ν2 соответствует резонансная частота используемого циркулярного оптического атомного перехода между энергетическими уровнями атомов. Например, как указано в [9|, в пучке атомов Cs133 в качестве поглощающего оптического атомного перехода, соответствующего частоте ν1, может использоваться переход между подуровнями 6S1/2F=4 и 6Р3/2F=4, а в качестве циркулярного оптического атомного перехода, соответствующего частоте ν2, может использоваться переход между подуровнями 6S1/2F=4 и 6Р3/2F=5, в этом случае разность частот ν12=251,4 МГц. Могут использоваться и другие оптические атомные переходы, при этом следует отметить, что общее количество пригодных для использования оптических атомных переходов ограничено и определяется однозначным числом. Так, в цезии Cs133 количество оптических атомных переходов, пригодных для использования в рассматриваемых целях, ограничено количеством подуровней в состоянии 6Р3/2 и равно пяти, а в рубидии Rb87 ограничено количеством подуровней в состоянии 5Р3/2 и равно четырем.

Детектирование резонанса взаимодействия рабочего вещества атомного пучка с сигналом радиочастотного возбуждения СВЧ резонатора осуществляется фотодетектором по флуоресцентному излучению атомов пучка, облученного указанным выше лазерным излучением детектирования. Сигнал радиочастотного возбуждения представляет собой модулированный по фазе (частоте) СВЧ сигнал, несущая частота f2 которого соответствует резонансной частоте f0 используемого радиочастотного атомного перехода, возбуждаемого сигналом радиочастотного возбуждения. Низкочастотная составляющая сигнала, снимаемого с выхода фотодетектора, соответствующая частоте модуляции сигнала радиочастотного возбуждения, несет в себе информацию об отклонении текущего значения несущей частоты f2 от резонансной частоты f0. Этот сигнал далее используется стандартным образом для подстройки частоты выходного сигнала подстраиваемого кварцевого генератора.

Применение лазерной оптической накачки и лазерного оптического детектирования приводит к увеличению отношения сигнала к шуму на выходе атомно-лучевой трубки, что позволяет в конечном итоге достичь уменьшения нестабильности частоты выходного сигнала атомно-лучевого стандарта частоты. При этом для достижения указанного результата требуется обеспечение стабильности частот лазерной оптической накачки и лазерного оптического детектирования.

В качестве прототипа принят рубидиевый атомно-лучевой стандарт частоты, описанный в работе [11] - A.Besedina, A.Gevorkyan, V.Zholnerov. Two-frequency Pumping in 87Rb Atomic Beam Frequency Standard with Laser Pumping/Detection for Space Application. EFTF 07 // European Frequency and Time Forum, 2007, pp.623-628, Fig.6, в котором формирование частот лазерной оптической накачки и лазерного оптического детектирование осуществляется с помощью двух отдельных лазерных модулей, стабильность излучения которых обеспечивается индивидуальными схемами автоматической подстройки частоты, структура которых рассмотрена в этой же работе.

Атомно-лучевой стандарт частоты, принятый в качестве прототипа, содержит последовательно соединенные в замкнутое кольцо автоматической подстройки частоты подстраиваемый кварцевый генератор, выход которого является выходом атомно-лучевого стандарта частоты, блок формирования сигнала радиочастотного возбуждения, атомно-лучевую трубку, первое фотоприемное устройство и первый блок автоматической подстройки частоты, формирующий управляющее напряжение для подстраиваемого кварцевого генератора, а также первый низкочастотный генератор, формирующий опорный сигнал с частотой F1 (частотой модуляции сигнала радиочастотного возбуждения), выход которого соединен с опорным входом блока формирования сигнала радиочастотного возбуждения и опорным входом первого блока автоматической подстройки частоты.

Атомно-лучевая трубка содержит расположенные на одной оси источник атомного пучка (Rb87) и СВЧ резонатор, радиочастотный вход которого образует радиочастотный вход атомно-лучевой трубки, соединенный с выходом блока формирования сигнала радиочастотного возбуждения. Атомно-лучевая трубка имеет окно оптической накачки, расположенное в области прохода атомного пучка от источника атомного пучка до СВЧ резонатора, служащее для ввода в атомно-лучевую трубку сигнала оптической накачки, формируемого лазерным модулем накачки, и окно оптического детектирования, расположенное в области выхода атомного пучка из СВЧ резонатора, служащее для ввода в атомно-лучевую трубку сигнала оптического детектирования, формируемого лазерным модулем детектирования. В области выхода атомного пучка из СВЧ резонатора располагается выходное фотодетектирующее устройство, выход которого образует первый выход атомно-лучевой трубки, к которому подключен вход первого фотоприемного устройства, а в области прохода атомного пучка от источника пучка до СВЧ резонатора располагается фотодетектор оптической накачки, выход которого образует второй выход атомно-лучевой трубки.

Лазерный модуль накачки и лазерный модуль детектирования выполнены на основе полупроводниковых лазерных диодов с близкими длинами волн лазерного излучения, расположенными в области λ=780, … нм, соответствующими D2 линии поглощения в рубидии Rb87.

Первый выход атомно-лучевой трубки связан, как указано выше, с входом первого фотоприемного устройства (а через него - с сигнальным входом первого блока автоматической подстройки частоты), а кроме этого, первый выход атомно-лучевой трубки связан через последовательно соединенные второе фотоприемное устройство, второй блок автоматической подстройки частоты и первый управляемый стабилизатор тока с управляющим входом лазерного модуля детектирования, при этом опорный вход второго блока автоматической подстройки частоты и опорный вход первого управляемого стабилизатора тока соединены с выходом второго низкочастотного генератора, формирующего опорный сигнал с частотой F2 (частотой модуляции излучения лазерного модуля детектирования).

Второй выход атомно-лучевой трубки через последовательно соединенные третье фотоприемное устройство, третий блок автоматической подстройки частоты и второй управляемый стабилизатор тока соединен с управляющим входом лазерного модуля накачки, при этом опорный вход третьего блока автоматической подстройки частоты и опорный вход второго управляемого стабилизатора тока соединены с выходом третьего низкочастотного генератора, формирующего опорный сигнал с частотой F3 (частотой модуляции излучения лазерного модуля накачки).

Блоки автоматической подстройки частоты выполнены по традиционной схеме, обычно используемой в квантовых стандартах частоты для частотной автоподстройки. В состав этой схемы входят входной усилитель, синхронный детектор и выходной интегратор, при этом опорный вход синхронного детектора образует опорный вход блока автоматической подстройки частоты, а вход усилителя и выход интегратора образуют, соответственно, сигнальный вход и выход блока автоматической подстройки частоты.

Блок формирования сигнала радиочастотного возбуждения представляет собой повышающий модулирующий преобразователь частоты, формирующий из выходного сигнала подстраиваемого кварцевого генератора (гармонического сигнала с частотой f1) и выходного сигнала первого низкочастотного генератора (с частотой F1 порядка нескольких десятков герц) модулированный по фазе с частотой низкочастотной модуляции F1 СВЧ сигнал радиочастотного возбуждения, номинальное значение несущей частоты f2 которого соответствует резонансной частоте f0 контура спектральной линии атомно-лучевой трубки, определяемой взаимодействием рабочего вещества атомного пучка с сигналом радиочастотного возбуждения и характеризуемой контуром линии Рамзея, при этом значение частоты низкочастотной модуляции F1 соответствует полуширине этого контура.

Сигнал радиочастотного возбуждения, снимаемый с выхода блока формирования сигнала радиочастотного возбуждения, поступает на радиочастотный вход атомно-лучевой трубки (на радиочастотный вход СВЧ резонатора), через который проходит пучок атомов от источника атомного пучка, подвергнутый лазерной оптической накачке.

Лазерная оптическая накачка атомного пучка производится сигналом оптической накачки - частотно-модулированным излучением лазерного модуля накачки, вводимым в атомно-лучевую трубку через окно оптической накачки на участке прохода атомного пучка от источника атомного пучка до СВЧ резонатора. Несущая частота излучения лазерного модуля накачки соответствует резонансной частоте ν1 используемого поглощающего оптического атомного перехода, а частота модуляции F3 (порядка десяти килогерц) меньше полуширины спектральной линии этого перехода. Схематически оптический атомный переход между энергетическими уровнями, соответствующий резонансной частоте ν1, представлен на энергетической диаграмме атомов пучка рабочего вещества атомно-лучевой трубки переходом между энергетическими уровнями «2» и «3» (фиг.1). В реальном рубидиевом атомно-лучевом стандарте частоты этот оптический атомный переход может соответствовать, например, переходу между подуровнями 5S1/2F=2 и 5Р3/2F=2.

В результате произведенной лазерной оптической накачки атомы влетают в СВЧ резонатор, находясь преимущественно в энергетическом состоянии первого (нижнего) уровня, обозначенного на фиг.1 как уровень «1». В СВЧ резонаторе атомы пучка взаимодействуют с сигналом радиочастотного возбуждения - модулированным по фазе с частотой F1 СВЧ сигналом с несущей частотой f2, соответствующей резонансной частоте f0 используемого радиочастотного атомного перехода (т.е. резонансной частоте f0 контура спектральной линии атомно-лучевой трубки, определяемой взаимодействием рабочего вещества атомного пучка с сигналом радиочастотного возбуждения). В рассматриваемом случае рубидиевого атомно-лучевого стандарта частоты значение f0=6834,682…МГц. В результате взаимодействия рабочего вещества атомного пучка с сигналом радиочастотного возбуждения атомы пучка вылетают из СВЧ резонатора, находясь преимущественно в энергетическом состоянии второго уровня (уровень «2», фиг.1).

Выходящий из СВЧ резонатора атомный пучок подвергается лазерному оптическому детектированию. Лазерное оптическое детектирование производится сигналом оптического детектирования - частотно модулированным излучением лазерного модуля детектирования, вводимым в атомно-лучевую трубку через окно оптического детектирования на участке выхода атомного пучка из СВЧ резонатора. Несущая частота излучения лазерного модуля детектирования соответствует резонансной частоте ν2 используемого циркулярного оптического атомного перехода между энергетическими уровнями «2» и «3'» (фиг.1), а частота F2 модуляции (порядка десяти килогерц) меньше полуширины спектральной линии этого перехода. В реальном рубидиевом атомно-лучевом стандарте частоты этот оптический атомный переход может соответствовать, например, переходу между подуровнями 5S1/2F=2 и 5Р3/2F=3 на частоте ν2, которая отличается от частоты ν1 на величину Δν=ν21=267 МГц.

Результат лазерного оптического детектирования контролируется по переизлученному атомами пучка флуоресцентному свету, фиксируемому выходным фотодетектирующим устройством. Спектральные составляющие сигнала выходного фотодетектирующего устройства, соответствующие частоте F1 модуляции сигнала радиочастотного возбуждения и частоте F2 модуляции излучения лазерного модуля детектирования, несут информацию об отклонении несущей частоты f2 сигнала радиочастотного возбуждения от резонансной частоты f0 и отклонении несущей частоты излучения лазерного модуля детектирования от резонансной частоты ν2. Указанные спектральные составляющие выделяются из выходного сигнала выходного фотодетектирующего устройства соответственно первым и вторым фотоприемными устройствами.

Спектральная составляющая выходного сигнала выходного фотодетектирующего устройства, соответствующая частоте F1 модуляции сигнала радиочастотного возбуждения, выделяемая первым фотоприемным устройством, поступает на сигнальный вход первого блока автоматической подстройки частоты, который формирует управляющее напряжение для подстройки частоты f1 подстраиваемого кварцевого генератора (и, соответственно, связанной с ней несущей частоты f2 сигнала радиочастотного возбуждения), устанавливая ее в соответствии с резонансной частотой f0.

Спектральная составляющая выходного сигнала выходного фотодетектирующего устройства, соответствующая частоте F2 модуляции излучения лазерного модуля детектирования, выделяемая вторым фотоприемным устройством, поступает на сигнальный вход второго блока автоматической подстройки частоты, который формирует управляющее напряжение для подстройки первого управляемого стабилизатора тока, постоянная составляющая выходного тока которого определяет значение несущей частоты излучения лазерного модуля детектирования, устанавливая ее в соответствии с резонансной частотой ν2.

Аналогичным образом осуществляется автоматическая подстройка частоты излучения лазерного модуля накачки. При этом контроль лазерной оптической накачки производится по переизлученному атомами флуоресцентному свету, фиксируемому фотодетектотором оптической накачки, спектральная составляющая выходного сигнала которого, соответствующая частоте F3 модуляции излучения лазерного модуля накачки, несет в себе информацию об отклонении несущей частоты излучения лазерного модуля накачки от резонансной частоты ν1. Выходной сигнал фотодетектора оптической накачки поступает через третье фотоприемное устройство на сигнальный вход третьего блока автоматической подстройки частоты, который формирует управляющее напряжение для подстройки второго управляемого стабилизатора тока, постоянная составляющая выходного тока которого определяет значение несущей частоты излучения лазерного модуля накачки, устанавливая ее в соответствии с резонансной частотой ν1.

Все три блока автоматической подстройки частоты работают по одному принципу, осуществляя вначале синхронное детектирование сигнала, поступающего с выхода соответствующего фотоприемного устройства, относительно опорного сигнала, формируемого соответствующим низкочастотным генератором, а затем - интегрирование полученного в результате синхронного детектирования сигнала ошибки с получением необходимого управляющего напряжения.

Таким образом, в атомно-лучевом стандарте частоты, принятом в качестве прототипа, одновременно работают три кольца автоматической подстройки частоты: основное кольцо - кольцо автоматической подстройки частоты подстраиваемого кварцевого генератора, а также два дополнительных кольца - кольцо автоматической подстройки частоты излучения лазерного модуля накачки и кольцо автоматической подстройки частоты излучения лазерного модуля детектирования. Совместная работа этих трех колец автоматической подстройки частоты обеспечивает возможность достижения требуемых характеристик стабильности выходного сигнала атомно-лучевого стандарта частоты в установившемся режиме работы.

Достижение требуемых характеристик стабильности обусловлено, в числе других факторов, узкополосностыо колец автоматической подстройки частоты, определяемых шириной спектральных линий используемых атомных переходов. Вследствие этого возникает проблема принудительной начальной («грубой») установки частоты выходного сигнала подстраиваемого кварцевого генератора, определяющей частоту сигнала радиочастотного возбуждения, в соответствии с резонансной частой f0, а также частот излучения лазерных модулей в соответствии с резонансными частотами ν1 и ν2, что необходимо для обеспечения возможности их последующего «захвата» и «слежения» в соответствующих кольцах автоматической подстройки частоты.

Очевидное решение этой проблемы, реализуемое на практике, заключается в «ручной» начальной настройке подстраиваемого кварцевого генератора и лазерных модулей с помощью внешних контрольно-измерительных приборов и управляемых вручную вспомогательных источников напряжения, подсоединенных к вторым управляющим входам подстраиваемого кварцевого генератора и управляемых стабилизаторов тока. Такая начальная «ручная» настройка подстраиваемого кварцевого генератора и лазерных модулей производится независимо для каждого объекта настройки и в произвольном порядке.

Отсутствие средств автоматической начальной настройки подстраиваемого кварцевого генератора и лазерных модулей, приводящее к необходимости применения «ручной» начальной настройки, сужает область возможного практического применения прототипа, ограничивая ее классом оборудования, обслуживаемого техническим персоналом. Это является недостатком, препятствующим использованию прототипа на необслуживаемых объектах, работающих полностью в автоматическом режиме. Кроме этого, наличие двух лазерных модулей, с помощью которых обеспечивается реализация двухчастотной схемы лазерной оптической накачки и лазерного оптического детектирования атомного пучка в атомно-лучевой трубке, усложняет атомно-лучевой стандарт частоты, увеличивает энергопотребление, уменьшает надежность.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является создание атомно-лучевого стандарта частоты, работающего по двухчастотной схеме, реализуемой с помощью одного лазерного модуля, и в котором осуществляется автоматическая установка начальных значений частот подстраиваемого кварцевого генератора и лазерного модуля в соответствии с частотами используемых атомных переходов. Такой атомно-лучевой стандарт частоты обладает расширенными, по сравнению с прототипом, возможностями практического применения, в том числе в составе необслуживаемого бортового оборудования.

Сущность заявляемого изобретения заключается в следующем. Атомно-лучевой стандарт частоты содержит последовательно соединенные в замкнутое кольцо автоматической подстройки частоты подстраиваемый кварцевый генератор, выход которого является выходом атомно-лучевого стандарта частоты, блок формирования сигнала радиочастотного возбуждения, атомно-лучевую трубку, первое фотоприемное устройство и первый блок автоматической подстройки частоты, выход которого соединен с первым управляющим входом подстраиваемого кварцевого генератора, а также первый низкочастотный генератор, выход которого соединен с опорным входом первого блока автоматической подстройки частоты и опорным входом блока формирования сигнала радиочастотного возбуждения. Атомно-лучевая трубка содержит расположенные на одной оси источник атомного пучка и СВЧ резонатор, радиочастотный вход которого образует радиочастотный вход атомно-лучевой трубки, соединенный с выходом блока формирования сигнала радиочастотного возбуждения. Атомно-лучевая трубка имеет окно оптической накачки, расположенное в области прохода атомного пучка от источника атомного пучка до СВЧ резонатора, предназначенное для ввода в атомно-лучевую трубку сигнала оптической накачки, и окно оптического детектирования, расположенное в области выхода атомного пучка из СВЧ резонатора, предназначенное для ввода в атомно-лучевую трубку сигнала оптического детектирования, а также расположенное в области выхода атомного пучка из СВЧ резонатора выходное фотодетектирующее устройство, выход которого образует выход атомно-лучевой трубки, соединенный с входом указанного первого фотоприемного устройства и с входом второго фотоприемного устройства. При этом выход второго фотоприемного устройства через второй блок автоматической подстройки частоты соединен с первым управляющим входом управляемого стабилизатора тока, выход которого соединен с управляющим входом лазерного модуля, выход которого связан оптически с окном оптического детектирования, а опорный вход второго блока автоматической подстройки частоты и опорный вход управляемого стабилизатора тока соединены с выходом второго низкочастотного генератора. В отличие от прототипа соединение выхода первого низкочастотного генератора с опорным входом блока формирования сигнала радиочастотного возбуждения осуществлено через первый электронный ключ, а соединение выхода второго низкочастотного генератора с опорным входом управляемого стабилизатора тока осуществлено через второй электронный ключ, при этом второй выход первого фотоприемного устройства соединен с сигнальным входом первого устройства автоматического поиска частоты, первый выход которого соединен с вторым управляющим входом подстраиваемого кварцевого генератора, а второй выход - с управляющими входами первого и второго электронных ключей, а второй выход второго фотоприемного устройства соединен с сигнальным входом второго устройства автоматического поиска частоты, первый выход которого соединен с вторым управляющим входом управляемого стабилизатора тока, а второй выход - с управляющим входом первого устройства автоматического поиска частоты и с управляющим входом блока формирования сигнала оптической накачки, опорный вход которого соединен с выходом подстраиваемого кварцевого генератора, оптический вход связан оптически с выходом лазерного модуля, а оптический выход связан оптически с окном оптической накачки. При этом блок формирования сигнала оптической накачки выполнен в виде последовательно соединенных синтезатора частоты, третьего электронного ключа и модулятора, причем вход синтезатора частоты, управляющий вход третьего электронного ключа и оптические вход и выход модулятора являются, соответственно, опорным входом, управляющим входом и оптическими входом и выходом блока формирования сигнала оптической накачки.

В частных случаях выполнения оптический вход блока формирования сигнала оптической накачки связан с выходом лазерного модуля с помощью полупрозрачного зеркала, а оптический выход блока формирования сигнала оптической накачки связан с окном оптической накачки с помощью отражающего зеркала или волоконного световода.

Сущность изобретения и возможность его осуществления поясняются иллюстративными материалами, представленными на фиг.1-3, где

на фиг.1 схематически представлены используемые переходы между энергетическими уровнями атомов рабочего вещества атомно-лучевой трубки;

на фиг.2 представлена структурная схема заявляемого атомно-лучевого стандарта частоты;

на фиг.3 представлены временные диаграммы, поясняющие этапы начальной настройки лазерного модуля и подстраиваемого кварцевого генератора.

Заявляемый атомно-лучевой стандарт частоты содержит, см. фиг.2, последовательно соединенные в замкнутое кольцо автоматической подстройки частоты подстраиваемый кварцевый генератор 1, выход которого является выходом атомно-лучевого стандарта частоты, блок формирования сигнала радиочастотного возбуждения 2, атомно-лучевую трубку 3, первое фотоприемное устройство 4 и первый блок автоматической подстройки частоты 5, выход которого соединен с первым управляющим входом подстраиваемого кварцевого генератора 1, а также первый низкочастотный генератор 6, формирующий опорный сигнал с частотой F1 (частотой модуляции сигнала радиочастотного возбуждения), выход которого соединен непосредственно с опорным входом первого блока автоматической подстройки частоты 5, а также через первый электронный ключ 7 - с опорным входом блока формирования сигнала радиочастотного возбуждения 2.

Атомно-лучевая трубка 3 содержит располо