Передача контрольных сигналов для системы беспроводной связи с ортогональным частотным разделением
Иллюстрации
Показать всеИзобретение относится к области техники беспроводной связи и, в частности, к передаче контрольной информации в системе беспроводной связи с ортогональным частотным разделением (OFDMA). Техническим результатом является обеспечение надежности приема переданных контрольных символов. Указанный технический результат достигается тем, что предложены схемы для улучшения возможностей мультиплексирования контрольных символов, передаваемых из различных подвижных станций на одних и тех же частотах и в одних и тех же временных интервалах, без помех и/или смещения. В системе множественного доступа с ортогонально-частотным разделением со скачкообразной перестройкой частоты контрольные символы между абонентами могут перекрываться. Ортогональность между абонентами, контрольные символы которых перекрываются, обеспечена за счет использования ортогональных последовательностей контрольных символов и индивидуальных кодов скремблирования для конкретных секторов и для конкретных ячеек сотовой связи. 8 н. и 50 з.п. ф-лы, 1 табл., 11 ил.
Реферат
I. Область техники, к которой относится изобретение
Настоящий документ относится, в общем случае, к области техники беспроводной связи и, помимо прочего, к передаче контрольной информации в системе беспроводной связи с ортогональным частотным разделением.
II. Известный уровень техники
В системе множественного доступа с ортогонально-частотным разделением, МДОЧР (OFDMA), используют мультиплексирование с ортогональным частотным разделением, МОЧР (OFDM). Мультиплексирование с ортогональным частотным разделением (МОЧР) представляет собой способ модуляции на нескольких несущих, в котором полную ширину полосы частот системы делят на множество (N) ортогональных частотных поднесущих. Эти поднесущие могут также именоваться тонами, элементами дискретизации и частотными каналами. Каждая поднесущая может быть промодулирована данными. На поднесущих, общее количество которых равно N, может быть передано до N модуляционных символов в каждом периоде символа МОЧР. Преобразование этих модуляционных символов во временную область осуществляют способом быстрого обратного преобразования Фурье, БОПФ (IFFT), по N точкам, осуществляя генерацию преобразованного символа, содержащего N элементарных посылок или выборок сигнала во временной области.
В системе связи со скачкообразной перестройкой частоты данные передают на различных частотных поднесущих в различные промежутки времени, которые могут именоваться "периодами скачкообразной перестройки". Эти частотные поднесущие могут быть созданы способом мультиплексирования с ортогональным частотным разделением, другими способами модуляции на нескольких несущих или некоторыми иными способами. При скачкообразной перестройке частоты передачу данных осуществляют путем псевдослучайных перескоков с одной поднесущей на другую поднесущую. Эта скачкообразная перестройка обеспечивает частотное разнесение и возможность лучше противостоять вредным воздействиям в тракте передачи, таким как, например, узкополосные помехи, взаимные помехи при приеме, замирание и т.д., при передаче данных.
Система МДОЧР (OFDMA) может обеспечивать одновременное обслуживание множества подвижных станций. Для системы МДОЧР со скачкообразной перестройкой частоты передача данных для заданной подвижной станции может производиться по каналу "информационного обмена", связанному с конкретной последовательностью скачкообразной перестройки частоты, СПЧ (FH). Эта последовательность СПЧ указывает конкретную поднесущую, которую следует использовать для передачи данных в каждом периоде скачкообразной перестройки. Может производиться одновременная передача множества передаваемых данных для множества подвижных станций по множеству каналов информационного обмена, связанных с различными последовательностями СПЧ. Эти последовательности СПЧ могут быть заданы как являющиеся ортогональными друг к другу, поэтому в каждом периоде скачкообразной перестройки каждая поднесущая используется только одним каналом информационного обмена и, следовательно, только для одной передачи данных. За счет использования ортогональных последовательностей СПЧ множественные передачи данных обычно не создают взаимных помех вследствие использования преимуществ частотного разнесения.
Для восстановления данных, переданных по каналу беспроводной связи, обычно необходима точная оценка параметров канала беспроводной связи между передатчиком и приемником. Оценку параметров канала обычно производят путем передачи контрольного сигнала из передатчика и измерения контрольного сигнала в приемнике. Контрольный сигнал состоит из контрольных символов, которые являются априорно известными как для передатчика, так и для приемника. Таким образом, приемник может оценить отклик канала на основании принятых символов и известных символов.
Часть каждой передачи из любой конкретной подвижной станции в базовую станцию часто именуют передачей по " обратной линии связи", которая в течение периода скачкообразной перестройки выделена для передачи контрольных символов. Как правило, количество контрольных символов определяет качество оценки параметров канала и, следовательно, характеристики, связанные с частотой появления ошибок в пакетах. Однако использование контрольных символов вызывает снижение эффективной скорости передачи данных, которая может быть достигнута. Таким образом, чем большей является ширина полосы частот, выделенная для контрольной информации, тем меньшая ширина полосы частот становится доступной для передачи данных.
Одним из типов системы множественного доступа с ортогонально-частотным разделением со скачкообразной перестройкой частоты, МДОЧР-СПЧ (FH-OFDMA), является система с блочной скачкообразной перестройкой, в которой множеству подвижных станций выделены смежные группы частот и периодов символа. В такой системе важным является обеспечение надежного приема контрольной информации из подвижной станции при одновременном уменьшении ширины полосы частот, выделенной для контрольной информации, поскольку блок имеет ограниченное количество символов и тонов, которые могут быть использованы для передачи как контрольного сигнала, так и данных.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном из вариантов осуществления изобретения для контрольных символов, передаваемых из подвижной станции или базовой станции, создают комбинации контрольных символов. Наличие такой комбинации обеспечивает возможность улучшенного приема и демодуляции переданных контрольных символов.
В дополнительных вариантах осуществления изобретения предложены схемы для улучшения способности мультиплексирования контрольных символов без помех и/или смещений от различных подвижных станций в одном и том же секторе базовой станции на тех же самых частотах и в тех же самых временных интервалах в системе МОЧР.
В других вариантах осуществления изобретения предложены схемы для уменьшения смещения или помех для контрольных символов, переданных из различных подвижных станций в соседних ячейках сотовой связи на одних и тех же частотах и в одних и тех же временных интервалах в системе МОЧР.
В других вариантах осуществления изобретения предложены способы изменения комбинаций контрольных символов. Кроме того, в других дополнительных вариантах осуществления изобретения предложены способы генерации контрольных символов.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки, сущность и преимущества вариантов осуществления настоящего изобретения могут стать более очевидными из приведенного ниже подробного описания при его рассмотрении совместно с чертежами, на которых одинаковыми номерами позиций на разных чертежах обозначены соответственно одинаковые блоки и на которых изображено следующее:
на Фиг. 1 проиллюстрирована система беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения;
на Фиг. 2 проиллюстрирована схема распределения спектра частот для системы беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения;
на Фиг. 3A проиллюстрированы блок-схемы присвоения контрольных символов согласно одному из вариантов осуществления изобретения;
на Фиг. 3В проиллюстрированы блок-схемы присвоения контрольных символов согласно другому варианту осуществления изобретения;
на Фиг. 4A проиллюстрирована схема скремблирования контрольных символов согласно одному из вариантов осуществления изобретения;
на Фиг. 4В проиллюстрирована схема скремблирования контрольных символов согласно другому варианту осуществления изобретения;
на Фиг. 5 проиллюстрирована базовая станция с множеством секторов в системе беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения;
на Фиг. 6 проиллюстрирована система беспроводной связи множественного доступа согласно другому варианту осуществления изобретения;
на Фиг. 7 проиллюстрирована блок-схема варианта осуществления системы передатчика и системы приемника в системе беспроводной связи множественного доступа с множеством входов и множеством выходов;
на Фиг. 8 проиллюстрирована схема последовательности операций способа генерации контрольных символов согласно одному из вариантов осуществления изобретения; и
на Фиг. 9 проиллюстрирована схема последовательности операций способа изменения комбинаций контрольных символов согласно одному из вариантов осуществления изобретения.
ПОДРОБНОЕ ОПИСАНИЕ
На Фиг. 1 проиллюстрирована система беспроводной связи множественного доступа согласно одному из вариантов осуществления изобретения. Базовая станция 100 содержит группы 102, 104 и 106 из множества антенн, каждая из которых содержит одну или большее количество антенн. На Фиг. 1 показана только одна антенна для каждой группы 102, 104 и 106 антенн, однако для каждой группы антенн, которая соответствует сектору базовой станции 100, может быть использовано множество антенн. Подвижная станция 108 поддерживает связь с антенной 104, при этом антенна 104 передает информацию в подвижную станцию 108 по прямой линии 114 связи и принимает информацию из подвижной станции 108 по обратной линии 112 связи. Подвижная станция 110 поддерживает связь с антенной 106, при этом антенна 106 передает информацию в подвижную станцию 110 по прямой линии 118 связи и принимает информацию из подвижной станции 110 по обратной линии 116 связи.
Каждую группу 102, 104 и 106 антенн и/или область, в которой они, как запланировано, обеспечивают связь, часто именуют сектором базовой станции. В этом варианте осуществления изобретения каждая из групп 102, 104 и 106 антенн выполнена таким образом, что обеспечивает связь с подвижными станциями, находящимися в секторе, соответственно в секторах 120, 122 и 124 зон, обслуживаемых базовой станцией 100.
Базовой станцией может являться стационарная станция, используемая для обеспечения связи с оконечными устройствами, и также может именоваться точкой доступа, узлом B (Node B) или каким-либо иным термином. Подвижная станция также может именоваться подвижной станцией, абонентской аппаратурой, АА (UE), устройством беспроводной связи, оконечным устройством, терминалом доступа или каким-либо иным термином.
На Фиг. 2 проиллюстрирована схема распределения спектра частот для системы беспроводной связи множественного доступа. Множество символов 200 мультиплексирования с ортогональным частотным разделением, МОЧР (OFDM), распределено по T периодам символа и по S частотным поднесущим. Каждый символ 200 МОЧР содержит один период символа из T периодов символа и тон или частотную поднесущую из S поднесущих.
В системе МОЧР со скачкообразной перестройкой частоты конкретной подвижной станции может быть выделен один или большее количество символов 200. В одном из вариантов осуществления изобретения схемы распределения, который показан на Фиг. 2, группе подвижных станций для обеспечения связи по обратной линии связи выделена одна или большее количество областей скачкообразной перестройки для символов, например область 202 скачкообразной перестройки. В каждой области скачкообразной перестройки распределение символов может быть выполнено по случайному закону для уменьшения потенциально возможных помех и для обеспечения частотного разнесения, противодействующего вредным воздействиям на тракт передачи.
Каждая область 202 скачкообразной перестройки содержит символы 204, выделенные одной или большему количеству подвижных станций, которые поддерживают связь с сектором базовой станции, и выделенные для области скачкообразной перестройки. В других вариантах осуществления изобретения каждая область скачкообразной перестройки предоставляется одной или большему количеству подвижных станций. В течение каждого периода скачкообразной перестройки, или кадра, местоположение области 202 скачкообразной перестройки в пределах T периодов символа и на S поднесущих изменяется в соответствии с последовательностью скачкообразной перестройки. Кроме того, распределение символов 204 для отдельных подвижных станций в пределах области 202 скачкообразной перестройки может изменяться для каждого периода скачкообразной перестройки.
Последовательность скачкообразной перестройки может обеспечивать выбор местоположения области 202 скачкообразной перестройки для каждого периода скачкообразной перестройки, производимый псевдослучайным образом, по случайному закону или согласно заранее заданной последовательности. Последовательности скачкообразной перестройки для различных секторов одной и той же базовой станции созданы таким образом, что являются взаимно ортогональными, во избежание "внутриячеечных" помех между подвижными станциями, поддерживающими связь с одной и той же базовой станцией. Кроме того, последовательности скачкообразной перестройки для каждой базовой станции могут быть псевдослучайными относительно последовательностей скачкообразной перестройки для соседних базовых станций. Это может помочь в рандомизации "межъячеечных" помех между подвижными станциями, поддерживающими связь с различными базовыми станциями.
В случае передачи информации по обратной линии связи некоторые из символов 204 из области 202 скачкообразной перестройки выделены для контрольных символов, которые передают из подвижных станций в базовую станцию. Процедура распределения контрольных символов для символов 204 предпочтительно должна обеспечивать поддержку множественного доступа с пространственным разделением, МДПР (SDMA), при котором сигналы от различных подвижных станций, накладывающиеся друг на друга в той же самой области скачкообразной перестройки, могут быть разделены вследствие наличия множества приемных антенн в секторе или в базовой станции при условии достаточного различия пространственных характеристик, соответствующих различным подвижным станциям. Для более точного извлечения и более точной демодуляции сигналов различных подвижных станций необходимо обеспечить точную оценку параметров соответствующих обратных каналов связи. Следовательно, может оказаться желательным, чтобы контрольные символы, передаваемые по обратной линии связи, позволяли различать характеристики контрольных сигналов от различных подвижных станций в каждой приемной антенне в секторе, чтобы впоследствии применить многоантенную обработку для контрольных символов, принятых из различных подвижных станций.
Блочная скачкообразная перестройка частоты может быть использована как для прямой линии связи, так и для обратной линии связи, или только для обратной линии связи, в зависимости от системы. Следует отметить следующее: несмотря на то, что на Фиг. 2 область 200 скачкообразной перестройки изображена имеющей длину, равную семи периодам символа, область 200 скачкообразной перестройки может иметь длину, равную любой желательной величине, ее размер может изменяться между периодами скачкообразной перестройки или между различными областями скачкообразной перестройки в конкретном периоде скачкообразной перестройки.
Хотя вариант осуществления изобретения, показанный на Фиг. 2, описан применительно к использованию блочной скачкообразной перестройки, местоположение блока не обязательно должно изменяться между последовательными периодами скачкообразной перестройки или вообще не должно изменяться.
На Фиг. 3A и Фиг. 3В проиллюстрированы блок-схемы распределения контрольных символов согласно нескольким вариантам осуществления изобретения. Области 300 и 320 скачкообразной перестройки определяются T периодами символа и S поднесущими или тонами. Область 300 скачкообразной перестройки содержит контрольные символы 302, а область 320 скачкообразной перестройки содержит контрольные символы 322, при этом остальные периоды символов и комбинации тонов являются доступными для символов данных и других символов. В одном из вариантов осуществления изобретения места расположения контрольных символов для каждой из областей скачкообразной перестройки, то есть группа из N S смежных тонов по N T последовательным символам МОЧР, должны иметь тоны контрольных символов, расположенные близко к краям области скачкообразной перестройки. Это обычно обусловлено тем, что типичные каналы в областях применения, связанных с беспроводной связью, представляют собой относительно медленные функции от времени и частоты, поэтому приближение первого порядка для канала, например первый порядок разложения в ряд Тейлора, по области скачкообразной перестройки по времени и частоте предоставляет информацию о состоянии канала, которая является достаточной для оценки параметров канала для конкретной подвижной станции. По существу, для надлежащего приема и надлежащей демодуляции символов, полученных из подвижных станций, предпочтительным вариантом является оценка пары параметров канала, а именно постоянной составляющей канала, то есть члена нулевого порядка из разложения канала в ряд Тейлора по времени и по диапазону частот канала, и линейной составляющей, то есть члена первого порядка из разложения канала в ряд Тейлора по времени и по диапазону частот канала. Обычно точность оценки постоянной составляющей не зависит от расположения контрольного символа. Точность оценки линейной составляющей предпочтительно обеспечивают, как правило, посредством контрольных тонов, расположенных на краях области скачкообразной перестройки.
Контрольные символы 302 и 322 расположены в смежных кластерах 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) контрольных символов. В одном из вариантов осуществления изобретения каждый кластер 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) в области скачкообразной перестройки имеет фиксированное количество, а часто - одинаковое количество контрольных символов в заданной области скачкообразной перестройки. В одном из вариантов осуществления изобретения при использовании кластеров 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) смежных контрольных символов может учитываться влияние помех от множества абонентов, вызванных помехами между несущими, которые являются следствием большого доплеровского сдвига и/или больших разбросов значений задержки символов. Кроме того, если прием контрольных символов от подвижных станций, запланированных для той же самой области скачкообразной перестройки, производят с существенно различными уровнями мощности, то сигналы более сильной подвижной станции могут создавать помехи значительной величины для более слабой подвижной станции. Величина помех является более высокой на краях, например на поднесущей 1 и на поднесущей S, области скачкообразной перестройки, а также на краю символов МОЧР, например, в периодах 1 и T символа, когда избыточный разброс значений задержки вызывает утечку, то есть, когда становится существенной та часть энергии канала, которая сконцентрирована в ответвлениях, превышающих циклический префикс символов МОЧР. Следовательно, если контрольные символы расположены исключительно на краях области скачкообразной перестройки, то может произойти ухудшение точности оценки параметров канала и смещение в оценке помех. Следовательно, как изображено на Фиг. 3A и Фиг. 3В, контрольные символы расположены близко к краям области скачкообразной перестройки, однако не допускают ситуации, когда все контрольные символы находятся на краях области скачкообразной перестройки.
На Фиг. 3A область 300 скачкообразной перестройки включает в себя контрольные символы 302. В случае каналов с явно выраженной избирательностью по частоте, а не избирательностью по времени, контрольные символы 302 расположены в смежных кластерах 304, 306, 308 и 310 контрольных символов, причем каждый кластер 304, 306, 308 и 310 контрольных символов охватывает множество периодов символа и один частотный тон. Частотный тон предпочтительно выбирают таким образом, чтобы он был близким к краям диапазона частот области 300 скачкообразной перестройки, однако чтобы он не находился точно на краю. В варианте осуществления изобретения, показанном на Фиг. 3A, ни один из контрольных символов 302 из конкретного кластера не находится на крайних частотных тонах, и в каждом кластере на краю периода символа может находиться только контрольный символ.
Одним из логических обоснований "горизонтальной" формы смежных кластеров контрольных символов, которыми являются контрольные символы 302, является то, что для каналов с более высокой избирательностью по частоте компонента первого порядка (линейная компонента) может быть более сильной в частотной области, чем во временной области.
Следует отметить, что в варианте осуществления изобретения, показанном на Фиг. 3A, один или большее количество контрольных символов в каждом кластере могут иметь иной тон, чем один или большее количество контрольных символов в другом кластере. Например, кластер 304 может иметь тон S, а кластер 306 может иметь тон S-1.
Согласно Фиг. 3В, в случае наличия каналов с явной избирательностью по времени, а не с избирательностью по частоте, контрольные символы 322 расположены в кластерах 324, 326, 328 и 330 из смежных контрольных символов, каждый из которых охватывает множество частотных тонов, но имеет один и тот же период символа в области 320 скачкообразной перестройки. Так как могут иметься контрольные символы 322, расположенные на краях области 320 скачкообразной перестройки, то символы МОЧР, расположенные на краях области 320 скачкообразной перестройки, то есть те символы МОЧР, которые имеют максимальный тон, например тон S, или минимальный тон, например тон 1, диапазона частот, определяющего S поднесущих, могут быть включены в состав контрольных символов в качестве их части. Однако в варианте осуществления изобретения, показанном на Фиг. 3В, поднесущая максимальной или минимальной частоты может быть выделена только одному контрольному символу в каждом кластере.
В варианте осуществления изобретения, изображенном на Фиг. 3В, канал с более высокой избирательностью по времени может иметь типичную структуру, которая может быть получена путем поворота структуры, выбранной для каналов с более высокой избирательностью по частоте (Фиг. 3A) на 90°.
Следует отметить, что в варианте осуществления изобретения, показанном на Фиг. 3В, один или большее количество контрольных символов в каждом кластере могут быть выделены для иного периода символа, чем один или большее количество контрольных символов в другом кластере. Например, кластер 324 может быть в ином периоде T символа, чем кластер 326.
Кроме того, в вариантах осуществления изобретения, изображенных на Фиг. 3A и Фиг. 3В, комбинации контрольных символов выполнены таким образом, что кластеры 304, 306, 308 и 310 (Фиг. 3A) и 324, 326, 328 и 330 (Фиг. 3В) предпочтительно являются симметричными относительно центра области скачкообразной перестройки. Симметрия кластеров относительно центра области скачкообразной перестройки может обеспечивать улучшенную одновременную оценку параметров канала относительно временных и частотных характеристик канала.
Хотя на Фиг. 3A и Фиг. 3В в каждой области скачкообразной перестройки изображены четыре кластера контрольных символов, может быть использовано меньшее или большее количество кластеров в каждой области скачкообразной перестройки. Кроме того, количество контрольных символов в каждом кластере контрольных символов также может быть различным. Общее количество контрольных символов и кластеров контрольных символов является функцией количества контрольных символов, требуемых базовой станцией для успешной демодуляции символов данных, принятых по линии обратной связи, и для оценки параметров канала между базовой станцией и подвижной станцией. К тому же, каждый кластер не обязательно должен иметь одинаковое количество контрольных символов. В одном из вариантов осуществления изобретения количество подвижных станций, мультиплексирование сигналов которых может быть произведено посредством одной области скачкообразной перестройки, может быть равным количеству контрольных символов в области скачкообразной перестройки.
Кроме того, хотя на Фиг. 3A и Фиг. 3В изображены кластеры контрольных символов, предназначенные для обоих типов каналов: каналов, имеющих избирательность по частоте, или каналов, имеющих избирательность по времени, комбинация контрольных символов может быть такой, что в одной и той же комбинации контрольных символов имеются кластеры для каналов с избирательностью по частоте, а также кластеры для каналов с избирательностью по времени, например, некоторые кластеры расположены в виде структуры кластеров 304, 306, 308 или 310, а некоторые кластеры расположены в виде структуры кластеров 324, 326, 328 или 330.
В некоторых вариантах осуществления изобретения выбранная для использования комбинация контрольных символов может быть основана на условиях, для которых оптимизирован канал. Например, для каналов, в которых может происходить перемещение подвижных станций с высокой скоростью, например подвижных станций, расположенных в транспортных средствах, предпочтительной может являться комбинация контрольных символов с избирательностью по времени, в то время как для перемещения подвижной станции с малой скоростью, например, для пешеходов, может быть использована комбинация контрольных символов с избирательностью по частоте. В другом варианте осуществления изобретения комбинация контрольных символов может быть выбрана на основании состояния канала, определение которого произведено после заранее заданного количества периодов скачкообразной перестройки.
На Фиг. 4A и Фиг. 4В проиллюстрированы схемы распределения контрольных символов согласно другим вариантам осуществления изобретения. Как показано на Фиг. 4A, область 400 скачкообразной перестройки содержит контрольные символы C 1,q, C 2,q и C 3,q, расположенные в кластере 402; C 4,q, C 5,q и C 6,q, расположенные в кластере 404; C 7,q, C 8,q и C 9,q, расположенные в кластере 406; и C 10,q, C 11,q и C 12,q, расположенные в кластере 408. В одном из вариантов осуществления изобретения для улучшения пространственного разнесения в областях скачкообразной перестройки, когда множество подвижных станций создает перекрывающиеся контрольные символы, мультиплексирование контрольных символов от различных подвижных станций по тому же самому периоду символа МОЧР и тону должно быть выполнено таким образом, чтобы контрольные символы являлись, по существу, ортогональными при их приеме в антеннах кластера базовой станции.
На Фиг. 4A в области 400 скачкообразной перестройки каждый из контрольных символов C 1,q, C 2,q, C 3,q, C 4,q, C 5,q, C 6,q, C 7,q, C 8,q, C 9,q, C 10,q, C 11,q и C 12,q выделен множеству подвижных станций, то есть каждый период символа содержит множество контрольных символов от нескольких различных подвижных станций. Генерацию и передачу каждого из контрольных символов в кластере контрольных символов, например в кластере 402, 404, 406 и 408, осуществляют таким образом, чтобы приемник контрольных символов в кластере, например базовая станция, мог принимать их так, чтобы они являлись ортогональными относительно контрольных символов от каждой другой подвижной станции в том же самом кластере. Это может быть выполнено путем применения заранее заданного сдвига фазы, например скалярной функции для умножения на нее, каждой из выборок, из которых составлены контрольные символы, переданные каждой из подвижных станций. Для обеспечения ортогональности скалярные произведения, отображающие последовательность скалярных функций в каждом кластере для каждой подвижной станции, могут быть равными нулю.
Кроме того, в некоторых вариантах осуществления изобретения предпочтительно, чтобы контрольные символы каждого кластера являлись ортогональными к контрольным символам каждого другого кластера из области скачкообразной перестройки. Это может быть обеспечено тем же самым способом, которым обеспечивают ортогональность для контрольных символов в пределах каждого кластера от иной подвижной станции, путем использования иной последовательности скалярных функций для контрольных символов каждой подвижной станции в каждом кластере контрольных символов. Математическое определение ортогональности может быть сделано путем выбора последовательности произведений вектора на скаляр для каждого из контрольных символов для конкретного кластера для конкретной подвижной станции, вектор которой является ортогональным, например произведение вектора на скаляр равно нулю, относительно вектора, отображающего последовательность произведений вектора на скаляр, используемых для контрольных символов других подвижных станций во всех кластерах и той же самой подвижной станции в других кластерах.
В одном из вариантов осуществления изобретения, в котором обеспечена ортогональность контрольных символов по каждому из кластеров, количество подвижных станций, поддержка которых может быть обеспечена, равно количеству контрольных символов, имеющихся в каждом кластере контрольных символов.
В вариантах осуществления изобретения, показанных на Фиг. 4A и Фиг. 4В, абонент номер q из Q абонентов, сигналы которых перекрываются, 1≤q≤Q, использует последовательность S, размер которой равен N P, где N P - общее количество тонов контрольных символов (на Фиг. 4A и Фиг. 4В N P=12):
, | 1≤q≤Q | (1) |
здесь (T) обозначает транспозицию матрицы, содержащей последовательности. Как описано выше, для того чтобы получить непротиворечивые оценки соответствующих каналов путем снижения помех между контрольными символами, последовательности скалярных функций в каждом кластере контрольных символов должны быть различными для различных подвижных станций. Кроме того, последовательности должны быть линейно независимыми, по существу, предпочтительно, чтобы никакая последовательность или никакой из векторов не являлись линейной комбинацией остальных последовательностей. Математическим определением этого может являться следующее: матрица N P×Q
(2) |
является матрицей полного столбцевого ранга. Следует отметить, что в выражении (2) вышеупомянутая матрица Q≤N P. То есть количество подвижных станций, сигналы которых перекрываются, не должно превышать общего количества контрольных символов в области скачкообразной перестройки.
На основании изложенного выше, любой набор последовательностей Q с полным рангом обеспечивает возможность получения непротиворечивой оценки параметров канала. Однако в другом варианте осуществления изобретения реальная точность оценки может зависеть от корреляционных свойств . В одном из вариантов осуществления изобретения, как может быть определено с использованием уравнения (1), функционирование может быть улучшено в том случае, когда любые две последовательности являются взаимно (квази-) ортогональными при наличии канала. Математическое определение этого условия может иметь следующий вид:
для всех 1≤p,q≤Q, | (3) |
где - комплексный коэффициент усиления канала, соответствующий k-му контрольному символу, 1≤k≤N P. В канале, имеющем временную и частотную инвариантность (), условие (3) сводится до требования взаимно-ортогональных последовательностей:
для всех 1≤p,q≤Q, | (4) |
причем принудительное применение этого условия для любой возможной реализации канала из типичного набора каналов может быть нецелесообразным. Фактически, выражение (3) может удовлетворяться в том случае, когда канал имеет ограниченную избирательность по времени и по частоте, что имеет место в каналах связи с пешеходами, имеющих относительно малый разброс значений задержки. Однако эти условия могут быть существенно иными в каналах связи с транспортными средствами и/или в каналах с существенным разбросом значений задержки, что приводит к ухудшению рабочих характеристик.
Как было изложено со ссылкой на Фиг. 3A и Фиг. 3В, комбинации выделенных контрольных символов состоят из нескольких кластеров контрольных символов, расположенных близко к краям области скачкообразной перестройки, где каждый кластер является смежным по времени (Фиг. 3A) и/или по частоте (Фиг. 3В). Так как изменения параметров канала в каждом кластере обычно являются ограниченными вследствие того, что контрольные символы являются по своему характеру непрерывными по времени и частоте, и вследствие непрерывности канала по времени и частоте, следовательно, создание различных последовательностей, являющихся ортогональными по каждому кластеру, позволяет выполнить условие (3). Потенциально возможный недостаток этого технического решения состоит в том, что количество подвижных станций с перекрывающимися сигналами, которые могут быть ортогональными по каждому кластеру, ограничено размером кластера, обозначенным здесь как N С. В примере, показанном на Фиг. 4A и Фиг. 4В, N С=3, и, следовательно, в этом варианте осуществления изобретения может быть обеспечено ортогональное разделение до Q=3 подвижных станций. На самом деле, во многих практических сценариях достаточным является весьма небольшое количество Q. Когда Q>N С, то сохранение ортогональности всех подвижных станций по каждому кластеру может оказаться затруднительным, так как могут иметь место некоторые межсимвольные помехи. Следовательно, если Q>N C, то достаточной может являться приближенная ортогональность при некоторой потере эффективности каналов, изменяющихся по времени и/или по частоте.
В одном из вариантов осуществления изобретения набор расчетных параметров для последовательностей скалярных функций может быть задан следующим образом:
∗Любые две последовательности являются ортогональными по всему набору контрольных символов, удовлетворяя, тем самым, следующему выражению:
для всех 1≤p,q≤Q, | (5) |
∗Последовательные группы из N С последовательностей являются такими, что любые две последовательности в группе являются взаимно ортогональными по любому кластеру контрольных символов:
, ,, | |
(6) |
∗Все элементы всех последовательностей имеют, по существу, равные абсолютные величины, например, приблизительно, одинаковую мощность,
где величиной М C обозначено общее количество кластеров размера N C, поэтому количество контрольных символов равно N P=M С N C.
В одном из вариантов осуществления изобретения последовательности созданы с использованием экспоненциальных функций для того, чтобы каждая последовательность обеспечивала одинаковую энергию для каждого символа. Кроме того, в этом варианте осуществления изобретения группы из N С последовательностей могут быть сделаны взаимно ортогональными в каждом кластере, вне зависимости от разм