Катализатор уменьшения содержания серы в бензине для процесса каталитического крекинга в жидкой фазе
Иллюстрации
Показать всеИзобретение относится к некоторым каталитическим композициям и процессам, используемым для уменьшения содержания производных серы, обычно составляющих часть бензиновой фракции процессов жидкофазного каталитического крекинга. Изобретение представляет собой композицию катализатора крекинга, содержащую цеолит или компонент, содержащий цеолит, содержащие Na2O в количестве 0,3 мас.% или менее в комбинации с компонентом, содержащим кислоту Льюиса, причем композиция катализатора крекинга содержат Na2O в количестве 0,2% или менее и содержание компонента, содержащего кислоту Льюиса, составляет от 3 до 75 мас.%. Изобретение включает также усовершенствованный способ каталитического крекинга углеводородного сырья, содержащего органические производные серы, включает способ уменьшения содержания серы в бензине и способ получения крекирующей каталитической композиции. Технический результат - установлено, что количество соединений серы в углеводороде, подаваемом на стадию жидкофазного каталитического крекинга, может быть уменьшено, по меньшей мере, на 15% по сравнению с действием такой же композиции, не содержащей компонент, включающий кислоту Льюиса. 4 н. и 55 з.п. ф-лы, 8 ил., 14 табл.
Реферат
Область техники
Изобретение относится к усовершенствованной каталитической композиции для процесса жидкофазного каталитического крекинга. Каталитическая композиция изобретения предназначена для уменьшения содержания производных серы, обычно содержащихся в потоках бензиновой фракции рассматриваемого процесса. В результате изобретение обеспечивает получение потоков фракций легкого и тяжелого бензинов со значительно пониженным количеством серосодержащих производных и улучшение процесса каталитического крекинга при использовании катализатора изобретения.
Предшествующий уровень техники
Каталитический крекинг представляет собой способ переработки нефти широко используемый в промышленной практике. В результате проведения каталитического крекинга с псевдоожиженном слоем катализатора (FCC) в США получают большое количество смешанного переработанного бензина. При использовании рассматриваемого процесса тяжелое углеводородное сырье превращают в более легкие продукты с помощью реакций, протекающих при повышенной температуре в присутствии катализатора, причем большая часть таких реакций протекает в газовой фазе. В результате сырье превращается в бензин, дистилляты и жидкие фракции других продуктов, а также в легкие газообразные продукты крекинга, содержащие четыре или менее углеродных атомов. Три характерные стадии процесса каталитического крекинга включают: стадию крекинга, на которой тяжелое углеводородное сырье превращается в легкие продукты, стадию отгона легких фракций, предназначенную для удаления адсорбированных углеводородов с поверхности катализатора, и стадию регенерации, предназначенную для выжигания отложений кокса с катализатора. После этого регенерированный катализатор рециркулируют и используют на стадии крекинга.
Сырье, подвергнутое каталитическому крекингу, обычно содержит органические производные серы, такие как меркаптаны, сульфиды, тиофены, бензотиофены, дибензотиофены и другие серосодержащие продукты. Продукты процесса крекинга содержат примеси серы, несмотря на то, что почти половина производных серы превращается в сероводород в ходе процесса крекинга, главным образом в результате каталитического разложения не-тиофеновых производных серы. Установлено, что труднее всего удаляются производные тиофена. Специфическое распределение серы в продуктах крекинга зависит от ряда факторов, к которым относятся тип сырья, тип катализатора, наличие присадок, конверсия и другие технологические параметры, но в любом случае некоторая часть серы попадает во фракции легкого и тяжелого бензина и далее в смешанный продукт. Хотя нефтяное сырье обычно содержит разнообразные серосодержащие соединения, основной проблемой является присутствие незамещенных и гидрокарбилзамещенных тиофенов и их производных, таких как тиофен, метилтиофен, этилтиофен, пропилтиофен, тетрагидротиофен, бензотиофен и т.п. во фракции тяжелого и легкого бензина, образующегося в процессе FCC. Поскольку тиофеновые производные обычно имеют температуру кипения, совпадающую с интервалом температуры кипения легкого и тяжелого бензина, они концентрируются в потоках продукта. В связи с ужесточением природоохранных законодательств, касающихся нефтяных продуктов, например требований, предъявляемых к бензину улучшенного состава (RFG), предпринимались многочисленные попытки понижения содержания серы в продукте, особенно в части содержания производных тиофена.
Один из таких подходов заключается в удалении серы из FCC сырья проведением гидроочистки до начала крекинга. Несмотря на высокую эффективность такого подхода рассматриваемый способ является дорогостоящим в отношении капитальных затрат на оборудование и технологических параметров, связанных с высоким расходом водорода. Другой способ заключается в удалении серы из продуктов крекинга в результате гидроочистки. Однако и в этом случае, несмотря на высокую эффективность, недостаток процесса состоит в возможности потери такого ценного продукта, как октан, образующегося при насыщении высокооктановых олефиновых компонентов.
С экономической точки зрения желательно осуществлять удаление тиофеновой серы непосредственно в ходе процесса крекинга, поскольку в этом случае происходит эффективное обессеривание основных компонентов смешанного бензина без дополнительной обработки. Были разработаны различные каталитические материалы, предназначенные для удаления серы в технологическом цикле FCC. Так, например, было установлено, что FCC катализатор, импрегнированный ванадием, способствует уменьшению содержаний серы (см. US 6482315).
В цитированном патенте также описывается присадка на основе оксида алюминия, пропитанного цинком, понижающая содержание серы.
Другие решения, касающиеся уменьшения содержания серы, были сконцентрированы на удалении серы из газов, отходящих из регенератора. В разработанном ранее процессе фирмы Шеврон использовались соединения оксида алюминия в качестве добавки к катализатору крекинга с целью поглощения оксидов серы в FCC регенераторе; адсорбированные соединения серы, поступающие в процесс с сырьем, выделялись в виде сероводорода на стадии крекинга и поступали в секцию регенерации продукта с последующим их удалением (См. Krishna et al., Additives Improved FCC Process, Hydrocarbon Processing, November 1991, pages 59-66). Хотя в этом случае сера удалялась из газов, отходящих регенератора, не наблюдалось влияния на содержание серы в продукте либо такое влияние было незначительным.
Альтернативная технология удаления оксидов серы из газов, отходящих из регенератора, основывалась на использовании магний-алюминиевых шпинелей в качестве добавок к циркулирующему катализатору в FCC установке (FCCU). Примерами патентов, в которых раскрывается такой тип сероудаляющих присадок, могут служить US 4963520; 4957892; 4957718; 4790982 и другие патенты. Однако и в этих случаях влияние на содержание серы в жидких продуктах, таких как бензин, оказалось незначительным.
Каталитические композиции для уменьшения содержания серы в жидких продуктах крекинга описаны Wormsbecher and Kirn в патентах 5376608 5525210. В указанных патентах предлагается добавление небольших количеств присадки, состоящей из кислоты Льюиса, нанесенной на оксид алюминия, в традиционный цеолитсодержащий катализатор крекинга. Хотя преимуществом такой системы является уменьшение содержание серы в процессе крекинга, обычно оказывалось, что введение более 10 мас.% указанных добавок в каталитическую композицию не обеспечивает преимуществ (например, высокая степень удаления серы при сохранении селективности по другим продуктам), которые были бы пропорциональные количеству добавки. Поскольку FCCU может содержать лишь фиксированное количество псевдоожиженных частиц, добавление такой присадки как кислота Льюиса на алюмооксидном носителе, предложенной Wormsbecher and Kim, приводит к уменьшению количества основного катализатора крекинга в FCCU и пропорциональному понижению конверсии тяжелого сырья в целевые продукты.
В US 6635168 описывается FCC каталитическая композиция, состоящая из оксида алюминия, содержащего кислоту Льюиса и Z-цеолитсодержащий катализатор, обеспечивающая кинетическую конверсионную активность, по меньшей мере, 2. Такая система была разработана частично для того, чтобы уменьшить недостатки, связанные с упомянутыми выше компонентами на основе кислот Льюиса. Композиции, описанные в US 6635168, уменьшают содержание серы (например, тиофенов и их производных) в легких и тяжелых бензиновых фракциях FCC процессов (примерно на 34%).
Требования к содержанию серы становятся все более жесткими, о чем свидетельствует тот факт, что US Environmental Protection Agency внесло новые стандарты на содержание серы в бензине, и в 2006 г. среднее содержание серы согласно текущим стандартам было снижено с 350 ч./млн до 30 ч./млн. В этой связи желательно располагать катализатором, подходящим для использования в FCC процессах, способным уменьшать содержание серы в более значительной степени, чем при использовании добавок, описанных в WO 02/08300, что особенно касается уровня содержания тиофена и его производных в легком и тяжелом бензине при сохранении конверсии сырья в целевой продукт, т.е. существенно уменьшать содержание тиофена и его производных и выполнять часть функций FCC процесса при сохранении общей крекирующей активности и селективности по целевым продуктам. Кроме этого, желательно располагать присадкой, обладающей активностью в понижении содержания серы, которая не подвергается значительному разрушению за короткое время, т.е. сохраняет серопонижающую активность в течение длительного времени.
Перечень чертежей
Фигура 1 иллюстрирует влияние Na на льюисовские кислотные центры добавки, содержащей кислоту Льюиса, в процессе уменьшения содержания серы в бензине.
На Фигуре 2 приведено сравнение значения конверсии углеводорода и понижения содержания серы в бензиновой фракции согласно изобретению (Образец 1А Примера 1) с соответствующими значениями, полученными с использованием основного равновесного катализатора (Образец ID) и каталитических композиций, содержащих компонент кислоты Льюиса, с уровнями содержания Na2O 0,16% (Образце 1В) и 0,32% (Образец 1C).
Фигура 3 демонстрирует влияние оксида кремния на Льюисовские кислотные центры добавки, содержащей кислоту Льюиса, в процессе уменьшения содержания серы в бензине.
На фигуре 4 приведены результаты сравнения значения конверсии углеводорода и понижения содержания серы в бензиновой фракции согласно изобретению (Образец 2А, Пример 2) с соответствующими значениями, полученными с использованием каталитических композиций, содержащих оксид кремния в количестве 2 мас.% или более.
На фигуре 5 приведены данные конверсии углеводорода и уменьшения содержания серы в бензиновой фракции для каталитической композиции с относительно высоким содержанием натрия из цеолитсодержащего катализатора. Данные для катализатора, проиллюстрированного на рассматриваемой фигуре, относятся к катализатору, описанному в US 6635168.
Фигура 6 иллюстрирует тот факт, что натрий и оксид кремния из частицы цеолитного катализатора могут оказывать влияние на кислотные льюисовские центры, присутствующие в частице, удаленной из частицы катализатора.
На фигуре 7 приведены данные по сравнению конверсии углеводородов и содержания серы в бензиновой фракции, полученные согласно изобретению (Образец 4В и С, Пример 4) с соответствующими значениями, полученными в присутствии каталитической композиции (Образец 4А), в которой часть компонента кислоты Льюиса заменена на 0,15 мас.% Na2O.
Фигура 8 иллюстрирует значения конверсии углеводородов и содержание серы в бензиновой фракции согласно изобретению
Сущность изобретения
Настоящее изобретение представляет собой улучшенную крекирующую каталитическую композицию, содержащую цеолит и компонент на основе кислоты Льюиса, которая содержит относительно небольшое количество натрия в виде Na2O. Суть изобретения основывается на выявлении того, что натрий оказывает влияние на Льюисовские кислотные центры, которые, как предполагается, ответственны за каталитическое уменьшение количества серы в результате действия присадок на основе кислоты Льюиса, уменьшающих содержание серы в бензине. В катализаторах изобретения используют Na2O в количестве 0,20% или менее. Авторы изобретения установили, что в том случае, когда содержание Na2O в каталитической композиции превышает указанное значение, число Льюисовских кислотных центров в композиции существенно уменьшается, вследствие чего понижается способность каталитической композиции к уменьшению количества серы. Композиции настоящего изобретения предпочтительно получают из цеолита с содержанием натрия порядка 0,5 мас.% или менее в комбинации с компонентом, содержащим кислоту Льюиса, в количестве не более 0,1 мас.% от количества Na2O, например, 0,1 мас.% или менее от количества Na2O. Предпочтительная каталитическая композиция в целом содержит не более 0,15% Na2O, более предпочтительно не более 0,1% Na2O. Настоящее изобретение предусматривает способ уменьшения содержания серы в бензине, полученном на FCC установке и, таким образом, изобретение дополнительно предусматривает улучшенный процесс FCC, в котором серосодержащее углеводородное сырье контактирует с FCC каталитической композицией в процессе FCCU, причем полученный углеводородный продукт содержит серу в количестве, по меньшей мере, на 15% меньше количества, полученного с использованием каталитической композиции, не содержащей кислотный льюисовский компонент изобретения.
В результате установления влияния натрия на кислотные льюисовские композиции, понижающие количество серы, можно предположить, что рассматриваемое изобретение обеспечивает новый способ получения каталитической композиции для проведения FCC, содержащей кислотные льюисовские компоненты. Вкратце, способ получения каталитической композиции включает подбор цеолита, содержащего 0,5 мас.% Na2O или менее, (b) выбор компонента содержащего кислоту Льюиса, содержащего 0,1% Na2O или менее, и (с) объединение цеолита и компонента, содержащего кислоту Льюиса, в соотношении, достаточном для получения каталитической композиции, содержащей 0,2 мас.% Na2O или менее.
Раскрытие сущности изобретения
Настоящее изобретение подходит для проведения реакции в режиме FCUU. Типичные катализаторы содержат цеолит, представляющий собой мелкопористый порошкообразный материал, состоящий из оксидов кремния и алюминия. В некоторых случаях в небольших количествах могут присутствовать другие элементы. Обычно цеолиты инкорпорируют в матрицу и/или связующий материал и измельчают. При аэрировании мелкодисперсных частиц газом полученный каталитический материал переходит в псевдоожиженное состояние и приобретает свойства жидкости. В результате обеспечивается эффективный контакт с сырьем, подаваемым в FCUU, при этом улучшается циркуляция в системе, включающей реактор и другие модули технологического цикла (например, регенератор). Следовательно, термин «жидкость» заимствован из промышленности для описания этого материала.
Цеолит
Цеолит, используемый в настоящем изобретении, на который ссылаются как на цеолит (а), может представлять собой любой цеолит, обладающий каталитической активностью в процессе превращения углеводородов. Подходящие цеолиты включают кристаллические алюмосиликатные цеолиты, такие как синтетический фожазит, например цеолит типа Y, цеолит типа X, бета-цеолит, ZSM-5, а также их (термообработанные) кальцинированные и/или другие формы полученные обменом на редкоземельные металлы. Особенно подходящие цеолиты включают обмененные на редкоземельные металлы цеолиты типа Y (CREY), получение которых описано в US 3402996, ультрастабильные цеолиты Y (USY), описанные в US 3293192, а также различные частично замененные цеолиты типа Y, описанные в US 3607043 и 3676368. Цеолиты изобретения также могут быть смешаны с такими молекулярными ситами, как SAPO и ALPO, как описано в US 4764269.
Особенно предпочтительные цеолиты типа Y включают цеолиты MgUSY, ZnUSY, MnUSY, HY, REY, CREY, USY, CREUSY, REUSY и их смеси.
Стандартные цеолиты типа Y получают в промышленности кристаллизацией силиката натрия и алюмината натрия. Такой цеолит может быть превращен в цеолит типа USY путем деалюминирования, приводящего к увеличению атомного соотношения кремний/алюминий в стандартной исходной структуре Y цеолита. Деалюминирование может осуществляться путем прокаливания в газовой фазе или в результате химической обработки.
Цеолиты настоящего изобретения, полученные заменой на редкоземельный металл, получают ионным обменом, в ходе которого атомы натрия, присутствующие в цеолитной структуре, заменяют на другие катионы, обычно смеси солей редкоземельных металлов, таких как соли церия, лантана, неодима, т.е. распространенных в природе редкоземельных металлов и их смесей с образованием REY и REUSY, соответственно. Полученные цеолиты могут дополнительно прокаливаться, например, с получением материалов типа CREY и CREUSY. Цеолиты типа MGUSY, ZnUSY и MnUSY могут формироваться с использованием солей Mg, Zn или Mn или их смесей с использованием описанного выше способа, касающегося получения USY за исключением того, что соли магния, цинка или марганца используют вместо солей редкоземельных металлов, применяемых для формирования REUSY.
Наиболее предпочтительные цеолиты представляют собой USY, REY, REUSY, CREY и CREUSY, причем системы, содержащие редкоземельные металлы, наиболее предпочтительны.
Размер элементарной ячейки предпочтительного свежего Y-цеолита составляет 24,5-24,7 Å. Размер элементарной ячейки (UCS) цеолита может быть измерен рентгеновским анализом по методике ASTM D3942. Обычно существует прямая зависимость между относительными количествами атомов кремния и алюминия в цеолите и размером элементарной ячейки. Зависимость такого типа подробно описана D.W.Breck на стр.911 книги Zeolite Molecular Sieves, Structure Chemistry and Use (1974), которая включена в виде ссылки в настоящее описание. Хотя как цеолит как таковой, так и матрица катализатора жидкофазного крекинга обычно содержат и кремний и алюминий, соотношение SiO2/Al2O3 каталитической матрицы не следует путать с матрицей цеолита. При рентгеновском анализе равновесного катализатора измеряют UCS содержавшегося в ней цеолита.
Размер элементарной ячейки цеолита также уменьшается в среде FCC регенератора и достигает равновесного значения за счет удаления крупных атомов алюминия из кристаллической структуры. Так при использовании цеолита в FCC атомное соотношение Si/AI в его решетке увеличивается от 3:1 до 30:1. Соответственно уменьшается размер элементарной ячейки за счет сжатия в результате удаления атомов алюминия из структуры ячейки. Размер элементарной ячейки предпочтительного равновесного Y цеолита составляет, по меньшей мере, 24,22 Å, предпочтительно 24,30-24,50 Å, более предпочтительно 24,3 0-24,38 Å.
Цеолит (а) изобретения может иметь форму частиц, которые разделены с компонентом (b), содержащим кислоту Льюиса, подробно описанным ниже. Частицы, содержащие цеолит, могут быть сформированы стандартными способами, обычно включающими стадии смешивания цеолита с глиной и, необязательно, с активным матричным материалом. После этого добавляют связующее вещество и смесь цеолита, активного матричного материала и связующего вещества, формируют в однородную водную дисперсию, которую сушат распылением и, необязательно, прокаливают. Такие способы описаны в US 3957689; 4126579; 4226743; 4458023 и СА 967136. Технологии этих ссылок включены в описание в качестве ссылки. Цеолитсодержащие частицы, например частицы, содержащие цеолит типа Y, которые используются в настоящем изобретении, содержат, по меньшей мере, 40 мас.% цеолита, причем оставшаяся часть включает активную матрицу и связующее вещество. В том случае, когда требуется использование более активных каталитических композиций, описанных ниже, предпочтительно вводить в каталитические композиции цеолитсодержащие частицы, содержащие, по меньшей мере, 50, предпочтительно, по меньшей мере, 60 и более предпочтительно, по меньшей мере, 65 мас.% цеолита.
Подходящие материалы с активной матрицей включают оксид алюминия, оксид кремния и пористую смесь из оксида алюминия и оксида кремния, но не ограничиваются этим. Средний размер частиц цеолитсодержащей каталитической композиции составляет 20-150 микрон, предпочтительно 60-90 микрон, что удовлетворяет критериям их использования в псевдоожиженном состоянии, требующемся для FCC процессов. Для некоторых вариантов осуществления изобретения следует использовать оксид алюминия, количество которого может составлять всю или часть активного матричного компонента катализатора.
Подходящие связующие материалы включают золи оксида алюминия, золи кремния, оксиды алюминия и алюмосиликаты, но не ограничиваются этим.
Как отмечалось выше, количество натрия в каталитической композиции, содержащей цеолит и кислотный льюисовский компонент, должно составлять 0,20 мас.% или менее. Натрий будет мигрировать из композиции, содержащей цеолит, в льюисовский кислотный компонент в том случае, когда смесь двух указанных материалов находится в условиях FCC, т.е. когда она в течение длительного времени подвергается воздействию пара и температуры. Приведенные ниже примеры демонстрируют устойчивое уменьшение содержания серы в том случае, когда реализуется миграция значительного количества натрия в кислотный льюисовский компонент. Общее количество натрия зависит от его количества в цеолите, а также в необязательной матрице и связующем веществе, а также от количества любого натрия в кислотном льюисовском компоненте.
В общем случае предпочтительно, чтобы цеолит или компонент, содержащий цеолит, содержал низкое количество натрия, предпочтительно 0,3% Na2O или менее, однако это требование необязательно, в особенности в том случае, когда кислотные льюисовские компоненты содержат очень небольшое количество натрия, в том случае, когда каталитическая композиция содержит небольшое количество цеолитного компонента относительно кислотного льюисовского компонента или в том случае, когда добавляемая каталитическая композиция крекинга содержит натрий в количестве менее 0,2% Na2O. Однако, как правило, цеолит изобретения должен содержать не более 0,5% Na2O. Показано, что натрий способен мигрировать из цеолита в льюисовские кислотные компоненты, воздействуюя на льюисовские кислотные центры, повышая эффективность композиции в отношении уменьшения количества серы.
Цеолиты, содержащие вышеуказанные количества натрия, могут быть получены промывкой в бане с сульфатом аммония, в ходе которой натрий цеолита заменяется на катионы аммония. Далее подвергнутый обмену цеолит вновь промывают водой с целью удаления сульфата натрия, образующегося в ходе обмена. Для обмена могут использоваться и другие соли аммония. Рассматриваемый обмен должен проводиться отдельно от обмена редкоземельных катионов на матрице цеолита в том случае, когда используют цеолиты, подвергнутые обмену на катионы редкоземельных металлов.
Предпочтительно, чтобы полученные катализаторы обладали относительно высокой кинетической конверсионной активностью. Каталитическое действие FCC основывается на цеолитах как первичных источниках кинетической конверсионной активности. Предпочтительно, чтобы катализаторы изобретения обладали кинетической конверсионной активностью (при использовании равновесного катализатора), по меньшей мере, около 2, предпочтительно 2-3 или более и более предпочтительно 3-6.
Активность катализатора может быть оценена с использованием уравнения Breck, которое может использоваться для определения активных центров в каталитической композиции. Уравнение Breck демонстрирует прямо пропорциональную зависимость между активными центрами цеолита и размером элементарной ячейки цеолитов (USC): активные центры пропорциональны (UCS-24,19)115 × % цеолита в катализаторе.
Желаемая активность может быть достигнута в результате использования достаточного количества цеолита во всей каталитической композиции. В общем случае активность каталитической композиции увеличивается в результате повышения содержания цеолита в композиции. Содержание цеолита в каталитической композиции может быть повышено с использованием описанных выше цеолитсодержащих частиц.
Другой способ получения высокоактивного равновесного катализатора состоит в использовании цеолита, содержащего достаточное количество обменных ионов редкоземельных металлов. Приготовление таких цеолитов уже описано выше. Чем выше количество обменных редкоземельных ионов внутри цеолита, тем больше размер UCS полученного цеолита и, следовательно, выше активность искусственного равновесного цеолита, что и требуется для каталитических композиций изобретения. При использовании Y цеолита, содержащего ионы редкоземельных металлов, количество таких ионов может составлять 2-18, предпочтительно 15-18, более предпочтительно 8-12 мас.% в виде оксидов редкоземельных металлов в расчете на количество цеолита. Так, при использовании Y цеолитов, обмененных на 8 мас.% редкоземельных металлов, подходящие активные каталитические композиции изобретения могут содержать, по меньшей мере, 15, предпочтительно, по меньшей мере, около 45, и в случае высокоактивных катализаторов, по меньшей мере, около 50 мас.% цеолита.
Таким образом, при использовании Y катализатора, содержащего в структуре замененные ионы редкоземельных металлов (например, цеолиты типа REY или REUSY), степень замещения катализатора обычно ниже, чем при использовании USY, не содержащего ионы не редкоземельных металлов или другие цеолитные катализаторы Y типа.
Предпочтительным воплощением изобретения является каталитическая композиция крекинга, включающая цеолит Y-типа, содержащая 0,3%, более предпочтительно 0,10 мас.% Na2O или менее, а также каталитическая композиция с предпочтительной кинетической конверсионной активностью в интервале 3,0-5,0. Как должно быть понятно специалисту в данной области, при использовании традиционных не-крекирующих FCC добавок в системе может присутствовать лишь небольшое количество таких присадок. Этот факт базируется на понимании того, что присадочные композиции разбавляют присутствующий катализатор крекинга и способствуют уменьшению общей активности равновесного катализатора крекинга до значения, которое ниже желательного значения обеспечивающего проведение экономически эффективного процесса (см. Krishna et al., Additives Improved FCC Process). Катализаторы изобретения обеспечивают относительно более высокую кинетическую конверсионную активность, значительно уменьшая при этом содержание тиофена и его производных в FCCU сырье. Таким образом, каталитическая композиция изобретения обеспечивает получение экономически привлекательного продукта экономически эффективным способом.
Льюисовский кислотный компонент
Люьисовский компонент изобретения, далее обозначаемый, как Люьисовский компонент (b), может представлять собой кислоту Льюиса как таковую, соединение, содержащее кислоту Льюиса, или соединение, содержащее Льюисовские кислотные центры. Используемый термин кислота Льюиса или льюисовский кислотный центр относится к любой молекуле или электрофильному иону, который может быть объединен с другой молекулой или ионом с образованием ковалентной связи с двумя электронами из второй молекулы или иона, причем кислота Льюиса служит акцептором электронов. Оксид алюминия является подходящим Льюисовским кислотным компонентом. Однако в настоящем изобретении предпочтительно, чтобы Льюисовский кислотный компонент содержал металл, выбранный из группы, состоящей из Ni, Cu, Zn, Ag, Cd, In, Sn, Hg, Ti, Pb, Bi, B, AI, Mn, Ga и их смесей, причем металл может присутствовать в виде оксида, катиона или находиться в нулевой валентности. Более предпочтительные Льюисовские кислотные компоненты представляют собой соединения, содержащие металл, выбранный из группы, состоящей из Zn, Ti, Co, Mo, Fe и их смесей. Еще более предпочтительным Льюисовским компонентом (b) является фрагмент, основным металлом которого служит Zn, причем наиболее предпочтительно, когда Zn является единственным металлом, присутствующим в компоненте b).
Льюисовский компонент (b) может представлять собой частицу, прореагировавшую или пропитанную кислотой Льюиса или соединением, содержащим кислоту Льюиса. Подходящие частицы имеют средний размер, соответствующий размеру частиц традиционного катализатора крекинга, например 20-150, обычно 60-90 микрон, и высокую площадь поверхности в интервале 30-400 м2/г, предпочтительно 150-400 м2/г. При пропитке частиц согласно изобретению они контактируют с раствором соли кислоты Льюиса, обычно металлической солью кислоты Льюиса. Обычно водные растворы, содержащие 10-20 мас.% растворимой металлической соли кислоты Льюиса, такой как нитрат, хлорид, сульфат и т.п. цинка, используют для пропитки подложки до исходной влажности, т.е. заполняют объем пор подложки. Обычно используют частицы матричного материала, например, неорганической оксидной матрицы, описанной выше для получения отдельных частиц цеолитного компонента изобретения. Особенно предпочтительно, когда при использовании одного или более указанных выше металлических производных кислоты Льюиса металл(ы) присутствуют совместно с оксидом алюминия и особенно предпочтительно, когда такие металлы нанесены на оксид алюминия. В US 5376608 и 5525210 описаются способы, используемые для получения подложек, пропитанных кислотой Льюиса, причем эти патенты включены в настоящее описание в качестве ссылки.
Льюисовской кислотный компонент также может быть получен распылительной сушкой неорганических оксидных носителей в присутствии других мелкозернистых частиц, например хлоргидрола алюминия и соли кислоты Льюиса в традиционных условиях распылительной сушки с образованием мелкозернистого материала, например оксида алюминия, содержащего кислоту Льюиса.
Как отмечалось выше, изобретение может представлять собой физическую смесь Льюисовского кислотного компонента (b) и цеолита (а) в виде отдельных частиц и в этом случае неорганическая оксидная матрица будет представлять собой матрицу для любого или каждого из материалов (а) и (b). В том случае, когда (а) и (b) являются единой частицей, такая матрица может содержать отдельные частицы (а) и отдельные частицы (b). Такая операция может осуществляться одновременной распылительной сушкой цеолита и кислоты Льюиса с матрицей с образованием единого мелкозернистого композиционного продукта, обладающего свойствами каждого из двух компонентов. С другой стороны, макрочастица, содержащая (а), может быть пропитана солью металла, используемой для получения (b). Как отмечалось выше, предпочтительной неорганической матрицей может служить оксид алюминия.
Льюисовский кислотный компонент также может присутствовать в виде металлического катиона Льюисовской кислоты, замененного на цеолит перед его введением в активную матрицу при необязательном присутствии связующего вещества. В этом случае цеолит заменяют металлическим катионом кислоты Льюиса в количестве, достаточном для придания свойств уменьшения содержания серы в бензине всей каталитической системе. В типичных случаях количество катиона кислоты Льюиса, заменяемое на цеолит, составляет, по меньшей мере, 3 мас.%. Примерами таких вариантов осуществления изобретения являются упомянутые выше цеолиты ZnUSY и MnUSY, в которых количество катионов Zn или Mn, участвующих в обмене, составляет, по меньшей мере, 3 мас.%.
В тех случаях, когда кислоту Льюиса наносят на мелкозернистый материал с получением компонента (b), импрегнированный материал подвергают сушке при умеренных температурах (например, 100-150°С). После сушки Льюисовский кислотный компонент, независимо от способа его получения, обычно подвергают прокаливанию при температуре в интервале 200-850°С с целью удаления анионного компонента металлической соли кислоты Льюиса, находящейся, например, в пропитывающем растворе. Металлический фрагмент компонента, содержащего кислоту Льюиса, присутствует в виде оксида, катиона, или в состоянии нулевой валентности, или в виде смеси перечисленных форм. Площадь поверхности мелкозернистого материала должна быть максимально высокой с тем, что обеспечить максимальное распределение кислоты Льюиса в мелкозернистой матрице. Такое распределение может быть достигнуто с использованием начальной мокрой пропитки.
Ранее отмечалось, что оксид алюминия является подходящим льюисовским кислотным компонентом изобретения и в этом случае предпочтительно, чтобы Льюисовский кислотный компонент содержал достаточное количество оксида алюминия. В том случае, когда компонент, содержащий кислоту Льюиса представляет металлическое производное кислоты Льюиса, компонент, содержащий кислоту Льюиса, включает 1-50 мас.%, предпочтительно 10-40 мас.% кислоты Льюиса, причем, когда кислота Льюиса представляет собой металл, указанные значения относятся к оксиду металла, а остаток относится к матрице (исключая небольшой процент редкоземельных металлов).
Как правило, Льюисовский кислотный компонент должен содержать не более 0,1% Na2O. Такое условие может выполняться в результате использования производных кислоты Льюиса, содержащих соответствующие количества Na2O. Так, например, оксиды алюминия могут быть приобретены у таких компаний, как Sasol и AIcoa, и они содержат всего лишь 0,002% оксида натрия (Sasol каталог).
В том случае, когда источник оксида алюминия имеет содержание Na2O выше требуемого значения, концентрация Na2O может быть уменьшена промывкой, например, в ванне с сульфатом аммония. В этом случае одну часть сульфата аммония растворяют в 10 частях деионизированной воды при 70°С. В раствор добавляют одну часть оксида алюминия, и смесь перемешивают в течение 10 минут. Суспензию фильтруют и промывают 30 частями деионизированной воды. Если концентрация остается чрезмерно высокой, процедуру повторяют до нужного содержания Na2O.
Как подробно проиллюстрировано в Примерах, предпочтительно минимизировать количество оксида кремния, который присутствует и/или мигрирует в Льюисовский кислотный компонент для достижения оптимального уменьшения содержания серы. Не связывая себя какой-либо теорией, мы предполагаем, что взаимодействие оксида кремния с льюисовским компонентом может оказывать положительное влияние на уменьшение содержания серы. При получении компонента, содержащего цеолит (а), предпочтительно выбирать матрицу и связующие материалы с относительно низким содержанием оксида кремния, например не более 5% оксида кремния, измеренного методом ICP. Тем не менее, можно получить каталитическую композицию изобретения с матрицей, включающей глину, в которой SiO2 связан или находится в такой форме, которая не мигрирует в большом количестве в Льюисовский кислотный компонент. Соответственно не следует ожидать, что SiO2, присутствующий в цеолите, оказывает значительное влияние на льюисовские кислотные центры изобретения.
После приготовления компонент, содержащий кислоту Льюиса, может составлять от 3 до 75 мас.% от массы каталитической композиции. В тех случаях, когда мелкозернистый материал, содержащий кислоту Льюиса, отделен от частиц, содержащих цеолит, каталитическая композиция предпочтительно содержит 30-75 мас.%, более предпочтительно 40-75 мас.% льюисовского кислотного компонента. Готовая каталитическая композиция, добавляемая в FCCU, содержит частицы со средним размером в интервале 20-150 микрон. Как и в случае любого катализатора крекинга, количество катализатора, используемого в процессе крекинга, может изменяться в зависимости от типа FCC установки, типа сырья, технических условий и желаемой производительности, что известно из уровня техники. В настоящем изобретении содержание серы в FCC сырье также является фактором, влияющим на количество каталитической композиции изобретения.
В типичных условиях наиболее удобный способ получения каталитической композиции изобретения состоит во введении цеолита и компонента, содержащего кислоту Льюиса в FCCU в виде отдельных частиц. При использовании такого варианта осуществления способа изобретения могут быть легко достигнуты точные пропорции компонентов каталитической композиции в отношении частиц сырья, используемого в FCC процессе.
Каталитические композиции изобретения в необходимых случаях могут включать дополнительные традиционные присадки, например катализаторы, увеличивающие выход октана, промоторы горения СО, промоторы крекинга остатков, присадки, способствующие уменьшению образования SOx, пассиваторы металлов и т.п., которые используют в количествах известных специалистам. Необязательные присадки просто добавляют в композицию в том случае, когда каталитическая композиция содержит физическую смесь (а) и (b). При интеграции (а) и (b) в рамках одной частицы необязательные добавки могут смешиваться с интегрированными частицами или вводиться в матрицу, добавляемую в процесс сушки сырья распылением, в результате чего получают интегрированную каталитическую композицию.
Дополнительные материалы, которые также могут вводиться в композицию изобретения, представляют собой добав