Объединенный скважинный инструмент для измерения бокового удельного сопротивления и удельного сопротивления распространения

Иллюстрации

Показать все

Изобретение относится к области подземных исследований и добычи и предназначено для измерения свойств удельного сопротивления земных формаций при проникновении в них через скважину. Техническим результатом изобретения является повышение точности и надежности определения подземного удельного сопротивления за счет обеспечения объединенного измерения удельного сопротивления, используя боковой датчик и датчик индуцирования или распространения в одной и той же области пласта за один спуск-подъем. Для этого объединенный инструмент для измерения удельного сопротивления включает как антенны индуцирования/распространения, так и антенны бокового удельного сопротивления, расположенные в углублениях на скважинной трубе. При этом антенна бокового удельного сопротивления включает изолирующий базовый слой, расположенный в углублении, тороидальную антенну, расположенную над изолирующим базовым слоем, и защитное устройство, расположенное над углублением. 2 н. и 16 з.п. ф-лы, 14 ил.

Реферат

Уровень техники

Область техники, к которой относится изобретение

Изобретение относится в общем к области подземных исследований и добычи. Более конкретно, изобретение относится к способам и устройству для измерения свойств удельного сопротивления земных формаций при проникновении в них через скважину.

Уровень техники

Инструменты каротажа удельного сопротивления много лет использовались для измерения удельного сопротивления земных формаций, окружающих скважину. Традиционно измерения удельного сопротивления осуществлялись при опускании каротажного устройства с проводной линией связи в скважину после того, как скважина была пробурена. Тем не менее, измерения с проводной линией связи обязательно приводят к задержке между временем, когда скважина пробурена, и временем, когда получены измерения. Предпочтительным подходом является осуществление таких измерений во время процесса бурения скважины для возможности принятия корректирующих шагов, при необходимости. Например, если информация о скважине обеспечивается в реальном масштабе времени, то она может быть использована для осуществления корректировки масс бурового раствора, чтобы предотвратить образование повреждений земных формаций и улучшить стабильность скважины. Дополнительно могут быть использованы данные каротажа пластов в реальном времени, чтобы направить буровое долото в желаемом направлении (т.е. забойная система контроля параметров бурения). С другой стороны, если измерения были сделаны после задержки, буровой раствор, то есть «порода», может проникнуть в пласт и изменить свойства близлежащих зон скважины. По этим причинам были разработаны способы каротажа во время бурения (LWD) и измерений во время бурения (MWD). В данном описании LWD будет использоваться, чтобы включать обе технологии LWD и MWD.

Фиг.1А иллюстрирует обычную систему LWD, расположенную в скважине. Бурильная колонна 1 подвешена в скважине 3 с прикрепленным на ее нижнем конце буровым долотом 5. Бурильная колонна 1 и прикрепленное буровое долото 5 вращаются при помощи поворотной платформы 9 во время опускания в скважину. Это вызывает проникновение бурового долота 5 в пласт 11. Как только буровое долото 5 проникает в пласт 11, вниз накачивается буровой раствор через центральное отверстие бурильной колонны 1 для осуществления смазки бурового долота 5 и переноса бурового шлама через забой скважины на поверхность через скважину 3 и линию 13 связи для бурового раствора. Секции воротников 15 бура LWD расположены за буровым долотом 5 и могут включать ряд датчиков 15а удельного сопротивления или любых других типов датчиков, известных из уровня техники. Следует отметить, что понятие «датчики», используемое в данном описании, включает антенны, тороиды и электроды (которые могут действовать как передатчики и/или приемники). Датчики 15а удельного сопротивления осуществляют измерение удельного сопротивления пласта 11, в который проникло буровое долото 5, обеспечивая измерения до того, как буровой раствор проникнет в пласт 11.

В общем, существует два типа инструментов LWD для измерений удельного сопротивления пласта - боковые инструменты и электродинамические инструменты или инструменты распространения (инструменты индуцирования или распространения). Каждый из этих инструментов основывается на принципе электромагнитных (ЕМ) измерений. Инструменты распространения излучают в пласт высокочастотные электрические поля для определения отклика скважины и пласта, измеряя напряжение, индуцируемое приемниками, или измеряя различные отклики между парой приемников или между передатчиком и приемником. Например, для инструмента распространения фазы и амплитуды входного сигнала могут быть измерены на каждом из нескольких приемников по отношению к фазам и амплитудам сигналов, используемых для возбуждения передатчика. Электродинамические передатчики формируют магнитные поля, которые индуцируют токи, протекающие в пластах. Эти токи формируют вторичные магнитные поля, которые измеряются как индуцирующие напряжение в антеннах приемника, расположенных на расстоянии от антенны передатчика. Электродинамические инструменты и инструменты распространения лучше работают в скважинах, пробуренных в относительно проводящих пластах, используя относительно непроводящие буровые растворы, включающие изолирующие буровые растворы (например, маслосодержащие буровые растворы). Обычные электродинамические инструменты и инструменты распространения не сконфигурированы с возможностью разрешения изменения удельного сопротивления вокруг скважины.

Стандартные электродинамические инструменты и инструменты распространения используют обмотанные катушки или соленоиды как антенны передатчика и приемника. Антенны располагаются на инструменте, наматывая катушку вокруг тела инструмента, герметизируя его в проводящем заполнителе и затем изолируя генеральную совокупность резиной. Хотя электродинамические инструменты и инструменты распространения обычно функционируют на разных частотах и в некоторых случаях используются, чтобы исследовать различные подземные свойства (например, определение инструментами распространения диэлектрических свойств пласта), в большинстве случаев они используются похожим образом для измерения удельного сопротивления пласта. Таким образом, любая ссылка на индуцирование здесь является взаимозаменяемой на распространение и наоборот.

Боковой инструмент обычно использует одну или более антенн или электродов для введения в пласты низкочастотных поперечных магнитных полей, чтобы определить отклики скважины и пласта, измеряя протекание тока через пласты к приемникам. Эта технология лучше работает в относительно проводящих пластах, в которых осуществляется бурение с проводящими буровыми растворами, такими как водосодержащие буровые растворы. Боковые инструменты для измерения удельного сопротивления обычно восприимчивы к азимутальным изменениям в удельных сопротивлениях пластов вокруг скважины.

Для осуществления передачи поперечного магнитного поля в пласт боковой инструмент обычно использует тороидальный передатчик, который создается намоткой проводящего провода вокруг кольцеобразного магнитно-проницаемого сердечника (тороидального сердечника). Для обнаружения токов, которые протекают в пласте, боковой инструмент использует электрод (например, кольцевой электрод или компактный дисковый электрод) приемника или тороидального приемника. В стандартных инструментах LWD тороидальный передатчик или приемник обычно обеспечиваются в рукаве, который предусмотрен на воротнике бура на финальной стадии.

Фиг.1В иллюстрирует обычный боковой инструмент для измерения удельного сопротивления. Как показано, инструмент включает два передатчика Т1 и Т2, расположенных на воротнике 15 бура. Также включены две контрольные антенны М0 и М2. Антенны Т1 и Т2 передатчика (инжектора тока) и контрольные антенны М0 и М2 показаны как тороидальные катушки, которые ниже будут подробно описаны. Инструмент для измерения удельного сопротивления также может включать другие электроды приемников, такие как кольцевой электрод R и компактные дисковые электроды В, В'. Кольцевой электрод R и компактные дисковые электроды В, В' являются проводящими электродами, расположенными на воротнике 15, но они электрически изолированы от воротника 15 изолирующими материалами. Кольцевой электрод R является проводящей металлической лентой, расположенной по окружности воротника 15. Кольцевой электрод R обычно измеряет азимутальный усредненный ток. С другой стороны, компактные дисковые электроды В, В' обычно расположены с одной стороны инструмента. Компактные дисковые электроды В, В' допускают азимутальные измерения и получение изображений с высоким разрешением.

Как указано выше, датчики индуцирования/распространения лучше работают в пластах с относительно низким удельным сопротивлением (или проводимостью), бурящихся с проводящими буровыми растворами, включающими маслосодержащие буровые растворы. Тем не менее, такие инструменты обычно не конфигурируются, чтобы разрешать изменения удельного сопротивления с азимутальной восприимчивостью вокруг скважины. Боковые инструменты больше подходят для изменений удельного сопротивления пластов, в которых осуществляют бурение с проводящими буровыми растворами, и боковые измерения, использующие компактные дисковые электроды, обычно восприимчивы к азимутальным изменениям.

Так как боковое устройство и электродинамическое устройство/устройство распространения работают особенно хорошо в определенных условиях, то они совместимы друг с другом. Тем не менее, бурильщику может не хватать необходимой информации для выполнения правильного выбора относительно типа инструмента(ов) для использования для конкретной скважины. Следовательно, различные типы каротажных инструментов часто используются вместе в отдельных спуско-подъемах каротажного инструмента. В операциях с проводной линией связи боковой инструмент часто используется в одном спуско-подъеме с электродинамическим инструментом, чтобы обеспечить исследование на небольшой глубине и обеспечить лучшую идентификацию зон, в которые проникает проводящий буровой раствор. Запуск этих инструментов в скважину по отдельности не является ни операционно выгодным, ни экономически эффективным. Дополнительно отдельные каротажные спуско-подъемы могут вносить неточность при попытке определить удельное сопротивление пласта до проникновения. При этом также возникает неточность, потому что измерение пути прохождения сигнала в отношении интервала и геометрии пласта изменяется от одного каротажного рейса к другому. Следовательно, требуется обеспечение различных типов источников/датчиков в инструменте или системе для различных методов измерений удельного сопротивления.

Пример каротажа удельного сопротивления, использующего два типа датчиков в отдельном инструменте, раскрыт в патенте США №5428293, выданном Sinclain et al. Способы каротажа, описанные в этом патенте, используют высокочастотные и низкочастотные датчики для обеспечения измерения на различных глубинах исследований, чтобы контролировать проникновение бурового раствора. Хотя эти способы предполагают использовать инструмент, имеющий и высокочастотный, и низкочастотный датчики на одном и том же воротнике бура, в указанном описании не было раскрыто подробностей в отношении конструкции инструмента.

При проектировании любых датчиков для использования в инструменте LWD существенны защитные устройства, которые могут выдержать абразивные и жесткие среды во время бурения. Так как боковые датчики удельного сопротивления и датчики удельного сопротивления распространения функционируют при различных принципах ЕМ измерений, они имеют различные требования к защитным устройствам. Инструменты LWD, имеющие антенны удельного сопротивления распространения, установленные в углублениях на стенках воротника и снабженные защитными устройствами, известны из уровня техники. Конфигурации инструмента распространения дополнительно описаны в патенте США №5594343, выданном Clark et al.

Фиг.2А показывает поперечное сечение обычного воротника 21 бура, оснащенного для измерения удельного сопротивления распространения. Воротник 21 включает углубление 29, образованное по окружности вокруг внешней области воротника на некоторой заданной глубине. Датчик 25 удельного сопротивления распространения расположен в углублении 29. Воротник 21 оснащен внутренним рукавом или шасси 26, расположенным на нем, чтобы образовывать полость для размещения электронного модуля 22. Модуль 22 присоединен к датчику 25 через электрическое соединение 27, пересекающее перемычку 28 внутри стенки воротника 21 бура. Датчик 25 герметизирован в углублении 29 (например, при помощи стекловолоконного заполнителя 20) и покрыт сверху резиновой формовкой 19. Защитное устройство 23 прикреплено на верху формовки 19 над углублением 29 для защиты датчика 25 от повреждений во время процесса бурения. Воротник 21 может также быть снабжен сменной лентой 38 дополнительно к защите датчика. Как показано на фиг.2В, защитное устройство 23 включает множество продольных щелей 24, заполненных изолирующим материалом, известным из уровня техники.

Датчик бокового удельного сопротивления (т.е. тороидальная антенна) индуцирует магнитное поле в пласте. Фиг.3А показывает стандартный датчик бокового сопротивления, который описан в Bonner et al. «A New Generation of Electrode Resistivity Measurements for Formation Evaluation While Drilling», SPWLA, 35th Annual Logging Symposium, June 19-22, 1994, Paper 00, и патенте США №5339037, выданном Bonner et al. Показан воротник 31 LWD. Датчик бокового удельного сопротивления сконструирован как рукав 30, который предусмотрен на воротнике 31 бура и закреплен на месте.

Фиг.3В показывает увеличенный участок бокового датчика 30, описанного в патенте Bonner et. al. Как показано, тороидальная антенна 35, включающая проводящий провод 33, намотанный вокруг сердечника, встроена в изолирующий материал 36 и защищена металлическим защитным устройством 37. Чтобы позволить поперечному магнитному полю быть индуцированным в пласт, защитное устройство для бокового датчика не должно замыкать цепь тока. Только один конец, верхний конец, проводящего защитного устройства 37 контактирует с воротником 31 бура. Патент США №340856, выданный Redwin et al. описывает тороидальные антенны, имеющие металлические защитные внешние стенки. Предложенные тороидальные антенны сконструированы в металлических цилиндрах, которые обеспечены над воротником и привинчены в воротник бура.

Существует необходимость скважинных инструментов, которые обеспечивают объединенное измерение удельного сопротивления, используя оба типа датчиков удельного сопротивления - боковой тип и электродинамический тип/тип распространения. Также предпочтительно, что такие инструменты имеют источники/датчики, встроенные прямо в инструмент.

Сущность изобретения

Изобретение обеспечивает компоновку удлиненной трубы, имеющей продольную ось и выполненную с возможностью подземного размещения, содержащую: углубление на внешней стенки трубы, проходящее по окружной поверхности вокруг продольной оси трубы, изолирующий базовый слой, расположенный в углублении;

тороидальную антенну, расположенную над изолирующим базовым слоем, и

защитное устройство, расположенное над углублением и выполненное с возможностью предотвращения протекания электрического тока вдоль защитного устройства в направлении, параллельном продольной оси трубы вблизи тороидальной антенны, при этом указанная компоновка удлиненной трубы представляет собой воротник бура или каротажный инструмент удельного сопротивления.

При этом компоновка удлиненной трубы дополнительно содержит изолирующий наполнитель, расположенный в остающемся участке углубления, механизм компенсации давления, расположенный рядом с тороидальной антенной. При этом тороидальная антенна содержит проводящий провод, расположенный над изолирующим базовым слоем.

Кроме того, тороидальная антенна содержит тороидальную сердцевину, сформированную из одного из материалов: магнитно-проницаемого материала, намотанного вокруг изолирующего базового слоя, из ферритового материала, расположенного в углублении.

В компоновке удлиненной трубы защитное устройство содержит изолирующий механизм для предотвращения протекания электрического тока вдоль защитного устройства в направлении, параллельном продольной оси трубы, а изолирующий механизм содержит круговую щель, заполненную изолирующим материалом.

Кроме того, компоновка удлиненной трубы дополнительно содержит электрически изолированный материал, расположенный между соединением, сформированным между защитным устройством и трубой.

Компоновка удлиненной трубы согласно первому аспекту изобретения представляет собой каротажный инструмент удельного сопротивления или воротник бура.

При этом когда компоновка удлиненной трубы представляет собой каротажный инструмент удельного сопротивления, она содержит:

удлиненную первую проводящую трубу, имеющую центральное отверстие и изолированное круговое отверстие вдоль ее стенки для предотвращения протекания тока через отверстие;

удлиненную вторую проводящую трубу, имеющую датчик бокового удельного сопротивления, установленный на ней;

причем вторая труба расположена внутри первой трубы таким образом, что датчик бокового удельного сопротивления был размещен вблизи изолированного кругового отверстия на первой трубе, и

причем путь тока формируется между первой и второй трубой на любой стороне изолированного кругового отверстия, когда вторая труба расположена внутри первой трубы.

При этом между внешней поверхностью второй трубы и внутренней поверхностью первой трубы сформировано проводящее соединение на любой стороне изолированного кругового отверстия, когда вторая труба расположена внутри первой трубы, при этом проводящее соединение сформировано посредством непосредственного контактирования между трубами или посредством проводящего элемента, расположенного между трубами.

Согласно второму аспекту изобретения предусмотрен способ размещения датчика бокового удельного сопротивления на участок компоновки трубы, имеющей продольную ось и выполненную с возможностью подземного размещения, содержащий этапы, при которых:

создают углубление во внешней стенке участка трубы;

формируют базовый слой изолирующего материала в углублении;

формируют тороидальную сердцевину посредством намотки магнитно-проницаемого материала над базовым слоем;

наматывают проводящий провод вокруг тороидальной сердцевины для формирования тороидальной антенны и

устанавливают защитное устройство над углублением, при этом защитное устройство выполнено с возможностью предотвращения протекания электрического тока в защитном устройстве в направлении, параллельном продольной оси трубы вблизи тороидальной антенны.

Кроме того, способ дополнительно содержит этап заполнения оставшегося участка углубления изолирующим наполнителем, подгонку механизма компенсации давления в углублении.

Кроме того, согласно способу размещают бобину на базовый слой до формирования тороидальной сердцевины, причем бобина имеет желоб для направления наматывания магнитно-проницаемого материала, а также размещают изолирующий материал над тороидальной сердцевиной в щели бобины.

Кроме того, согласно второму аспекту изобретения защитное устройство содержит изолирующий механизм для предотвращения протекания электрического тока вдоль защитного устройства в направлении, параллельном продольной оси трубы вблизи тороидальной антенны, при этом изолирующий механизм содержит круговую щель, заполненную изолирующим материалом, в защитном устройстве.

Кроме того, согласно способу размещают электрически изолирующий материал между соединением, сформированным между защитным устройством и трубой.

Другие аспекты и преимущества изобретения станут очевидными из следующего описания и приложенной формулы изобретения.

Краткое описание чертежей

Фиг.1А показывает традиционную систему LWD со скважинным инструментом, расположенным в скважине.

Фиг.1В показывает традиционный каротажный инструмент для измерения бокового удельного сопротивления.

Фиг.2А показывает поперечное сечение традиционного каротажного инструмента для измерения удельного сопротивления распространения.

Фиг.2В представляет схему внешней области инструмента фиг.2А.

Фиг.3А показывает традиционный каротажный инструмент для измерения удельного сопротивления, имеющий размещенный на рукаве датчик бокового удельного сопротивления.

Фиг.3В - детальный вид датчика бокового удельного сопротивления инструмента согласно фиг.3А.

Фиг.4 - схема тороидальной антенны, расположенной на трубе согласно изобретению.

Фиг.5 показывает поперечное сечение тороидальной антенны, смонтированное в углублении на трубе согласно изобретению.

Фиг.6 показывает поперечное сечение тороидальной антенны, имеющее бобину как направляющее устройство в углубление трубы согласно изобретению.

Фиг.7А показывает защитное устройство для бокового датчика согласно изобретению.

Фиг.7В показывает защитное устройство для датчика удельного сопротивления согласно изобретению.

Фиг.8 иллюстрирует поперечное сечение защитного устройства, расположенного на трубе согласно изобретению.

Фиг.9 - иллюстрирует поперечное сечение бокового датчика с механизмом компенсации давления согласно изобретению.

Фиг.10 представляет схему трубы с изолирующим разрывом или зазором согласно изобретению.

Фиг.11 показывает объединенные боковой датчик и датчик распространения, расположенные на трубе и защищаемые встроенным защитным устройством согласно изобретению.

Фиг.12А показывает инструмент и LWD для отображения измерений удельного сопротивления, объединенный с боковым датчиком, расположенным в углублении воротника бура согласно изобретению.

Фиг.12В-D представлены детальные виды датчиков, показанных на фиг.12А.

Фиг.13 иллюстрирует блок-схему способа монтажа бокового датчика на трубе согласно изобретению.

Фиг.14 иллюстрирует блок-схему способа для монтирования комбинации бокового датчика и датчика распространения на трубе согласно изобретению.

Подробное описание

Варианты осуществления настоящего изобретения относятся к способам и устройству для измерения электромагнитных свойств подземных пластов, проходящих через скважину. Варианты осуществления изобретения включают инструменты, выполненные с возможностью определения удельных сопротивлений в одной и той же области пласта, используя оба электромагнитных датчика - боковой датчик и датчик индуцирования или распространения. Некоторые варианты осуществления изобретения относятся к способам изготовления или сборки таких инструментов. Согласно вариантам осуществления изобретения датчики бокового типа и датчики распространения совместно реализуются в трубе для подземного использования. Объединенная реализация бокового датчика и датчика распространения на одной трубе (компоновка трубы) делает возможным, если требуется, использование встроенной в трубу сборки защитного устройства датчиков. Более важно, реализация объединенных бокового датчика и датчика распространения делает возможным получение многомодовых измерений удельного сопротивления из одной и той же подземной области за один спуск-подъем, таким образом обеспечивая более точное и надежное определение подземного удельного сопротивления.

Согласно вариантам осуществления изобретения тороидальный датчик для инструмента бокового сопротивления монтируется в скважинной трубе. Как указывалось выше, тороидальные передатчики или приемники традиционных инструментов для измерения бокового удельного сопротивления обычно монтируются на рукаве, который предусмотрен на трубе. На такой выбор конструкции влияют такие факторы, как, например, давление физической силы на воротник бура с полостями, сложности конструкции и упрощение технического обслуживания или замены. Исследование напряжений, осуществляемое настоящими изобретателями, показало, что воротник бура, имеющий углубления, вырезанные на его внешней стенке, такого размера и формы, требуемых для удержания тороидальных датчиков, не ослабит значительно трубу.

Фиг.4 иллюстрирует датчик бокового удельного сопротивления (тороидальную антенну), смонтированную в углублении трубы согласно варианту осуществления изобретения. Фиг.5 показывает участок продольного сечения тороидального датчика. Как показано на фиг.4 и 5, труба 57 включает углубление 53. Основа углубления 53 вырезается на некоторую требуемую глубину. Боковой датчик, состоящий из тороидальной антенны 50, которая состоит из магнитного сердечника 51 и проводящего провода 52, смонтирована в углублении 53.

Согласно одному варианту осуществления изобретения на месте углубления 53 может быть смонтирована тороидальная антенна 50. Тороидальная антенна 50 может быть смонтирована на месте посредством размещения изолирующего материала в основе углубления 53 для формирования базового слоя 55. Изолирующий базовый слой 55 может включать бороздки 56 для обеспечения каналов для проводящего провода 52, намотанного вокруг магнитного тороидального сердечника 51 в форме обруча в углублении 53.

Магнитный сердечник 51 смонтирован на базовом слое 55 в углублении 53. Одним способом является монтирование магнитного сердечника 51, на месте в углублении обматывая ленту, выполненную из ферромагнитного материала. Альтернативно магнитный сердечник может быть скомпонован в углублении из кусочков, выполненных из ферромагнитного материала (например, ферритов). Сердечник 51 может быть также скомпонован из кусочков и пропитан эпоксидной смолой для удержания структуры (не показано). Примером подходящей ферромагнитной ленты является лента SUPERMALLOY™, которая, например, может иметь размеры 1 дюйм (2,54 см) в ширину и 0,002 дюйма (0,05 см) в толщину. SUPERMALLOY™ является высокоочищенной и специально обработанной 80% железоникелевым сплавом для использования в сердечнике, обмотанном лентой, и может быть приобретена от коммерческих предприятий, таких как Magnetic Metals Company (Anaheim, Ca). SUPERMALLOY™ производится, чтобы иметь высокую начальную магнитную проницаемость и низкие потери. Для некоторых приложений может не требоваться магнитный сердечник с высокой магнитной проницаемостью. Может быть достаточно сердечника с относительной магнитной проницаемостью, равной 1. Магнитная лента обматывается по окружности вокруг изолирующего базового слоя 55 для формирования магнитно-проницаемого тороидального сердечника 51. Обмотка продолжается, пока не будет достигнута требуемая толщина (например, 0,10 дюймов [0,254 см] - 0,15 дюймов [0,381 см]) магнитного сердечника 51. Чтобы завершить изготовление тороидальной антенны 50, затем вокруг сердечника 51 наматывается проводящий провод 52. Процесс намотки, например, завершается пропусканием проводящего провода 52 через канавку (и) 56, образованную в изолирующем базовом слое 55. Датчик бокового удельного сопротивления может также быть реализован другими способами, такими как при проскальзывании датчика в суженную область трубы или корпуса (не показано).

Фиг.5 также показывает, что, как только завершена установка тороидальной антенны 50, оставшаяся зона в углублении 53 может быть заполнена изолирующим материалом 54, который фиксирует тороидальную антенну 50 в углублении 53. Примеры подходящих изолирующих материалов включают эпоксидную смолу и стекловолокно. Дополнительно слой эластомера (например, резины) может быть сформирован поверх изолирующего материала, чтобы герметизировать углубление 53 и его содержимое от скважинных флюидов при размещении датчика в скважине. Примеры эластомеров могут включать натуральный и синтетический каучук и синтетические эластомеры. Примером подходящего эластомера является фторэластомер, продаваемый DuPont Dow Elastomers под торговой маркой VITON™ (Уилмингтон, Делавэр). Резина или слой эластомера 59 герметизирует сборку датчика, промывая поверхность трубы 57. Наконец, углубление 53 и его содержимое покрываются защитным устройством 58, которое защищает датчик от среды, окружающий скважину. Защитное устройство 58 включает изолирующий механизм 75 (описанный подробно ниже) для предотвращения протекания тока вдоль защитного устройства 58 в продольном направлении.

Фиг.6 показывает другой вариант осуществления изобретения. Тороидальная антенна расположена внутри трубы, включающей бобину 67, помещенную над изолирующим базовым слоем 55 до того, как была намотана магнитная лента. Бобина 67 выполнена из изолирующего материала и может содержать два или более кусочков, которые могут быть скомпонованы в углублении. Бобина может включать вырез (желоб) 68, который направляет магнитную ленту во время обмотки и удерживает тороидальный сердечник 51. Для бобины 67 может быть использован любой подходящий материал или композит, включая коммерчески доступные материалы, такие как RANDOLITE™, PEEK™, KEVLAR™, стекловолокно или основанные на полиарилэфиркетоне термопластические материалы, как описано в патентах США №6084052 и 6300762. Вырез 68 бобины 67 должен быть немного шире, чем ширина магнитной ленты. Если используется бобина 67, то бороздка(и) (56 на фиг.5), используемая для упрощения намотки проводящего провода 52, может быть включена в бобину 67 вместо изолирующего базового слоя 55. Как только сконфигурирован тороидальный сердечник 51, вершина желоба 68 бобины 67 может быть закрыта лентой 69, выполненной из изолирующего материала, такого как стеклоткань, для закрепления тороидальной сердцевины 51 в вырезе 68 бобины 67. Защитное устройство 58, изолирующий механизм 75 и т.д. (показанные на фиг.5) также объединены в варианте осуществления на фиг.6, но они не показаны для ясности иллюстрации. Другие варианты осуществления изобретения могут быть сконфигурированы без магнитного сердечника 51 (не показано), особенно подходящего для высокочастотных приложений. Такие варианты осуществления требуют расположения проводящего провода 52 над изолирующим базовым слоем 55, образовывая «воздушную сердцевину». Кроме того, другие варианты осуществления могут быть сконфигурированы с проводящим проводом, намотанным на бобину 67 без магнитной сердцевины 51 (не показано).

Возвращаясь к фиг.5, защитное устройство 58 предпочтительно сконструировано из прочного материала, такого как металл. Важность правильно сконфигурированного защитного устройства известна из уровня техники. Например, патент США №6566881, выданный Omeragie et al., раскрывает различные защитные устройства для электромагнитных каротажных инструментов, включая инструменты, имеющие поперечные антенны.

Тем не менее, конструкция защитного устройства для соленоидальной антенны, которая формирует магнитные диполи, отличается от конструкции защитных устройств для тороидальной антенны, которая формирует электрические диполи и функционирует на значительно меньших частотах. Из уровня техники хорошо известно, что эффективное функционирование антенны и конструкция защитного устройства зависят от рабочих частот и физических характеристик антенны. Как указывалось выше, антенна индуцирования и распространения выполнена с возможностью формирования высокочастотного электрического поля в пласте, тогда как тороидальная антенна конструируется для формирования низкочастотного магнитного поля в пласте. Следовательно, традиционные защитные устройства, конструируемые для антенн индуцирования и распространения, обычно не подходят для использования в тороидальных антеннах.

Покрытие тороидальной антенны традиционным защитным устройством антенны приведет к короткому замыканию электрического тока, индуцируемого тороидальной антенной. Вместо протекания тока через скважину и пласт ток сначала течет в защитное устройство. Сигнал пласта будет уменьшен ниже уровня, соответствующего для измерения удельного сопротивления. Подходящее металлическое защитное устройство для тороидальной антенны включает круговую щель или кольцо, чтобы обеспечить электрическую изоляцию между защитным устройством и нижележащей проводящей опорой. Фиг.7А показывает защитное устройство 58 изобретения с изолирующей щелью 75. Эта щель 75 состоит из изолирующего материала (например, стекловолокна, керамики, RANDOLITE™). Она может быть расположена в любом месте вдоль защитного устройства, но обычно проще выполнить изолирующую щель 75 на одном из концов защитного устройства. Специалисты в данной области техники могут выбрать технологию из многих известных из уровня техники для формирования щели. Изолирующий материал может представлять отдельный кусок, прикрепленный в место или монтированный на защитном устройстве (например, отформированный эластомер или композитный изолирующий материал) как встроенная часть. В некоторых вариантах осуществления изолирующий материал может располагаться и удерживаться защитным устройством (не показано).

Альтернативой включению в защитное устройство щели являются использование цельного, цельнометаллического защитного устройства и его монтаж таким образом, чтобы оно электрически связывало проводящую часть трубы над тороидом с проводящей частью трубы под тороидом. Способ такого выполнения показан на фиг.8. Как показано на фиг.8, кольцо 80 изолирующего материала 80 включено в трубу 57 таким образом, чтобы один конец защитного устройства 58 был изолирован кольцом от непосредственного контактирования с трубой.

Фиг.7А и 8 являются примерами круговых щелей или колец с изолирующим материалом для предотвращения протекания тока вдоль защитного устройства в продольном направлении над тороидальной антенной 50. Специалисты в данной области техники оценят, что могут быть использованы другие типы круговых щелей или колец для осуществления изобретения. Некоторые варианты осуществления изобретения могут включать сегментные металлические защитные устройства для обеспечения необходимой изоляции (не показано).

Специалист в данной области техники примет к сведению, что, когда труба расположена в скважине, заполненной буровым раствором, на тороидальную антенну (50 на фиг.4) будет действовать гидростатическое давление в 20000 фунтов на квадратный дюйм (1,406 кг/см2). Это давление будет действовать на тороидальную антенну 50 изнутри и может вызвать деформации антенны, уменьшая магнитную проницаемость ее сердцевины 51 и уменьшая ее индуктивность и эффективность.

Для минимизирования неблагоприятных влияний гидростатического давления тороидальные антенны согласно изобретению могут быть реализованы посредством включения механизма компенсации давления. Например, компенсация давления может быть получена заменой некоторых или всех изолирующих материалов (например, 54 на фиг.5), которые удерживают тороидальную антенну в углублении (53 на фиг.5) на мягкий эластомер или резину. Фиг.9 иллюстрирует вариант осуществления тороидального датчика согласно изобретению, который включает механизм компенсации давления, конструкция которого подобна показанной на фиг.6. Одно отличие заключается в том, что в стенке 57 трубы установлен порт 90. Другое отличие в том, что заполняющий материал 54 является подходящим пористым и проницаемым материалом, таким как непропитанная стекловолоконная ткань. После того как резина 59 сформирована в местоположении, углубление 53 освобождается через порт 90 и снова заполняется маслом при атмосферном давлении. Затем порт 90 герметизируется пробкой 91. Резиновая прокладка 59 действует как сильфоны для уравновешивания давления на тороидальном сердечнике 51 с давлением вне трубы.

Фиг.10 показывает другой вариант осуществления изобретения. В этом варианте в проводящей внешней трубе 57 выполнено электрически изолированное отверстие или разрыв 60, а тороидальная антенна 50 смонтирована на проводящей внутренней трубе или шасси 26, расположенной на ней. Разрыв 60 образует разомкнутую цепь тока, протекающего вдоль трубы, предотвращая протекание тока через разрыв 60. С любой стороны разрыва 60 образовано проводящее соединение 61 между трубами для обеспечения пути тока между трубами. Фиг.10 иллюстрирует вариант осуществления изобретения, в котором электрически соединенные соединения 61 между трубами реализованы посредством вытягивания наружной стороны шасси 26, обеспечивая прямой контакт с внутренней поверхностью внешней трубы 57. Может быть использовано другое подходящее средство для обеспечения пути тока между трубами, как известно из уровня техники. Например, между трубами может быть установлена волновая пружина для обеспечения проводящего элемента (не показано). Электронный модуль для антенны 50 может быть расположен в трубах, как описано здесь или используя другое средство, известное из уровня техники.

При работе тороидальная антенна 50 формирует токовый контур, в котором ток течет через шасси 26 и внешнюю трубу 57, возвращаясь к внешней трубе через пласт. Таким образом, варианты осуществления изобретения, включающие изолирующий разрыв 60, обычно включают более чем один разрыв, один