Устройство инвертора с принудительной коммутацией

Иллюстрации

Показать все

Предложено устройство, представляющее собой инвертор большой мощности с принудительной коммутацией, имеющее максимальный номинальной выходной ток IRout, которое включает в себя конденсатор связи по постоянному току, анодную индуктивность рассеяния, плечо переключателя, схему фиксации уровня и блок с насыщаемым сердечником, причем конденсатор связи по постоянному току имеет пульсацию напряжения, характеризующуюся максимальным значением dVm абсолютной величины скорости нарастания dVDC/dt, а анодная индуктивность рассеяния соединена последовательно с конденсатором связи по постоянному току. Плечо переключателя включает в себя схему последовательного соединения устройства запираемого вентиля и обратного диода, а схема фиксации уровня включает в себя фиксирующий конденсатор, фиксирующий диод и схему сброса напряжения уровня фиксации, включающую в себя резистор. Блок с насыщаемым сердечником имеет одну из линейной характеристики насыщения и плавной характеристики насыщения, каждая из которых имеет ток насыщения, равный Isat и установленный таким образом, чтобы выполнялось соотношение IRout>Isat>C31×dVm, где С31 - емкость фиксирующего конденсатора. Технический результат - устранение перегрузок транзисторов при обратном восстановлении. 12 з.п. ф-лы, 7 ил.

Реферат

Настоящее изобретение относится к устройству инвертора с принудительной коммутацией, в частности к устройству инвертора с принудительной коммутацией для источника напряжения большой мощности, которое содержит устройства запираемого вентиля, такие как, например, вентили, коммутируемые по управляющему электроду (GCTs), транзисторы с изолированным затвором и увеличенной инжекцией (IEGTs) или биполярные транзисторы с изолированным затвором (IGBTs), обратные диоды и схему фиксации уровня.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Каждое из устройств инвертора с принудительной коммутацией для источника напряжения большой мощности содержит устройства запираемого вентиля, обратные диоды, схему фиксации уровня и блок аккумулирования постоянного тока, например батарею конденсаторов. В зависимости от области применения применяют различные разновидности конфигурации принципиальной схемы, например конфигурацию прерывателя, двухуровневую конфигурацию, трехуровневую конфигурацию и многоуровневую конфигурацию.

В открытом состоянии каждый из используемых на практике высоковольтных обратных диодов, имеющих запирающую способность, например 4,5 кВ или 6 кВ, накапливает существенное количество носителей заряда. Затем эти носители заряда должны быть извлечены обратным током до того, как будет получено закрытое состояние.

Вследствие наличия такого обратного тока восстановления эти диоды будут иметь относительно низкое полное сопротивление в течение короткого отрезка времени после инициирования условия реверсирования. Следовательно, во избежание появления любого избыточного тока необходимо применять какое-либо управление током. По существу, были предложены следующие два типа управления обратным током восстановления с помощью пассивных элементов:

(a) управление током с помощью линейных анодных электрических реакторов и

(b) управление током с помощью насыщаемых сердечников.

Ниже приведено описание управления током обратного восстановления линейного анодного электрического реактора известного уровня техники, который раскрыт в приведенных ниже патентных документах:

(a) в выложенной публикации Европейского патента № EP-0776083-A2 (которую ниже именуют первым патентным документом);

(b) в патенте США № 5768114, который относится к семейству первого патентного документа; и

(c) в патенте Японии № JP-3749580-B2, который относится к другому семейству первого патентного документа.

В первом патентном документе раскрыто бездемпферное управление обратного восстановления линейным анодным электрическим реактором и раскрыта схема прерывателя для источника напряжения большой мощности с принудительной коммутацией, в которой используют линейный анодный электрический реактор, из известного уровня техники. Схема прерывателя содержит конденсатор связи по постоянному току, питание которого обеспечено через входные линии, плечо переключателя, содержащее устройство запираемого вентиля, и обратный диод, анодный электрический реактор и схему фиксации уровня, содержащую фиксирующий диод.

В экспериментальном примере схемы прерывателя после уменьшения тока, текущего через обратный диод, до нуля обратный диод затем обеспечивает обратное восстановление, а именно носители заряда в обратном диоде по-прежнему сохраняют высокую проводимость, в то время как направление анодного тока изменяется на противоположное. Вследствие этого напряжение на обратном диоде остается близким к нулю в течение некоторого отрезка времени. После этого напряжение на обратном диоде может снизиться, приближаясь к значению напряжения связи по постоянному току. А именно вследствие индуктивности анодного электрического реактора анодный ток, текущий в обратном диоде, продолжает увеличиваться, и затем этот же самый ток может быть переключен в схему фиксации уровня. В этом случае напряжение на обратном диоде остается близким к значению напряжения на конденсаторе связи по постоянному току, и анодный ток, протекающий через обратный диод, может быть уменьшен.

В типичных характеристиках зависимости анодного напряжения от анодного тока для использованного выше обратного диода для каждого протекающего через него прямого тока обратное напряжение приближается к наибольшему значению тогда, когда анодный ток также приближается к наибольшему значению. В таком случае в диоде создается высокая кажущаяся мощность обратного восстановления при повышенном анодном напряжении, вызывающая, следовательно, высокий уровень вредного воздействия обратного восстановления. Кроме того, такая кажущаяся мощность обратного восстановления лишь незначительно уменьшается при уменьшении прямого тока. При использовании типичного диода уменьшение прямого тока с 6000 А до 100 A, то есть в 60 раз, может уменьшить величину кажущейся мощности обратного восстановления всего лишь в 2 раза. Вследствие этого обратный диод при таком условии будет наиболее предрасположен к выходу из строя при обратном восстановлении из-за малого уровня прямого тока.

Следующим по порядку, ниже приведено описание управления обратным током восстановления с помощью насыщаемого сердечника, который раскрыт в следующих патентных документах:

(a) в патенте Японии № JP-3745561-B2 (который ниже именуют вторым патентным документом) и

(b) в патенте США № 6392907, который относится к семейству второго патентного документа.

Во втором патентном документе раскрыт инвертор с принудительной коммутацией, в котором используют управление обратным восстановлением с помощью насыщаемых сердечников. В инверторе один или два насыщаемых сердечника обрезают ток, втекающий, по меньшей мере, в один из двух конденсаторов связи по постоянному току. Во время обратного восстановления обратного диода обратный ток восстановления устанавливается исключительно фиксирующей цепью, содержащей фиксирующий конденсатор, фиксирующий диод и фиксирующие резисторы.

Для данной области применения обычно выбирают насыщаемые сердечники с малыми потерями. В магнитном потоке B с напряженностью H характеристики электрического поля насыщаемого сердечника насыщаемый сердечник действует на малое магнитное поле, а переключение вызывают между двумя крайними состояниями насыщения, соответствующими максимальному магнитному потоку Bmax и минимальному магнитному потоку Bmin. Это приводит к генерации с малыми потерями. Таким образом, предотвращено накопление большого количества энергии в анодном электрическом реакторе.

Однако при внедрении таких насыщаемых сердечников, в частности трехфазного трехуровневого инвертора из известного уровня техники, содержащего насыщаемые сердечники, возникла другая сопутствующая проблема. Когда напряжение конденсатора связи по постоянному току заряжается током из другой фазы, то насыщаемые сердечники трехуровневого инвертора принимают электрический ток на основе токов смещения, текущих в фиксирующих конденсаторах, а затем эти насыщаемые сердечники переключают в соответствующее состояние насыщения. Таким образом, насыщаемые сердечники могут быть установлены в состояние, непосредственно противоположное тому состоянию, которое необходимо для защиты обратного диода при обратном восстановлении. В таком случае обратный ток восстановления, текущий в обратном диоде, увеличится при высоком значении dI/dt, что вероятнее всего вызовет выход из строя обратного диода.

В схеме инвертора большой мощности, в которой используют линейные анодные электрические реакторы, возникает проблема использования большой индуктивности для удовлетворения требованиям типичных высоковольтных обратных диодов. Во время каждого цикла переключения в таких электрических реакторах накапливается и высвобождается значительное количество энергии, которая создает существенный вклад в суммарные потери инвертора. Вдобавок к этому, схема инвертора большой мощности, в которой используют линейные анодные электрические реакторы, дает чисто индуктивную нагрузку на высоковольтные обратные диоды. Такая чисто индуктивная нагрузка оказывает самое большое вредное воздействие на эти обратные диоды. В этом случае ситуации наличия наиболее серьезного вредного воздействия наблюдают при малом токе нагрузки, что, следовательно, препятствует потребности в использовании нежелательно высоких значений индуктивности.

Инверторы большой мощности из известного уровня техники, в каждом из которых используют насыщаемые сердечники, содержат сердечники с двумя четко определенными состояниями насыщения. Вследствие этого, в преобразователях большой мощности, в которых используют устройства с быстрым включением, такие как, например, вентили, коммутируемые по управляющему электроду (GCT), биполярные транзисторы с изолированным затвором (IGBT) или транзисторы с изолированным затвором и увеличенной инжекцией (IEGT), имеется риск перегрузки при обратном восстановлении из-за ошибочной установки состояния насыщения сердечника.

Основной задачей настоящего изобретения является создание устройства инвертора с принудительной коммутацией, которое при реальном применении способно выполнять четко определенные операции почти в любых условиях с надежным управлением обратным током восстановления диода.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Согласно настоящему изобретению в нем предложено устройство инвертора большой мощности с принудительной коммутацией, имеющего максимальный номинальной выходной ток IRout, включающего в себя, по меньшей мере, один конденсатор связи по постоянному току, по меньшей мере, одну анодную индуктивность рассеяния, по меньшей мере, одно плечо переключателя, по меньшей мере, одну схему фиксации уровня и, по меньшей мере, один блок с насыщаемым сердечником. Конденсатор связи по постоянному току имеет пульсацию напряжения, характеризующуюся максимальным значением dVm абсолютной величины скорости нарастания dVDC/dt, которое удовлетворяет соотношению -dVm≤dVDC/dt≤dVm, а анодная индуктивность рассеяния соединена последовательно с конденсатором связи по постоянному току. Плечо переключателя содержит схему последовательного соединения, по меньшей мере, одного устройства запираемого вентиля и, по меньшей мере, одного обратного диода, а схема фиксации уровня содержит, по меньшей мере, один фиксирующий конденсатор, по меньшей мере, один фиксирующий диод и, по меньшей мере, одну схему сброса напряжения уровня фиксации, которая содержит, по меньшей мере, один резистор.

Устройство инвертора большой мощности с принудительной коммутацией отличается тем, что блок с насыщаемым сердечником имеет одну из линейной характеристики насыщения и плавной характеристики насыщения, каждая из которых имеет ток насыщения, равный Isat, и ток насыщения Isat установлен таким образом, что он является большим, чем ток смещения, созданный вследствие скорости нарастания dVm, при емкости C31, по меньшей мере, одного фиксирующего конденсатора, чтобы удовлетворялось соотношение из приведенного ниже уравнения:

IRout>Isat>C31×dVm

Поскольку в вышеупомянутом устройстве инвертора большой мощности с принудительной коммутацией блок с насыщаемым сердечником используется в устройстве инвертора с принудительной коммутацией, которое имеет встроенное четко определенное исходное состояние и принудительное воздействие, то при реальном применении может быть реализовано четко определенное функционирование почти в любых условиях. Вследствие этого может быть реализовано надежное управление обратным током восстановления диода.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На чертеже Фиг. 1A изображена принципиальная электрическая схема, показывающая конфигурацию схемы прерывателя большой мощности с принудительной коммутацией согласно первому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 1B изображена принципиальная электрическая схема, показывающая конфигурацию двухуровневого инвертора большой мощности с принудительной коммутацией согласно первому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 1C изображена принципиальная электрическая схема, показывающая конфигурацию трехуровневого инвертора большой мощности с принудительной коммутацией согласно первому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 1D изображен график, показывающий электрическую характеристику интеграла напряжения по времени ∫Vdt от тока I каждого из блоков 5a, 5b и 5c с насыщаемыми сердечниками, показанных на чертежах Фиг. 1A, Фиг. 1B и Фиг. 1C, и показывающий их ток насыщения Isat.

На чертеже Фиг. 2A изображен график, показывающий электрическую характеристику интеграла напряжения по времени ∫Vdt от тока I для каждого из блоков 5a, 5b и 5c с насыщаемыми сердечниками, показанных на чертежах Фиг. 1A, Фиг. 1B и Фиг. 1C, наряду с определением интеграла их напряжения по времени при насыщении ∫Vdtsat, согласно второму предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 2B изображен график, показывающий зависимость между зарядом Qrr обратного восстановления и прямым током I, текущим в типичном высоковольтном кремниевом диоде большой мощности при повышенной температуре перехода.

На чертеже Фиг. 2C изображена временная диаграмма сигналов, показывающая (a) напряжения V5a и V5b блоков 5a и 5b с насыщаемым напряжением, (b) нормированный магнитный поток F5a и F5b в них и (c) напряжение V22 и ток I22 диода 22, для использования в двухуровневом инверторе большой мощности из Фиг. 1B в том случае, когда выходной ток Iout=100 A.

На чертеже Фиг. 2D изображена временная диаграмма сигналов, показывающая (a) напряжения V5a и V5b блоков 5a и 5b с насыщаемым напряжением, (b) нормированный магнитный поток F5a и F5b в них и (c) напряжение V22 и ток I22 диода 22, для использования в двухуровневом инверторе большой мощности из Фиг. 1B в том случае, когда выходной ток Iout=400 A.

На чертеже Фиг. 2E изображена временная диаграмма сигналов, показывающая (a) напряжения V5a и V5b блоков 5a и 5b с насыщаемым напряжением, (b) нормированный магнитный поток F5a и F5b в них и (c) напряжение V22 и ток I22 диода 22, для использования в двухуровневом инверторе большой мощности из Фиг. 1B в том случае, когда выходной ток Iout=1000 A.

На чертеже Фиг. 2F изображена временная диаграмма сигналов, показывающая (a) напряжения V5a и V5b блоков 5a и 5b с насыщаемым напряжением, (b) нормированный магнитный поток F5a и F5b в них и (c) напряжение V22 и ток I22 диода 22, для использования в двухуровневом инверторе большой мощности из Фиг. 1B в том случае, когда выходной ток Iout=3000 A.

На чертеже Фиг. 2G изображена временная диаграмма сигналов, показывающая (a) напряжения V5a и V5b блоков 5a и 5b с насыщаемым напряжением, (b) нормированный магнитный поток F5a и F5b в них и (c) напряжение V22 и ток I22 диода 22, для использования в двухуровневом инверторе большой мощности из Фиг. 1B в том случае, когда выходной ток Iout=6000 A.

На чертеже Фиг. 2H изображен график, показывающий расчетную зависимость анодного напряжения от анодного тока диода 22 для каждого выключения, где параметром является выходной ток Iout.

На чертеже Фиг. 2I изображен график, показывающий расчетную зависимость мощности обратного восстановления от анодного напряжения на диоде 22, где параметром является выходной ток Iout.

На чертеже Фиг. 2J изображен график, показывающий расчетную зависимость мощности обратного восстановления, вызывающей вредное воздействие, от выходного тока Iout диода 22 для различных конфигураций схемы и соответствующих установочных параметров интеграла напряжения по времени при насыщении ∫Vdtsat.

На чертеже Фиг. 3A изображена блок-схема, показывающая блок 5a с насыщаемым сердечником согласно третьему предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 3B на виде в перспективе показан внешний вид блока 5a с насыщаемым сердечником из Фиг. 3A.

На чертеже Фиг. 4 изображена принципиальная электрическая схема, показывающая конфигурацию инвертора большой мощности с принудительной коммутацией согласно четвертому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 5A изображена принципиальная электрическая схема, показывающая конфигурацию блока 5a с насыщаемым сердечником, предназначенного для использования в инверторе большой мощности с принудительной коммутацией согласно пятому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 5B изображена первая часть временной диаграммы сигналов в несбалансированном случае, показывающая (a) ток I5a блока 5a с насыщаемым сердечником и (b) ток I71 индуктивности 71 из Фиг. 5A и нормированный магнитный поток F51 насыщаемого индуктора 51 из Фиг. 5A.

На чертеже Фиг. 5C изображена вторая часть временной диаграммы сигналов в несбалансированном случае, показывающая (a) ток I5a блока 5a с насыщаемым сердечником и (b) ток I71 индуктивности 71 из Фиг. 5A и нормированный магнитный поток F51 насыщаемого индуктора 51 из Фиг. 5A.

На чертеже Фиг. 5D изображена первая часть временной диаграммы сигналов в предпочтительном случае, показывающая (a) ток I5a блока 5a с насыщаемым сердечником и (b) ток I71 индуктивности 71 из Фиг. 5A и нормированный магнитный поток F51 насыщаемого индуктора 51 из Фиг. 5A.

На чертеже Фиг. 5E изображена вторая часть временной диаграммы сигналов в предпочтительном случае, показывающая (a) ток I5a блока 5a с насыщаемым сердечником и (b) ток I71 индуктивности 71 из Фиг. 5A и нормированный магнитный поток F51 насыщаемого индуктора 51 из Фиг. 5A.

На чертеже Фиг. 6A изображена принципиальная электрическая схема, показывающая конфигурацию инвертора большой мощности с принудительной коммутацией согласно шестому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 6B изображена временная диаграмма сигналов, показывающая напряжение V5a блока 5a с насыщаемым сердечником из Фиг. 6A, а также напряжение V22 и ток I22 диода 22 обратного тока из Фиг. 6A, когда схема 3 фиксации уровня содержит фиксирующий резистор 331 с типичной индуктивностью 331a рассеяния фиксирующего резистора, равной 1,5 мкГн (микрогенри).

На чертеже Фиг. 6C изображена временная диаграмма сигналов, показывающая напряжение V5a блока 5a с насыщаемым сердечником из Фиг. 6A, а также напряжение V22 и ток I22 диода 22 обратного тока из Фиг. 6A, когда непосредственно в самом начале происходит усиление обратного тока восстановления диода, а позже к индуктивности рассеяния фиксирующего резистора 331a добавлено демпфирование.

На чертеже Фиг. 7A изображена принципиальная электрическая схема, показывающая конфигурацию инвертора большой мощности с принудительной коммутацией согласно седьмому предпочтительному варианту осуществления настоящего изобретения.

На чертеже Фиг. 7B изображена временная диаграмма сигналов в случае без какого-либо сердечника 336, вызывающего задержку, показывающая напряжение V5a блока 5a с насыщаемым сердечником, напряжение V5b блока 5b с насыщаемым сердечником, напряжение V22 и ток I22 диода 22 обратного тока, и ток I33 схемы 33 сброса напряжения уровня фиксации.

На чертеже Фиг. 7C изображена временная диаграмма сигналов в случае с наличием сердечника 336, вызывающего задержку, показывающая напряжение V5a блока 5a с насыщаемым сердечником, напряжение V5b блока 5b с насыщаемым сердечником, напряжение V22 и ток I22 диода 22 обратного тока, и ток I33 схемы 33 сброса напряжения уровня фиксации.

НАИЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Ниже приведено описание предпочтительных вариантов осуществления изобретения со ссылкой на приложенные чертежи. Аналогичные друг другу компоненты или элементы обозначены одинаковыми номерами позиций.

ПЕРВЫЙ ПРЕДПОЧТИТЕЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

На чертеже Фиг. 1A показана конфигурация схемы прерывателя большой мощности с принудительной коммутацией согласно первому предпочтительному варианту осуществления настоящего изобретения. На чертеже Фиг. 1B показана конфигурация двухуровневого инвертора большой мощности с принудительной коммутацией согласно первому предпочтительному варианту осуществления настоящего изобретения. На чертеже Фиг. 1C показана конфигурация трехуровневого инвертора большой мощности с принудительной коммутацией согласно первому предпочтительному варианту осуществления настоящего изобретения, а на чертеже Фиг. 1D показана электрическая характеристика интеграла напряжения по времени ∫Vdt от тока I для каждого из блоков 5a, 5b и 5c с насыщаемыми сердечниками, показанных на Фиг. 1A, Фиг. 1B и Фиг. 1C, и показан их ток насыщения Isat.

СХЕМА ПРЕРЫВАТЕЛЯ

Со ссылкой на Фиг. 1A, схема прерывателя согласно данному предпочтительному варианту осуществления изобретения имеет входные клеммы T1 и T2 и выходную клемму T11. Схема прерывателя содержит конденсатор 11 связи по постоянному току, плечо 2 переключателя, схему 3 фиксации уровня, анодный индуктор 41 рассеяния, блок 5a с насыщаемым сердечником и контроллер 91. Плечо 2 переключателя содержит последовательную схему устройства 21 запираемого вентиля, которым является, например, вентиль, коммутируемый по управляющему электроду (GCT), транзистор с изолированным затвором и увеличенной инжекцией (IEGT) или биполярный транзистор с изолированным затвором (IGBT), и обратный диод 22. Схема 3 фиксации уровня содержит фиксирующий конденсатор 31, фиксирующий диод 32 и схему 33 сброса напряжения уровня фиксации, которая содержит фиксирующий резистор 331. Контроллер 91 периодически генерирует и выводит сигнал напряжения для управления затвором на вентиль устройства 21, запираемого вентиля.

В схеме прерывателя между входными клеммами T1 и T2 подключен конденсатор 11 связи по постоянному току. Входная клемма T1 соединена через анодную индуктивность 41 рассеяния с одним концом плеча 2 переключателя и с одним концом схемы 3 фиксации уровня. С другой стороны, входная клемма T2 соединена через блок 5a с насыщаемым сердечником с другим концом плеча 2 переключателя и с другим концом схемы 3 фиксации уровня.

В этом случае блок 5a с насыщаемым сердечником может управлять обратным током восстановления, текущим из обратного диода 22 в конденсатор 11 связи по постоянному току. Анодная индуктивность 41 рассеяния может представлять собой отдельный элемент, который предназначен для ограничения тока, текущего из конденсатора 11 связи по постоянному току через устройство 21, запираемого вентиля, обратный диод 22 и блок 5a с насыщаемым сердечником. Однако анодная индуктивность 41 рассеяния может также быть уменьшена до очень низкого значения индуктивности рассеяния шины.

Ниже приведено описание функционирования схемы прерывателя.

Состояние 1: Устройство 21 запираемого вентиля находится в открытом состоянии

Когда устройство 21 запираемого вентиля находится в открытом состоянии, ток нагрузки течет из входной клеммы T1, которую именуют "клеммой P (положительной клеммой)", через анодную индуктивность 41 рассеяния и устройство 21 запираемого вентиля к выходной клемме T11. В таком случае обратный диод 22 является запертым. В зависимости от заряда в фиксирующем конденсаторе 31 ток может вытекать из анодной индуктивности 41 рассеяния через фиксирующий конденсатор 31, затем через схему параллельного соединения фиксирующего диода 32 и схему 33 сброса напряжения уровня фиксации и далее через блок 5a с насыщаемым сердечником к входной клемме T2, которую именуют "клеммой N (Отрицательной клеммой)", до тех пор, пока напряжение на фиксирующем конденсаторе 31 не станет равным напряжению на конденсаторе 11 связи по постоянному току. После этого напряжение на блоке 5a с насыщаемым сердечником становится равным нулю, и протекание тока прекращается. Согласно Фиг. 1D, блок 5a с насыщаемым сердечником достигает близкое к центру положение его характеристики, показанной на Фиг. 1D, соответствующей так называемой кривой намагничивания. Таким образом, достигнут полный сброс блока 5a с насыщаемым сердечником и фиксирующего конденсатора 31 в исходное состояние.

Состояние 2: запирание устройства 21 запираемого вентиля

Когда происходит запирание устройства 21 запираемого вентиля, то на его выводах появится некоторое избыточное напряжение вследствие анодной индуктивности 41 рассеяния. Схема 3 фиксации уровня тесно связана проводным соединением со схемой, имеющей малую паразитную индуктивность, например 200 нГн (наногенри) или 400 нГн. В таком случае ток, вытекающий из устройства 21 запираемого вентиля, будет скоммутирован в схему 3 фиксации уровня, где тот же самый ток, в основном, течет в фиксирующем конденсаторе 31 и в фиксирующем диоде 32. Затем, тот же самый ток течет в обратном диоде 22 и выводится через выходную клемму T11.

Состояние 3: устойчивое состояние при запирании устройства 21 запираемого вентиля

По мере того как продолжает течь выходной ток Iout, происходит зарядка фиксирующего конденсатора 31 до более высокого уровня, вызывая возникновение отрицательного потенциала на выходной клемме T11. Соответственно, блок 5a с насыщаемым сердечником принимает и накапливает то же самое напряжение, создавая интеграл напряжения по времени ∫Vdt, и это приводит к проводимому току согласно Фиг. 1D. Если выходной ток Iout нагрузки является большим, чем ток насыщения Isat блока 5a с насыщаемым сердечником, как показано на Фиг. 1D, то блок 5a с насыщаемым сердечником входит в состояние насыщения и переключает напряжение на его клеммах таким образом, что оно становится равным нулю. Если Iout<Isat, то блок 5a с насыщаемым сердечником остается в линейной и ненасыщенной области характеристики из Фиг. 1D и проявляет эквивалентную индуктивность в качестве своей схемы, но также уменьшает напряжение на свои клеммах до нуля, сохраняя значение интеграла напряжения по времени ∫Vdt равным значению в состоянии равновесия.

Состояние 4: включение устройства 21 запираемого вентиля

После включения устройства 21 запираемого вентиля ток Iout снова будет скоммутирован на входную клемму T1. Обратный диод 22 принимает обратное смещение и, следовательно, течет обратный ток восстановления. Это приводит к тому, что направление тока в блоке 5a с насыщаемым сердечником становится обратным и, согласно Фиг. 1D, возникает напряжение на его клеммах. Это приводит к протеканию индуктивного тока в блоке 5a с насыщаемым сердечником до тех пор, пока не будет достигнуто противоположное насыщение. Вследствие этого, такой ток будет иметь почти постоянную малую величину dI/dt, определяемую эквивалентной индуктивностью Lequ блока 5a с насыщаемым сердечником в ненасыщенной области характеристики из Фиг. 1D.

В отличие от такой эквивалентной индуктивности схема 3 фиксации уровня непосредственно подает изменение тока в плечо 2 переключателя с высоким значением dI/dt. Это приводит к извлечению носителей заряда из обратного диода 22, который затем получает обратное смещение. В этом случае нагрузочную характеристику обратного восстановления для обратного диода 22, главным образом, определяет схема 33 сброса напряжения уровня фиксации. Следовательно, за счет того что в схеме 3 фиксации уровня предусмотрено наличие чисто фиксирующего резистора 331, в обратном диоде 22 получено состояние резистивной нагрузки при обратном восстановлении.

Во время этого промежутка времени обратного восстановления блоком 5a с насыщаемым сердечником накоплен некоторый интеграл напряжения по времени ∫Vdt, и, согласно Фиг. 1D, он создает некоторый ток. Когда прекращается протекание обратного тока восстановления, то блок 5a с насыщаемым сердечником сбрасывает заряд фиксирующего конденсатора 31 и возвращается в состояние, соответствующее почти центру характеристики насыщения из Фиг. 1D.

ДВУХУРОВНЕВЫЙ ИНВЕРТОР

Со ссылкой на Фиг. 1B, двухуровневый инвертор с принудительной коммутацией помимо компонент, показанных на Фиг. 1A, дополнительно содержит следующие компоненты:

(a) устройство 23 запираемого вентиля, которое подключено параллельно обратному диоду 22,

(b) обратный диод 24, который подключен параллельно устройству 21 запираемого вентиля,

(c) блок 5b с насыщаемым сердечником, имеющий характеристику, подобную характеристике блока 5a с насыщаемым сердечником, который введен между входной клеммой T1 и анодной индуктивностью 41 рассеяния, и

(d) контроллер 92, который генерирует и выводит сигналы напряжения для управления вентилем, подаваемые, соответственно, на вентили устройств 21 и 23 запираемого вентиля, для попеременного запирания устройств 21 и 23 запираемого вентиля.

В этом случае вместо плеча 2 переключателя из Фиг. 1A предусмотрено наличие плеча 2b переключателя, содержащего два диода 22 и 24. Управление частью обратного тока восстановления каждого из обратных диодов 22 и 24, исходящего из конденсатора 11 связи по постоянному току, обеспечивает, по меньшей мере, один из блоков 5a и 5b с насыщаемым сердечником. Как показано на Фиг. 1B, схема двухуровневого инвертора выполнена симметричной, та же самая схема может принимать положительный ток нагрузки, выходящий во внешнюю схему, и может принимать отрицательный ток нагрузки, который течет во внутреннюю схему. Функционирование двухуровневого инвертора очень сходно с функционированием, объяснение которого приведено применительно к схеме прерывателя из Фиг. 1A, для обоих направлений тока нагрузки, за исключением одного отличия, объяснение которого приведено ниже для положительного тока нагрузки.

Когда устройство 21 запираемого вентиля переводят в открытое состояние, то питание на его анод не поступает непосредственно из конденсатора 11 связи по постоянному току через анодную индуктивность 41 рассеяния подобно тому, как это происходит в прерывателе, показанном на Фиг. 1A. Вместо этого к этой линии подключен блок 5b с насыщаемым сердечником, и он находится в центральном положении характеристики блока 5b с насыщаемым сердечником, показанной на Фиг. 1D, поскольку перед этим моментом ток отсутствовал. Вследствие этого, устройство 21 запираемого вентиля, в основном, проводит ток, исходящий из схемы 3 фиксации уровня, до тех пор, пока не произойдет насыщение блока 5b с насыщаемым сердечником, вследствие чего происходит соединение устройства 21 запираемого вентиля с конденсатором 11 связи по постоянному току.

ТРЕХУРОВНЕВЫЙ ИНВЕРТОР

Со ссылкой на Фиг. 1C, трехуровневый инвертор с принудительной коммутацией содержит плечо 2c переключателя вместо плеча 2b переключателя из Фиг. 1B и дополнительно содержит входную клемму T3, блок 5c с насыщаемым сердечником, схему 6 фиксации уровня и анодную индуктивность 42 рассеяния в дополнение к тем элементам, которые показаны на Фиг. 1B. Кроме того, трехуровневый инвертор с принудительной коммутацией содержит контроллер 93, предназначенный для управления устройствами 21, 23, 25 и 27 запираемого вентиля вместо контроллера 92 из Фиг. 1B. Как показано на Фиг. 1C, конденсатор 11 связи по постоянному току подключен между входными клеммами T1 и T3, а конденсатор 12 связи по постоянному току подключен между входными клеммами T2 и T3. Входная клемма T3 соединена через блок 5a с насыщаемым сердечником со схемами 3 и 6 фиксации уровня и с плечом 2c переключателя. Входная клемма T2 соединена через блок 5c с насыщаемым сердечником с плечом 2c переключателя. Схема 6 фиксации уровня содержит фиксирующий конденсатор 61, фиксирующий диод 62 и схему 63 сброса напряжения уровня фиксации, содержащую резистор 631.

Плечо 2c переключателя содержит не только четыре диода 21, 23, 25 и 27 для запирания вентиля, но также и шесть обратных диодов 22, 24, 26, 28, 291 и 292 для использования в типичном трехуровневом инверторе, а именно они включают в себя обратный диод 22, обратный диод 24, обратный диод 26, обратный диод 28, обратный диод 291 нулевой точки и обратный диод 292 нулевой точки. Среди этих обратных диодов 22, 24, 26, 28, 291 и 292 два обратных диода 22 и 28 не получают обратного тока восстановления в инверторе. Другие четыре обратных диода 24, 26, 291 и 292 могут получать обратный ток восстановления, по меньшей мере, из одного из конденсаторов 11 и 12 связи по постоянному току.

Такой обратный ток восстановления будет течь по линии P через входную клемму T1 тогда, когда обратный диод 24 получает обратный ток восстановления, течь по линии C через входную клемму T3 тогда, когда обратный диод 291 нулевой точки или обратный диод 292 нулевой точки получают обратный ток восстановления, или течь по линии N тогда, когда обратный диод 26 получает обратный ток восстановления. Вследствие этого, в каждой из этих линий P, C и N расположен, по меньшей мере, один из блоков 5a, 5b и 5c с насыщаемым сердечником. Трехуровневый инвертор из Фиг. 1C функционирует аналогично функционированию двухуровневого инвертора из Фиг. 1B.

ДРУГИЕ МНОГОУРОВНЕВЫЕ ИНВЕРТОРЫ

На чертежах Фиг. 1A, Фиг. 1B и Фиг. 1C показаны наиболее широко используемые инверторы большой мощности с принудительной коммутацией, однако настоящее изобретение не ограничено ими. Могут быть предусмотрены другие многоуровневые инверторы, содержащие те же самые блоки 5a, 5b и 5c с насыщаемым сердечником.

ВОЗНИКНОВЕНИЕ ОПАСНОГО ВРЕДНОГО ВОЗДЕЙСТВИЯ НА ДИОД ДЛЯ ПОНИМАНИЯ ХАРАКТЕРИСТИКИ НА НИЖНЕМ ПРЕДЕЛЕ ТОКА НАСЫЩЕНИЯ Isat

Однако обратные диоды 24 и 26 и/или обратные диоды 291 и 292 нулевой точки могут подвергаться опасному вредному воздействию при обратном восстановлении, если блоки 5a, 5b и/или 5c с насыщаемым сердечником не находятся в правильном состоянии насыщения до включения устройства 21, 23, 25, и 27 запираемого вентиля. Такое неправильное состояние намагниченности может возникать вследствие тока, текущего в блоках 5a, 5b и/или 5c с насыщаемым сердечником, вызванного сбросом фиксирующего конденсатора 31 или 61.

Неправильное состояние насыщения также может являться результатом тока смещения, текущего к фиксирующему конденсатору 31, имеющему емкость C31, или к фиксирующему конденсатору 61, имеющему емкость C61. Такой ток смещения возникает вследствие изменения напряжения на конденсаторе 11 или 12 связи по постоянному току. Максимальное значение такого тока вычисляют согласно уравнению Idis=C31×dVm или Idis=C61×dVm, где dVm обозначает максимальное значение абсолютной величины скорости нарастания напряжения на конденсаторе 11 связи по постоянному току или на конденсаторе 12 связи по постоянному току. Следовательно, скорость нарастания dVm удовлетворяет следующему соотношению -dVm≤dVDC/dt≤dVm, где dVDC/dt - скорость нарастания напряжения на конденсаторе 11 или 12 связи по постоянному току.

По существу, кажется, там отсутствуют какие-либо средства предотвращения того, что такой ток смещения может влиять на состояние насыщения блока 5a, 5b или 5c с насыщаемым сердечником. Однако необходимо удостовериться, что блок с сердечником не будет приближаться к неподходящему состоянию насыщения. Вследствие этого, необходима характеристика с самовозвратом, которая может возвращать состояние насыщения в четко определенное безопасное положение при всех обстоятельствах.

Такая характеристика с возвратом отсутствует в характеристике сердечника из известного уровня техники, которая может обеспечивать только одно устойчивое состояние насыщения в любом крайнем положении. Вместо этого должна быть обеспечена линейная область, показанная на Фиг. 1D, или, по меньшей мере, криволинейная, гладкая область между предельными значениями насыщения для определения уровня возврата непосредственно между обоими предельными значениями насыщения.

Кроме того, сброс напряжения фиксирующего конденсатора и передача любого тока смещения должны выполняться таким образом, чтобы добиться достаточного расстояния до насыщения, когда включено одно из устройств 21, 23, 25 или 27 запираемого вентиля. Следовательно, ток насыщения Isat должен быть выбран, по меньшей мере, таким образом, чтобы он был большим, чем максимальное з