Устройство управления для двигателя внутреннего сгорания

Иллюстрации

Показать все

Изобретение относится к устройству управления для двигателя внутреннего сгорания. Задачей настоящего изобретения является надежная защита, например, каталитического нейтрализатора для очистки выхлопа от повреждения, когда применяемое топливо заменяется на топливо, имеющее другие свойства, во время работы. Устройство управления двигателем внутреннего сгорания работает на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива. Устройство управления содержит датчик выхлопного газа, установленный в выхлопном канале двигателя внутреннего сгорания, для генерирования выходного сигнала согласно соотношению количества воздуха к количеству топлива выхлопного газа; средство управления с обратной связью соотношением количества воздуха к количеству топлива для выполнения управления с обратной связью соотношением количества воздуха к количеству топлива в соответствии с выходным сигналом от датчика выхлопного газа; средство адаптации к топливу для выполнения адаптации к топливу, чтобы скорректировать ошибку, возникающую от типа топлива, в соответствии со значением корректировки по сигналам обратной связи, вычисленным во время управления с обратной связью соотношением количества воздуха к количеству топлива; средство обнаружения дозаправки для обнаружения топлива, поданного в топливный бак; и средство ограничения количества воздуха, которое, когда средство обнаружения дозаправки обнаруживает подачу топлива, ограничивает количество всасываемого воздуха двигателя внутреннего сгорания во время последующей работы до тех пор, пока не завершится адаптация к топливу. По второму варианту устройство управления двигателем содержит средство определения дозаправки для определения топлива, поданного в топливный бак; средство вычисления, которое, когда средство определения дозаправки определяет подачу топлива, вычисляет прошедшее время, пройденное расстояние в милях или совокупную величину расхода топлива во время последующей работы; и средство ограничения количества воздуха для ограничения количества всасываемого воздуха двигателя внутреннего сгорания до тех пор, пока вычисленное прошедшее время, пройденное расстояние или совокупная величина расхода топлива не достигнет заданного оценочного значения. По третьему варианту устройство управления двигателем внутреннего сгорания, работающим на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, при этом устройство управления содержит датчик свойств топлива, который установлен в топливном баке или топливопроводе для определения свойств топлива; и средство ограничения количества воздуха для ограничения количества всасываемого воздуха двигателя внутреннего сгорания, когда существует изменение в свойствах топлива, определяемое датчиком свойств топлива. 3 н. и 3 з.п. ф-лы, 7 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству управления для двигателя внутреннего сгорания.

Уровень техники

Предполагается, что спиртосодержащее топливо, полученное смешиванием бензина со спиртом, который является биотопливом, извлеченным, например, из сахарного тростника, пшеницы или древесины, должно использоваться в качестве топлива для двигателей внутреннего сгорания. При таких обстоятельствах транспортные средства с гибким выбором топлива (FFV), которые могут использовать разные типы топлива, которые отличаются по концентрации спирта (содержанию спирта), были постепенно изучены в целях развития.

Бензин и спирт отличаются по стехиометрическому соотношению количества воздуха к количеству топлива. Стехиометрическое соотношение количества воздуха к количеству топлива для бензина равно приблизительно 14,6, тогда как стехиометрическое соотношение количества воздуха к количеству топлива, например, для этанола равно приблизительно 9. Следовательно, стехиометрическое соотношение количества воздуха к количеству топлива для спиртосодержащего топлива изменяется с концентрацией спирта в нем. Следовательно, когда применяемое топливо меняется на топливо, имеющее другую концентрацию спирта, необходимо соответственно изменить соотношение количества воздуха к количеству топлива.

В двигателе внутреннего сгорания управление с обратной связью, как правило, выполняется по соотношению количества воздуха к количеству топлива в соответствии с сигналом, выведенным из датчика выхлопных газов, который формирует выходной сигнал согласно соотношению количества воздуха к количеству топлива выхлопных газов. Когда выполняется такое управление с обратной связью соотношением количества воздуха к количеству топлива, проблема не возникает, даже если применяемое топливо меняется на топливо, имеющее другую концентрацию спирта, т.е. другое стехиометрическое соотношение количества воздуха к количеству топлива. Причина заключается в том, что объем впрыска топлива автоматически корректируется с тем, чтобы уравнять соотношение количества воздуха к количеству топлива выхлопа со стехиометрическим соотношением количества воздуха к количеству топлива.

Однако управление с обратной связью соотношением количества воздуха к количеству топлива останавливается во время увеличения подачи топлива. Увеличение подачи топлива для защиты каталитического нейтрализатора выполняется, чтобы предохранить каталитический нейтрализатор для очистки выхлопного газа от перегрева. Увеличение подачи энергетического топлива выполняется, чтобы сформировать более высокую мощность. Если применяемое топливо меняется, пока управление с обратной связью соотношением количества воздуха к количеству топлива остановлено, разница соотношения количества воздуха к количеству топлива, вызванная изменением топлива, не будет передана по обратной связи. Следовательно, объем впрыска топлива не может быть скорректирован. Это может ухудшить выбросы и дорожные качества автомобиля. Кроме того, также может возникнуть следующая проблема.

Увеличение подачи топлива для защиты каталитического нейтрализатора является коррекцией, которая может быть сделана посредством увеличения объема впрыска топлива, чтобы обеспечить соотношение количества воздуха к количеству топлива более низкое, чем стехиометрическое соотношение количества воздуха к количеству топлива, с целью понижения температуры выхлопа, используя теплоту испарения топлива, когда каталитический нейтрализатор, вероятно, может перегреться. Теперь предположим, что применяемый в настоящее время объем впрыска топлива вычисляется, чтобы обеспечить соотношение количества воздуха к количеству топлива, равное 12, в ситуации, когда увеличение подачи топлива для защиты каталитического нейтрализатора выполняется во время работы, выполненной посредством использования топлива, состоящего на 100% из бензина. Также предположим, что применяемое топливо меняется на топливо, имеющее высокую концентрацию спирта (например, топливо, имеющее концентрацию спирта в 85%), в то время как выполняется увеличение подачи топлива для защиты каталитического нейтрализатора. Для топлива, имеющего высокую концентрацию спирта, соотношение количества воздуха к количеству топлива, равное 12, является более бедным, чем стехиометрическое соотношение количества воздуха к количеству топлива. В этом случае, следовательно, эффект уменьшения температуры выхлопа посредством теплоты испарения топлива уменьшается, таким образом позволяя температуре выхлопа расти. Как результат, каталитический нейтрализатор может повредиться, а в наихудшем случае может расплавиться.

Между тем устройство управления соотношением количества воздуха к количеству топлива, раскрытое в JP-A-5-5446, хранит ранее адаптированные значения для коррекции соотношения количества воздуха к количеству топлива, сортирует сохраненные адаптированные значения по концентрации спирта, позволяет датчику концентрации спирта, установленному в топливном баке, обнаружить концентрацию спирта в топливе и выборочно использует адаптированное значение в соответствии с концентрацией спирта поданного топлива.

Подобные устройства также раскрыты в JP-A-2005-98265, JP-A-2005-90427 и JP-A-9-324693.

Проблема, решаемая изобретением

Тем не менее, даже если концентрация спирта в топливе, подаваемого в топливный бак, отличается от концентрации спирта используемого в настоящий момент топлива, топливо, впрыскиваемое из форсунки, немедленно не меняется на вновь подаваемое топливо. Более конкретно, вышеупомянутое устройство управления соотношением количества воздуха к количеству топлива предыдущего уровня техники не может точно определить момент, когда топливо, впрыснутое из форсунки, фактически изменяется. Следовательно, если изменение топлива происходит в то время, когда управление с обратной связью соотношением количества воздуха к количеству топлива остановлено, использование вышеупомянутого устройства не решает вышеуказанную проблему.

Настоящее изобретение было осуществлено, чтобы решить вышеупомянутую проблему. Целью настоящего изобретения является создание устройства управления двигателем внутреннего сгорания, которое может точно не допустить повреждения, например, каталитического нейтрализатора очистки выхлопных газов, когда применяемое топливо меняется на топливо, имеющее другие свойства, во время работы.

Средство решения проблемы

Первым аспектом настоящего изобретения является устройство управления для управления двигателем внутреннего сгорания, способным работать на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, устройство управления содержит:

датчик выхлопного газа, который установлен в выхлопном канале двигателя внутреннего сгорания, чтобы формировать выходной сигнал согласно соотношению количества воздуха к количеству топлива выхлопного газа;

средство управления с обратной связью соотношением количества воздуха к количеству топлива для выполнения управления с обратной связью соотношением количества воздуха к количеству топлива в соответствии с выходным сигналом от датчика выхлопного газа;

средство адаптации к топливу для выполнения адаптации к топливу, чтобы скорректировать ошибку, возникающую от типа топлива, в соответствии со значением корректировки по сигналам обратной связи, вычисленным во время управления с обратной связью соотношением количества воздуха к количеству топлива;

средство определения дозаправки для определения топлива, поданного в топливный бак; и

средство ограничения количества воздуха, которое, когда средство определения дозаправки определяет подачу топлива, ограничивает количество всасываемого воздуха двигателя внутреннего сгорания во время последующей работы до тех пор, пока не завершится адаптация к топливу.

Вторым аспектом настоящего изобретения является устройство управления для управления двигателем внутреннего сгорания, способным работать на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, устройство управления содержит:

средство определения дозаправки для определения топлива, поданного в топливный бак;

средство вычисления, которое, когда средство определения дозаправки определяет подачу топлива, вычисляет прошедшее время, пройденное расстояние в милях или совокупную величину расхода топлива во время последующей работы; и

средство ограничения количества воздуха для ограничения количества всасываемого воздуха двигателя внутреннего сгорания до тех пор, пока вычисленное прошедшее время, пройденное расстояние или совокупная величина расхода топлива не достигнет заданного оценочного значения.

Третьим аспектом настоящего изобретения является устройство управления для управления двигателем внутреннего сгорания, способным работать на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, устройство управления содержит:

датчик свойств топлива, который установлен в топливном баке или топливопроводе, для определения свойств топлива; и

средство ограничения количества воздуха для ограничения количества всасываемого воздуха двигателя внутреннего сгорания, когда существует изменение в свойствах топлива, определяемое датчиком свойств топлива.

Четвертым аспектом настоящего изобретения является устройство управления согласно третьему аспекту, дополнительно содержащее:

средство вычисления величины расхода, которое, когда существует изменение в свойствах топлива, определяемое датчиком свойств топлива, вычисляет совокупную величину расхода топлива после изменения;

при этом средство ограничения количества воздуха ограничивает количество всасываемого воздуха до тех пор, пока совокупная величина расхода топлива не достигнет заданного оценочного значения.

Пятым аспектом настоящего изобретения является устройство управления согласно четвертому аспекту, в котором заданное оценочное значение заставляет непрерывно ограничивать количество всасываемого воздуха до тех пор, пока топливо в топливопроводе между датчиком свойств топлива и передним концом форсунки не будет полностью заменено.

Шестым аспектом настоящего изобретения является устройство управления согласно четвертому или пятому аспекту, дополнительно содержащее:

средство коррекции количества впрыска топлива, которое, когда совокупная величина расхода топлива достигает заданного оценочного значения, корректирует количество впрыска топлива в соответствии со свойствами топлива, определяемыми датчиком свойств топлива.

Преимущества изобретения

Когда топливо, поданное в топливный бак, определено в двигателе внутреннего сгорания, способном работать на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, первый аспект настоящего изобретения может ограничивать количество всасываемого воздуха во время последующей работы до тех пор, пока не будет завершена адаптация к топливу на основе управления с обратной связью соотношением количества воздуха к количеству топлива. Когда топливо, поданное в топливный бак, обнаружено, топливо, впрыснутое из форсунки, может измениться во время последующей работы на другое топливо, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива. Если выполняется управление с обратной связью соотношением количества воздуха к количеству топлива, когда происходит замена топлива, можно правильно скорректировать соотношение количества воздуха к количеству топлива в соответствии с новым топливом и узнать величину коррекции, требуемой из-за различий топлива, как адаптированное значение топлива. Однако, если управление с обратной связью соотношением количества воздуха к количеству топлива остановлено, чтобы выполнить увеличение подачи топлива до завершения адаптации к топливу, соотношение количества воздуха к количеству топлива не может быть скорректировано до значения, подходящего для нового топлива, даже когда топливо меняется. Следовательно, соотношение количества воздуха к количеству топлива становится неправильным во время увеличения подачи топлива. Это может не только ухудшить выбросы и дорожные качества автомобиля, но также повредить каталитический нейтрализатор для очистки выхлопных газов. При вышеупомянутых обстоятельствах первый аспект настоящего изобретения ограничивает количество всасываемого воздуха до тех пор, пока не будет завершена адаптация к топливу, таким образом не допуская входа двигателя внутреннего сгорания в область работы, где выполняется увеличение подачи топлива. Это позволяет точно предотвратить ухудшения выбросов и дорожных качеств автомобиля и предотвратить повреждение каталитического нейтрализатора очистки выхлопных газов.

Когда топливо, поданное в топливный бак, обнаружено в двигателе внутреннего сгорания, способном работать на разном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, второй аспект настоящего изобретения может ограничивать количество всасываемого воздуха во время последующей работы до тех пор, пока прошедшее время, пройденное расстояние или совокупная величина расхода топлива не достигнет заданного оценочного значения. Когда заданное оценочное значение присвоено, окончание адаптации к топливу может быть точно оценено посредством наблюдения за пройденным временем, пройденным расстоянием или совокупной величиной расхода топлива. Следовательно, второй аспект настоящего изобретения обеспечивает те же преимущества, что и первый аспект.

Когда свойства топлива, определяемые датчиком свойств топлива, который установлен в топливном баке или топливопроводе, изменяются в двигателе внутреннего сгорания, способном работать на различном топливе, которое отличается по стехиометрическому соотношению количества воздуха к количеству топлива, третий аспект настоящего изобретения может ограничить количество всасываемого воздуха двигателя внутреннего сгорания. Следовательно, когда топливо может быть заменено на другой тип, возможно предотвратить вход двигателя внутреннего сгорания в рабочую область, где выполняется увеличение подачи топлива. В результате третий аспект настоящего изобретения может точно предотвратить ухудшения выбросов и дорожных качеств автомобиля и предотвратить повреждение каталитического нейтрализатора очистки выхлопных газов, как в случае с первым аспектом.

Четвертый аспект настоящего изобретения может ограничивать количество всасываемого воздуха до тех пор, пока заданное оценочное значение не будет достигнуто совокупной величиной расхода топлива, превалирующей после изменения свойств топлива, обнаруженного датчиком свойств топлива. Поскольку заданное оценочное значение присвоено, ограничение по количеству всасываемого воздуха может быть снято, когда может быть оценено, что топливо, впрыснутое из форсунки, наверняка заменено на новое. Другими словами, четвертый аспект настоящего изобретения может снять ограничение по количеству всасываемого воздуха с соответствующей синхронизацией.

Пятый аспект настоящего изобретения может определить вышеупомянутое оценочное значение так, что количество всасываемого воздуха остается ограниченным, пока топливо в топливопроводе между позицией, в которой установлен датчик свойств топлива, и передним концом форсунки не будет полностью заменено. Это обеспечивает то, что количество всасываемого воздуха остается ограниченным в течение минимального требуемого периода.

Когда совокупная величина расхода топлива достигает вышеупомянутого оценочного значения, т.е. когда может быть оценено, что топливо, впрыснутое из форсунки, наверняка заменено на новое, шестой аспект настоящего изобретения может скорректировать количество впрыска топлива в соответствии со свойствами топлива, обнаруженными датчиком свойств топлива. Следовательно, коррекция количества впрыска топлива (соотношения количества воздуха к количеству топлива), требуемая после замены топлива, может быть сделана с соответствующей синхронизацией.

Краткое описание чертежей

Фиг.1 является блок-схемой, иллюстрирующей конфигурацию системы согласно первому варианту осуществления настоящего изобретения.

Фиг.2 является схематическим чертежом, иллюстрирующим топливную систему, которая подает топливо в двигатель внутреннего сгорания согласно первому варианту осуществления настоящего изобретения.

Фиг.3 является временной диаграммой, иллюстрирующей способ вычисления значения FAF коррекции по сигналам обратной связи.

Фиг.4 является блок-схемой, иллюстрирующей процедуру, которая выполняется посредством первого варианта осуществления настоящего изобретения.

Фиг.5 является блок-схемой, иллюстрирующей процедуру, которая выполняется посредством второго варианта осуществления настоящего изобретения.

Фиг.6 является схематическим чертежом, иллюстрирующим топливную систему, которая подает топливо в двигатель внутреннего сгорания согласно третьему варианту осуществления настоящего изобретения.

Фиг.7 является блок-схемой, иллюстрирующей процедуру, которая выполняется посредством третьего варианта осуществления настоящего изобретения.

Наилучший способ осуществления изобретения

Варианты осуществления настоящего изобретения теперь будут описаны ниже со ссылками на прилагаемые чертежи. Идентичные элементы на чертежах обозначены одинаковыми ссылочными позициями и их повторное описание повторяться не будет.

Фиг.1 является блок-схемой, иллюстрирующей конфигурацию системы согласно первому варианту осуществления настоящего изобретения. Как показано на Фиг.1, система согласно настоящему варианту осуществления включает в себя двигатель 10 внутреннего сгорания, который установлен в транспортном средстве в качестве источника движущей силы. Предполагается, что двигатель 10 внутреннего сгорания может работать на бензине, спирте (этаноле, метаноле и т.п.) или смешанном топливе, составленном из бензина и спирта (спиртосодержащем топливе).

Настоящее изобретение предполагает, что двигатель 10 внутреннего сгорания является рядным двигателем четырехцилиндрового типа. Однако настоящее изобретение не ограничено использованием четырех цилиндров и рядным размещением цилиндров. Фиг.1 является поперечным сечением, иллюстрирующим один цилиндр двигателя 10 внутреннего сгорания.

Каждый цилиндр двигателя 10 внутреннего сгорания сообщается с впускным каналом 12 и выпускным каналом 14. Измеритель 16 количества воздуха установлен во впускном канале 12, чтобы обнаруживать количество GA всасываемого воздуха. Дроссельная заслонка 18 установлена после измерителя 16 количества воздуха, чтобы управлять количеством всасываемого воздуха. Дроссельная заслонка 18 является электронно-управляемым клапаном, который приводится в движение двигателем 20 дросселя в соответствии, например, с нажатием акселератора. Датчик 22 позиции дросселя установлен рядом с дроссельной заслонкой 18, чтобы обнаруживать открытие дроссельной заслонки 18 (далее в данном документе именуемое "открытием дросселя"). Открытие акселератора обнаруживается датчиком 24 позиции акселератора, который установлен рядом с педалью акселератора.

Каждый цилиндр двигателя 10 внутреннего сгорания включает в себя форсунку 26, которая впрыскивает топливо во впускное отверстие 11. Двигатель 10 внутреннего сгорания не ограничен двигателем с впрыском во впускной канал, который показан на чертеже. Альтернативно, он может быть двигателем с непосредственным впрыском, который непосредственно впрыскивает топливо в цилиндр.

Каждый цилиндр двигателя 10 внутреннего сгорания также включает в себя впускной клапан 28, свечу 30 зажигания и выпускной клапан 32.

Датчик 36 угла поворота коленчатого вала установлен рядом с коленчатым валом 34 двигателя 10 внутреннего сгорания, чтобы обнаруживать угол поворота коленчатого вала 34. Выходной сигнал датчика 36 угла поворота коленчатого вала может быть использован, чтобы обнаружить, например, вращательную позицию коленчатого вала 34 и скорость NE вращения двигателя.

Каталитический нейтрализатор 38 установлен в выпускном канале 14 двигателя 10 внутреннего сгорания, чтобы очищать выхлопной газ. O2-датчик 40 установлен перед каталитическим нейтрализатором 38, чтобы формировать выходной сигнал, который внезапно изменяется в зависимости от того, богаче или беднее соотношение количества воздуха к количеству топлива выхлопного газа, чем стехиометрическое соотношение количества воздуха к количеству топлива.

Система согласно настоящему варианту осуществления также включает в себя электронный блок управления (ЭБУ) 50. ЭБУ 50 подключен к вышеупомянутым различным датчикам и приводам. ЭБУ 50 способен управлять рабочим состоянием двигателя 10 внутреннего сгорания в соответствии с выходными сигналами от датчиков.

Фиг.2 является схематическим чертежом, иллюстрирующим топливную систему, которая подает топливо в двигатель 10 внутреннего сгорания. Как показано на Фиг.2, система согласно настоящему варианту осуществления включает в себя топливный бак 42, который хранит подаваемое топливо. Топливный насос 44 и регулятор 46 давления установлены в топливном баке 42. Топливо в топливном баке 42 нагнетается топливным насосом 44, регулируется по давлению регулятором 46 давления и передается в двигатель 10 внутреннего сгорания через топливопровод 48. Топливо затем распределяется форсунке 26 каждого цилиндра через нагнетательную рампу 52.

Теперь будет описано основное управление соотношением количества воздуха к количеству топлива, выполненное системой согласно настоящему варианту осуществления. Форсунка 26 впрыскивает предварительно определенное количество топлива в соответствии с временем TAU впрыска топлива. Следовательно, ЭБУ 50 управляет количеством впрыска топлива, управляя временем TAU впрыска топлива форсунки 26. Время TAU впрыска топлива вычисляется следующим уравнением:

В уравнении (1) выше символ "TP" представляет основное время впрыска. Основное время TP впрыска является временем впрыска для основного количества впрыска топлива, которое вычисляется, например, из количества GA всасываемого воздуха, обнаруженного измерителем 16 количества воздуха, и скорости NE вращения двигателя. Символ "α" представляет коэффициент коррекции, который используется, например, чтобы выполнить увеличение подачи топлива для защиты каталитического нейтрализатора или увеличение подачи энергетического топлива. Символ "β" представляет ошибочное время впрыска, которое используется, чтобы скорректировать задержку в работе форсунки 26. Символ "KT" представляет коэффициент коррекции, который состоит из значения FAF коррекции по сигналам обратной связи и адаптированного значения KG. Другими словами, коэффициент KT коррекции выражается следующим уравнением:

Фиг.3 является временной диаграммой, иллюстрирующей способ вычисления значения FAF коррекции по сигналам обратной связи. Более конкретно, линия (a) на Фиг.3 указывает изменения в выходном сигнале O2-датчика 40, тогда как линия (b) на Фиг.3 указывает изменения в значении FAF коррекции по сигналам обратной связи. Как показано на Фиг.3, значение FAF коррекции по сигналам обратной связи вычисляется так, что оно периодически изменяется около 1,0, пока выполняется управление с обратной связью соотношением количества воздуха к количеству топлива. Способ вычисления значения FAF коррекции по сигналам обратной связи будет описан подробно ниже.

Фиг.3 показывает, что выходной сигнал O2-датчика 40 обеднен во время интервала между временем t1 и временем t2. Он указывает, что соотношение количества воздуха к количеству топлива выхлопного газа, выпущенного из двигателя 10 внутреннего сгорания (далее в данном документе именуемое "соотношением количества воздуха к количеству топлива выхлопа") беднее, чем стехиометрическое соотношение количества воздуха к количеству топлива. Пока O2-датчик 40 формирует обедненный выходной сигнал, значение FAF коррекции по сигналам обратной связи обновляется и постепенно увеличивается с предварительно определенным уклоном. Когда FAF обновляется до большого значения, время TAU впрыска топлива увеличивается, таким образом заставляя вскоре соотношение количества воздуха к количеству топлива выхлопа изменяться с обедненного на обогащенное. Выходной сигнал O2-датчика 40 затем также изменяется с обедненного на обогащенный (время t2).

Когда обнаружено, что выходной сигнал O2-датчика 40 изменился с обедненного на обогащенный, ЭБУ 50 резко уменьшает значение FAF коррекции по сигналу обратной связи (время t2). Впоследствии FAF обновляется и постепенно уменьшается с предварительно определенным уклоном, пока выходной сигнал O2-датчика 40 остается обогащенным. Когда FAF обновляется до маленького значения, время TAU впрыска топлива уменьшается, таким образом заставляя вскоре соотношение количества воздуха к количеству топлива выхлопа изменяться с обогащенного на обедненное. Выходной сигнал O2-датчика 40 тогда также изменяется с обогащенного на обедненный (время t3).

Когда обнаруживается, что выходной сигнал O2-датчика 40 изменяется с обогащенного на обедненный, ЭБУ 50 резко увеличивает значение FAF коррекции по сигналам обратной связи (время t3). Впоследствии FAF обновляется способом, описанным выше, и постепенно увеличивается с предварительно определенным уклоном, пока выходной сигнал O2-датчика 40 остается обедненным.

Пока выполняется управление с обратной связью соотношением количества воздуха к количеству топлива, вышеописанный процесс повторно выполняется, чтобы поочередно увеличивать и уменьшать значение FAF коррекции по сигналам обратной связи в соответствии с соотношением количества воздуха к количеству топлива выхлопа. Кроме того, когда FAF поочередно увеличивается и уменьшается, соотношение количества воздуха к количеству топлива двигателя 10 внутреннего сгорания остается близким к стехиометрическому соотношению количества воздуха к количеству топлива.

В дополнение к вычислениям значения FAF коррекции по сигналам обратной связи ЭБУ 50 вычисляет сглаженное значение FAFAV, которое является средним по времени значением FAF коррекции по сигналам обратной связи. Пока управление с обратной связью соотношением количества воздуха к количеству топлива выполняется идеально, сглаженное значение FAFAV равно 1,0, так как значение FAF коррекции по сигналам обратной связи изменяется около 1,0. Однако, если соотношение количества воздуха к количеству топлива имеет тенденцию быть более богатым, чем стехиометрическое соотношение количества воздуха к количеству топлива, например, из-за индивидуальной изменчивости измерителя 16 количества воздуха или форсунки 26, FAF изменяется около значения, меньшего чем 1,0, чтобы компенсировать такую тенденцию. В этом случае FAFAV является меньшим чем 1,0. Если, с другой стороны, соотношение количества воздуха к количеству топлива имеет склонность быть беднее, чем стехиометрическое соотношение количества воздуха к количеству топлива, FAFAV является большим чем 1,0, так как FAF изменяется около значения, большего, чем 1,0.

Другими словами, отклонение (FAFAV-1,0) между сглаженным значением FAFAV значения FAF коррекции по сигналам обратной связи и контрольным значением 1,0 может рассматриваться как устойчивая ошибка, которая участвует в управлении соотношением количества воздуха к количеству топлива. Чтобы узнать такую устойчивую ошибку, ЭБУ 50 выполняет процесс периодического включения отклонения (FAFAV-1,0) в адаптированное значение KG.

Если соотношение количества воздуха к количеству топлива имеет склонность быть богаче или беднее, чем стехиометрическое соотношение количества воздуха к количеству топлива, например, из-за старения двигателя 10 внутреннего сгорания, вышеописанный способ позволяет адаптированному значению KG компенсировать такую тенденцию. Следовательно, значение FAF коррекции по сигналам обратной связи может постоянно изменяться около контрольного значения 1,0.

Как упомянуто ранее, стехиометрическое соотношение количества воздуха к количеству топлива изменяется с концентрацией спирта в топливе. Более конкретно, стехиометрическое соотношение количества воздуха к количеству топлива уменьшается с увеличением концентрации спирта (с увеличением степени близости к 100% спирту) и увеличивается с уменьшением концентрации спирта (с увеличением степени близости к 100% бензину). В ситуации, где количество впрыска топлива (соотношение количества воздуха к количеству топлива) остается неизменившимся, следовательно, соотношение количества воздуха к количеству топлива становится беднее, чем стехиометрическое соотношение количества воздуха к количеству топлива, когда концентрация спирта увеличивается и становится богаче, чем стехиометрическое соотношение количества воздуха к количеству топлива, когда концентрация спирта уменьшается.

Впоследствии, когда концентрация спирта в топливе, сгоревшем в двигателе 10 внутреннего сгорания, изменяется, так как вновь поданное топливо отличается от используемого в текущий момент топлива по концентрации спирта, соотношение количества воздуха к количеству топлива имеет склонность быть богаче или беднее, чем стехиометрическое соотношение количества воздуха к количеству топлива. Даже в этом случае вышеупомянутое адаптированное значение KG может компенсировать такую тенденцию. Следовательно, даже когда концентрация спирта в топливе изменилась, выполнение управления с обратной связью соотношением количества воздуха к количеству топлива, как описано выше, дает возможность гарантировать, что соотношение количества воздуха к количеству топлива двигателя 10 внутреннего сгорания согласуется со стехиометрическим соотношением количества воздуха к количеству топлива.

Настоящий вариант осуществления предполагает, что адаптированное значение KG составлено из обычного адаптированного значения KGN, которое используется, чтобы скорректировать отклонение соотношения количества воздуха к количеству топлива, получающееся в результате, например, старения двигателя 10 внутреннего сгорания, и адаптированного значения KGF топлива, которое используется, чтобы скорректировать отклонение соотношения количества воздуха к количеству топлива, получающееся в результате разницы в типе топлива (концентрации спирта), и четко вычисляет нормальное адаптированное значение KGN и адаптированное значение KGF топлива. Хотя адаптированное значение KG может содержать некоторые другие адаптированные значения, настоящий вариант осуществления предполагает, что адаптированное значение KG составлено из нормального адаптированного значения KGN и адаптированного значения KGF топлива. Другими словами, адаптированное значение KG согласно настоящему варианту осуществления выражается следующим уравнением:

Если топливо, имеющее другую концентрацию спирта, подается в топливный бак, концентрация спирта топлива, впрыснутого из форсунки 26, изменяется во время последующей работы. Следовательно, если соотношение количества воздуха к количеству топлива сдвигается во время работы, последующей после дозаправки, т.е. если возникает отклонение (FAFAV - 1,0) между сглаженным значением FAFAV значения FAV коррекции по сигналам обратной связи и контрольным значением 1,0, очень вероятно, что отклонение вызвано изменением в концентрации спирта в топливе. Таким образом, отклонение (FAFAV - 1,0), полученное в течение определенного периода после дозаправки, рассматривается как следствие изменения топлива и включается в адаптированное значение KGF топлива.

Когда адаптированное значение KGF топлива приближается, по существу, к фиксированному значению при адаптации к топливу, описанному выше, может быть решено, что адаптация к топливу завершена. Следовательно, если соотношение количества воздуха к количеству топлива впоследствии смещается, возможно, что такое смещение вызвано общим фактором, таким как старение двигателя 10 внутреннего сгорания. После завершения адаптации к топливу, следовательно, отклонение (FAFAV-1,0) включается в обычное адаптированное значение KGN.

Когда ожидается, что температура каталитического нейтрализатора 38 может чрезмерно повыситься, система выполняет увеличение подачи топлива для защиты каталитического нейтрализатора, чтобы предохранить каталитический нейтрализатор 38 от разрушения и повреждения. Это увеличение подачи топлива для защиты каталитического нейтрализатора будет описано ниже.

Связь между температурой конвергенции каталитического нейтрализатора 38, нагрузкой двигателя и скоростью NE двигателя во время устойчивой работы была изучена заранее. Система хранит эту связь как таблицу в ЭБУ 50. ЭБУ 50 постоянно выполняет вычисления, чтобы оценить температуру каталитического нейтрализатора 38 в соответствии с таблицей (далее в данном документе именуемой как "таблица температуры конвергенции каталитического нейтрализатора"), текущую нагрузку двигателя и текущую скорость NE двигателя. Когда оцененная температура каталитического нейтрализатора 38 превышает заданную температуру для увеличения подачи топлива (допустимую температуру), выполняется увеличение подачи топлива для защиты каталитического нейтрализатора, чтобы защитить каталитический нейтрализатор 38, обеспечивая теплу испарения топлива понижение температуры выхлопа.

Когда выполняется увеличение подачи топлива для защиты каталитического нейтрализатора, количество впрыска топлива увеличивается, чтобы обеспечить соотношение количества воздуха к количеству топлива, которое богаче, чем стехиометрическое соотношение количества воздуха к количеству топлива. Тем временем управление с обратной связью соотношением количества воздуха к количеству топлива, основанное на вышеупомянутом значении FAF коррекции по сигналам обратной связи, выполняется, чтобы гарантировать, что соотношение количества воздуха к количеству топлива согласуется со стехиометрическим соотношением количества воздуха к количеству топлива. Следовательно, когда выполняется увеличение подачи топлива для защиты каталитического нейтрализатора, управление с обратной связью соотношением количества воздуха к количеству топлива останавливается, чтобы избежать помех. Следовательно, количество впрыска топлива (соотношение количества воздуха к количеству топлива) управляется без обратной связи.

Как упомянуто ранее, стехиометрическое соотношение количества воздуха к количеству топлива изменяется вместе с концентрацией спирта в топливе. Следовательно, идеальное соотношение количества воздуха к количеству топлива для увеличения подачи топлива для защиты каталитического нейтрализатора также изменяется вместе с концентрацией спирта в топливе. Когда адаптация к топливу завершена, соотношение количества воздуха к количеству топлива для увеличения подачи топлива для защиты каталитического нейтрализатора может также быть должным образом скорректировано на адаптированное значение KGF топлива.

Однако, если увеличение подачи топлива для защиты каталитического нейтрализатора выполняется, когда адаптация к топливу еще не завершена после того, как топливо, впрыснутое из форсунки 26 (далее в данном документе именуемое как "впрыснутое топливо"), изменилось на топливо, имеющее другую концентрацию спирта, возникает следующая проблема.

Предположим, что увеличение подачи топлива для защиты каталитического нейтрализатора выполняется непосредственно после того, как топливо, фактически впрыснутое из форсунки 26, меняется с топлива, состоящего из 100% бензина, на топливо, имеющее высокую концентрацию спирта (например,