Соединитель и способ соединения вспомогательных проточных каналов и электрических шин

Иллюстрации

Показать все

Изобретение относится к соединениям для перемещения вспомогательных текучих сред, а также передачи электронных сигналов и питания между компонентами. Техническим результатом является создание соединителя, приспособленного для передачи вспомогательной текучей среды и/или электрических сигналов между модулями инструмента и/или инструментами в колонне со скважинными инструментами. Соединитель содержит корпусной узел для гидравлического соединения вспомогательных проточных каналов и электрического соединения электрических шин соответствующих двух компонентов, а также узел регулирования длины корпусного узла. В конкретных вариантах осуществления два компонента являются дискретными модулями унитарного инструмента или, в альтернативном варианте, являются различающимися инструментами. Кроме того, соединитель может включать в себя механизм для закрывания вспомогательных проточных каналов одного или обоих компонентов при разъединении гидравлического соединения между двумя компонентами. 7 н. и 43 з.п. ф-лы, 14 ил.

Реферат

Описание

Предпосылки создания изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к соединениям для перемещения вспомогательных текучих сред, а также передачи электронных сигналов и питания между компонентами, такими как инструменты или модули, в пределах колонны со скважинных инструментов.

Предшествующий уровень техники

Стволы скважин (также называемые просто скважинами) бурят с целью разведки и добычи углеводородов. Зачастую желательно давать различные оценки пластов, проходимых стволом скважины во время буровых операций, например, в течение периодов, когда бурение на самом деле временно приостановлено. В некоторых случаях бурильная колонна может быть оснащена одним или несколькими буровыми инструментами для испытания окружающего пласта и/или отбора проб из него. В других случаях бурильную колонну можно извлекать из ствола скважины, реализуя последовательность действий, называемую «рейсом», и можно размещать в стволе скважины инструмент, спускаемый в скважину на тросе, для тестирования пласта и/или отбора проб из него. Отборы проб или тесты, проводимые такими скважинными инструментами, можно использовать, например, для определения местонахождения значимых углеводородоносных пластов и проведения добычи углеводородов из них.

Такие бурильные инструменты и инструменты, спускаемые в скважины на тросах, а также другие инструменты для скважин, транспортируемые на трубах, сворачиваемых в бухты, бурильных трубах, обсадных трубах или иных транспортных средствах, также именуются в данном описании просто «скважинными инструментами». Такие скважинные инструменты сами включают в себя множество интегральных модулей, каждый из которых предназначен для выполнения определенной функции, а скважинный инструмент может применяться отдельно или в сочетании с другими скважинными инструментами в колонне со скважинными инструментами.

Более конкретно, для проведения оценки пласта часто нужно закачивать текучую среду из пласта в скважинный инструмент (или его модуль) для тестирования и/или отбора проб на месте. Из скважинного инструмента выступают различные устройства, такие как зонды и/или пакеры, предназначенные для изоляции некоторой области стенки ствола скважины и тем самым устанавливающие сообщение посредством текучей среды с пластом, окружающим ствол скважины. Тогда можно закачивать текучую среду в скважинный инструмент с помощью зонда и/или пакета.

Сбор проб таких пластовых текучих сред во время бурения в идеальном случае проводится с помощью интегрального инструмента, предназначенного для отбора проб и приложения давления и содержащего несколько модулей, каждый из которых предназначен для выполнения различных функций, таких как подача электрической энергии, подача гидравлической энергии, сбор проб текучих сред (например, это может быть зонд или двойной пакер), анализ текучих сред и сбор проб (например, это могут быть баки).

Такие модули иллюстрируются, например, в патентах США №№4860581 и 4936139. Соответственно, скважинную текучую среду, такую как пластовая текучая среда, в типичном случае закачивают в скважинный инструмент для тестирования и/или отбора проб. Скважинные текучие среды этого и других типов (не являющиеся буровым раствором, перекачиваемым по бурильной колонне) именуются далее «вспомогательной текучей средой». Вспомогательная текучая среда может быть пластовой текучей средой, отбор проб которой производится, или она может представлять собой специализированные текучие среды (например, жидкости для ремонта скважин), предназначенные для нагнетания в подземный пласт. Вспомогательная текучая среда, как правило, находит применение в какой-либо скважинной операции, не относящейся просто к смазке бурового долота и/или выносу бурового шлама на поверхность. Можно осуществлять передачу этой вспомогательной текучей среды между модулями интегрального инструмента, такого как инструмент для отбора проб, и/или между инструментами, взаимно соединенными в колонне с инструментами. Кроме того, между модулями таких инструментов возможна также передача электрической энергии и/или электронных сигналов (например, для передачи данных). Поэтому проблема состоит в том, чтобы поддерживать рабочую длину инструмента (например, 30 футов), одновременно обеспечивая передачу необходимой текучей среды и электрических сигналов между модулями инструмента.

Должно быть также ясно, что некоторые другие применения потребуют передачи текучей среды и электрических сигналов между последовательно расположенными модулями или инструментами колонн со скважинными инструментами, как при операциях спуска и/или подъема на тросах, так и при операциях, проводимых «в процессе бурения». Операции, проводимые «в процессе бурения», часто характеризуются как часть операций скважинных исследований в процессе бурения (СИвПБ) и/или каротажа в процессе бурения (КвПБ), во время которых требуется передача электричества (как питания, так и сигналов) по соединенным инструментам или интегральным модулям инструментов. Для проведения таких операций бурения разработаны различные устройства, такие как устройства, описанные в патентах США №5242020 (Cobern), 5803186 (Berger и др.), 6026915 (Smith и др.), 6047239 (Berger и др.), 6157893 (Berger и др.), 6179066 (Nasr и др.) и 6230557 (Ciglenec и др.). В этих патентах описаны различные инструменты и способы сбора данных, а в некоторых случаях - и проб текучих сред, из подземного пласта.

Несмотря на успехи в развитии функциональных возможностей сбора проб и тестирования в скважинных инструментах, существующие системы, в частности системы, работающие «в процессе бурения», зачастую сводятся к решениям по передаче электрических сигналов по инструментам или модулям инструментов. Конкретные решения, помимо прочих, включают в себя различные соединители кольцевого типа в стыках соединяемых трубных элементов, такие как «монтажная бурильная труба» (МБТ), описанная в патенте США №6641434, переуступленном фирме Schlumberger. Применительно к таким соединителям на основе МБТ неизвестно, обеспечивают ли они передачу электрических сигналов между соединенными трубными элементами.

Также разработаны соединители для пропускания текучей среды через скважинные инструменты, спускаемые в скважину на тросах. Примеры таких соединителей показаны в патенте США №5577925 (Halliburton) и в заявке №10/710246 на патент США. Вместе с тем, нет информации об известных соединителях, предназначенных для соединения вспомогательных проточных каналов, которые проходят по соединяемым скважинным трубным элементам и оканчиваются на противоположных концах таких элементов или около этих концов, или об облегчении соединения между соединяемыми компонентами. Более того, известные соединители или системы соединителей не связаны с дополнительными проблемами бурильных инструментов, которые предусматривают решение вопросов утяжеленных бурильных труб, бурового раствора, пространственного ограничения и бурения в тяжелых условиях.

Целью настоящего изобретения является создание соединителя, приспособленного для передачи вспомогательной текучей среды и/или электрических сигналов между модулями инструмента и/или инструментами в колонне со скважинными инструментами, имеющего возможность выполнения функции регулирования длины для компенсирования изменения разделяющего расстояния между модулями и/или инструментами, подлежащими соединению, и возможность выполнения функции автоматического перекрытия потока вспомогательной текучей среды через такой соединитель после разъединения соединенных модулей и/или инструментов, являющегося модульным и приспособленного для применения в изменяющихся окружающих средах и условиях.

Определения

Определения некоторых терминов, употребляемых по всему описанию, приводятся при их первом употреблении, а определения некоторых других терминов, употребляемых в этом описании, приведены ниже.

Термин «вспомогательная текучая среда» означает скважинную текучую среду (не являющаяся буровым раствором, перекачиваемым по бурильной колонне), такую как пластовая текучая среда, которую обычно нагнетают в скважинный инструмент для тестирования и/или отбора проб, или специализированные текучие среды (например, жидкости для ремонта скважин), предназначенные для нагнетания в подземный пласт. Вспомогательная текучая среда, как правило, находит применение в какой-либо скважинной операции, не относящейся просто к смазке бурового долота и/или выносу бурового шлама на поверхность.

Термин «компонент (компоненты)» означает один или более скважинных инструментов либо один или более модулей скважинного инструмента, в частности, когда такие инструменты либо модули применяются внутри колонны со скважинными инструментами.

Термины «электрический» и «электро-» относятся к соединению (соединениям) и/или шине (шинам) для передачи электронных сигналов.

Термин «электронные сигналы» означает сигналы, способные передавать электрическую энергию и/или данные (например, двоичные данные).

Термин «модуль» означает секцию скважинного инструмента, в частности многофункционального или интегрального скважинного инструмента, имеющего два или более взаимно соединенных модулей, предназначенную для выполнения отдельной или дискретной функции.

Термин «модульный» означает «приспособленный для (взаимного) соединения модулей и/или инструментов» или возможно - «составленный из стандартных блоков или имеющий стандартные размеры для обеспечения гибкости и разносторонности при эксплуатации».

Краткое изложение сущности изобретения

По меньшей мере, в одном аспекте настоящее изобретение относится к соединителю для соединения вспомогательных проточных каналов, которые проходят по двум соответствующим компонентам колонны со скважинными инструментами и оканчиваются на противоположных концах таких компонентов или около этих концов. Соединитель имеет корпусной узел для гидравлического соединения вспомогательных проточных каналов соответствующих двух компонентов, а также узел регулирования длины корпусного узла.

Два компонента могут быть дискретными модулями унитарного инструмента или, в альтернативном варианте, являются различными инструментами. Между противоположными концами этих двух компонентов может быть расположена в осевом направлении существенная часть корпусного узла. Корпусной узел может включать в себя соединяемые первый и второй трубные элементы. Первый и второй трубные элементы могут включать соответствующие трубные ниппельные и муфтовые части, а более конкретно, могут включать в себя соседние утяжеленные бурильные трубы в пределах бурильной колонны. Вспомогательные проточные каналы двух компонентов могут быть ориентированы, по существу, в осевом направлении. Проточные каналы, ориентированные, по существу, в осевом направлении, могут быть расположены внутри соответствующих двух компонентов, по существу, по центру или могут быть расположены не по центру (т.е. вне центра).

Корпусной узел может образовывать, по меньшей мере, одну трубу для текучей среды для гидравлического соединения вспомогательных проточных каналов двух компонентов. Первый и второй трубные элементы могут взаимодействовать, образуя, по меньшей мере, одну трубу для текучей среды для гидравлического соединения вспомогательных проточных каналов двух компонентов. Труба для текучей среды может быть ориентирована в осевом направлении сквозь первый и второй трубные элементы, и в этом случае труба для текучей среды может содержать, например, гидравлический центрирующий элемент, ориентированный в осевом направлении сквозь первый и второй трубные элементы. В альтернативном варианте труба для текучей среды может быть ориентирована в радиальном направлении сквозь первый и второй трубные элементы, и в этом случае первый и второй трубные элементы могут, например, взаимодействовать, образуя кольцевую часть трубы текучей среды сквозь первый и второй трубные элементы. Первый и второй трубные элементы могут быть введены в резьбовое зацепление друг с другом внутри или около узла регулирования длины, а узел регулирования длины облегчает относительное вращение между первым и вторым трубными элементами для регулирования длины корпусного узла. По меньшей мере, один из первого и второго трубных элементов может иметь поршень, выполненный с возможностью движения через камеру внутри этого элемента для закрывания вспомогательных проточных каналов одного или обоих компонентов при разъединении первого и второго трубных элементов.

В еще одном аспекте, в настоящем изобретении предложен соединитель для соединения вспомогательных проточных каналов и электрических шин, которые проходят по двум соответствующим компонентам колонны со скважинными инструментами и оканчиваются на противоположных концах таких компонентов или около этих концов. Этот соединитель имеет корпусной узел для гидравлического соединения вспомогательных проточных каналов и электрического соединения электрических шин соответствующих двух компонентов, а также узел регулирования длины корпусного узла.

Два компонента могут быть дискретными модулями унитарного инструмента или, в альтернативном варианте, различными инструментами. Между противоположными концами этих двух компонентов может быть расположена в осевом направлении существенная часть корпусного узла. Корпусной узел может включать соединяемые первый и второй трубные элементы. Первый и второй трубные элементы могут включать в себя соответствующие трубные ниппельные и муфтовые части, а более конкретно могут включать соседние утяжеленные бурильные трубы в пределах бурильной колонны. Вспомогательные проточные каналы двух компонентов могут быть ориентированы, по существу, в осевом направлении. Проточные каналы, ориентированные, по существу, в осевом направлении, могут быть расположены внутри соответствующих двух компонентов, по существу, по центру или могут быть расположены не по центру (т.е. вне центра). Корпусной узел может образовать, по меньшей мере, одну трубу для текучей среды для гидравлического соединения вспомогательных проточных каналов двух компонентов. Первый и второй трубные элементы могут взаимодействовать, ограничивая, по меньшей мере, одну трубу текучей среды для гидравлического соединения вспомогательных проточных каналов двух компонентов. Труба текучей среды может быть ориентирована в осевом направлении сквозь первый и второй трубные элементы, и в этом случае труба текучей среды может содержать, например, гидравлический центрирующий элемент, ориентированный в осевом направлении сквозь первый и второй трубные элементы. В альтернативном варианте труба текучей среды может быть ориентирована в радиальном направлении сквозь первый и второй трубные элементы, и в этом случае первый и второй трубные элементы могут, например, взаимодействовать, образуя кольцевую часть трубы текучей среды сквозь первый и второй трубные элементы.

Электрические шины двух компонентов могут быть ориентированы, по существу, в осевом направлении. Электрические шины двух компонентов могут быть расположены, по существу, по центру или расположены не по центру (т.е. вне центра). Корпусной узел может ограничивать, по меньшей мере, один проводящий тракт для электрического соединения электрических шин двух компонентов. Первый и второй трубные элементы могут взаимодействовать, образуя, по меньшей мере, один проводящий тракт для электрического соединения электрических шин двух компонентов. Проводящий тракт может быть ориентирован в радиальном направлении сквозь первый и второй трубные элементы, как в случае дополняющих друг друга радиальных электрических контактов, штепсельных разъемов или дополняющих друг друга контактов типа центрирующих элементов, проводящих ток и установленных на ниппельных и муфтовых частях соответствующих первого и второго трубных элементов. В альтернативном варианте проводящий тракт может быть ориентирован в осевом направлении сквозь первый и второй трубные элементы, как в случае дополняющих друг друга осевых электрических контактов, установленных на соответствующих первом и втором трубных элементах. Такие осевые электрические контакты могут содержать электрические центрирующие элементы, индуктивные соединительные средства или их комбинацию.

Первый и второй трубные элементы могут быть введены в резьбовое зацепление друг с другом внутри или около узла регулирования длины, а узел регулирования длины облегчает относительное вращение между первым и вторым трубными элементами для регулирования длины корпусного узла. По меньшей мере, один из первого и второго трубных элементов может иметь поршень, выполненный с возможностью движения через камеру внутри этого элемента для закрывания вспомогательных проточных каналов одного или обоих компонентов при разъединении первого и второго трубных элементов.

В еще одном аспекте в настоящем изобретении предложен способ соединения вспомогательных проточных каналов и электрических шин, которые проходят по двум соответствующим компонентам колонны со скважинными инструментами и оканчиваются на противоположных концах таких компонентов или около этих концов. Способ включает этапы, на которых определяют расстояние между противоположными концами двух компонентов и устанавливают гидравлическое соединение между вспомогательными проточными каналами и электрическое соединение между электрическими шинами соответствующих двух компонентов в соответствии с определенным расстоянием.

Этап установления может предусматривать применение, по меньшей мере, одной трубы для текучей среды для гидравлического соединения вспомогательных проточных каналов двух компонентов, а также регулирование длины трубы для текучей среды при необходимости в соответствии с определенным расстоянием. Труба для текучей среды может быть ориентирована, по существу, в осевом направлении (например, вдоль почти всей своей габаритной длины) между двумя компонентами, а также может быть, по меньшей мере, частично ориентирована в радиальном направлении (например, может включать в себя сегмент, который ориентирован в радиальном направлении). Этап установления может предусматривать применение, по меньшей мере, одного проводящего тракта для электрического соединения электрических шин двух компонентов, а также регулирование длины проводящего тракта при необходимости в соответствии с определенным расстоянием. Проводящий тракт может быть ориентирован, по существу, в радиальном направлении (например, может включать в себя сегмент, который ориентирован в радиальном направлении), между двумя компонентами, а также может быть, по меньшей мере, частично ориентирован в осевом направлении (например, вдоль почти всей своей габаритной длины) между двумя компонентами. Способ может дополнительно предусматривать закрывание вспомогательных проточных каналов одного или обоих компонентов при разъединении гидравлического соединения между двумя компонентами.

В еще одном аспекте в настоящем изобретении предложена система для передачи текучей среды и электронных сигналов по колонне с инструментами, содержащая первый компонент колонны с инструментами, имеющий, по меньшей мере, один вспомогательный проточный канал и, по меньшей мере, одну электрическую шину, которые проходят по первому компоненту и оканчиваются на его конце или около этого конца, и второй компонент колонны с инструментами, имеющий, по меньшей мере, один вспомогательный проточный канал и, по меньшей мере, одну электрическую шину, которые проходят по второму компоненту и оканчиваются на его конце или около этого конца. Конец второго компонента расположен напротив конца первого компонента. Для гидравлического соединения вспомогательных проточных каналов и электрического соединения электрических шин соответствующих двух компонентов применяется корпусной узел. Применяется также узел регулирования длины корпусного узла. Первый и второй компоненты могут быть дискретными модулями унитарного инструмента.

В еще одном аспекте изобретения создан модульный инструмент для использования в подземных пластах, содержащий первый модуль, включающий в себя первую утяжеленную бурильную трубу, по меньшей мере, частично ограничивающую пространство снаружи инструмента и включающую в себя первый зацепляющий механизм, расположенный на первом конце утяжеленной бурильной трубы, и второй зацепляющий механизм, расположенный на втором конце утяжеленной бурильной трубы, и канал для бурового раствора, второй модуль, включающий в себя вторую утяжеленную бурильную трубу, по меньшей мере, частично ограничивающую пространство снаружи инструмента и включающую в себя первый зацепляющий механизм, расположенный на первом конце этой утяжеленной бурильной трубы для зацепления со вторым концом первой утяжеленной бурильной трубы, и второй зацепляющий механизм, расположенный на втором конце этой утяжеленной бурильной трубы, и канал для бурового раствора, по меньшей мере, один соединитель, предназначенный для соединения первого и второго модулей и соединяющий, по меньшей мере, один проточный канал первого модуля и второго модуля для протекания вспомогательной текучей среды между первым и вторым модулями и соединяющий, по меньшей мере, один провод из первого модуля и один провод из второго модуля для передачи питания и/или данных между модулями, при этом, по меньшей мере, один соединитель обеспечивает прохождение бурового раствора между первым и вторым модулями.

Зацепляющие механизмы первого и второго модулей могут включать в себя ниппельную резьбовую часть на первом конце утяжеленных бурильных труб и муфтовую резьбовую часть на втором конце утяжеленных бурильных труб.

Канал бурового раствора может проходить от первого конца до второго конца модулей.

Зацепляющие механизмы первого и второго модулей могут быть противоположными резьбовыми частями.

Первый модуль может быть модулем зонда, включающим в себя узел для изоляции участка стенки ствола скважины. Модуль зонда может быть расположен вблизи бурового долота.

Упомянутый узел может иметь вход, гидравлически соединенный с пространством снаружи инструмента, и, по меньшей мере, один проточный канал гидравлически соединен с входом.

В еще одном аспекте настоящего изобретения создана система для бурения ствола скважины, содержащая бурильную колонну для обеспечения потока бурового раствора с поверхности, инструмент для испытания пласта, имеющий первый конец, соединенный с бурильной колонной и содержащий множество модулей, каждый из которых включает в себя, по меньшей мере, один проточный канал и канал для бурового раствора, причем первый из множества модулей оперативно соединен с первым или вторым концом второго из множества модулей для перемещения текучей среды в проточном канале и канале для бурового раствора между первым и вторым модулями, и буровое долото, соединенное со вторым концом инструмента для испытания пласта и принимающее буровую текучую среду из бурильной колонны посредством первого и второго модулей.

В данной системе первый модуль может быть модулем зонда, соединенным посредством резьбы со вторым модулем.

Проточный канал может быть гидравлически соединен с пространством снаружи инструмента.

Система может дополнительно включать в себя, по меньшей мере, одно электрическое соединение между первым и вторым модулями.

В еще одном аспекте настоящего изобретения создан способ сборки скважинного инструмента на рабочей площадке, включающий обеспечение первого модуля, имеющего первую утяжеленную бурильную трубу, по меньшей мере, частично ограничивающую пространство снаружи инструмента и включающую в себя первую резьбовую часть, расположенную на первом конце утяжеленной бурильной трубы, и вторую резьбовую часть, расположенную на втором конце утяжеленной бурильной трубы, и канал для бурового раствора, проходящий по длине модуля, обеспечение второго модуля, имеющего вторую утяжеленную бурильную трубу, по меньшей мере, частично ограничивающую пространство снаружи инструмента и включающую в себя первую резьбовую часть, расположенную на первом конце утяжеленной бурильной трубы, и вторую резьбовую часть, расположенную на втором конце утяжеленной бурильной трубы, и канал для бурового раствора, проходящий по длине модуля, соединение проточных каналов первого и второго модулей.

При осуществлении способа проточный канал первого модуля гидравлически можно соединить с одним из пространства снаружи инструмента и пространства внутри инструмента.

Способ может дополнительно включать соединение электрических каналов первого и второго модулей, приспособленных для передачи питания или данных.

Способ может дополнительно включать соединение второго проточного канала первого модуля с пространством снаружи инструмента.

В еще одном аспекте настоящего изобретения создан способ переконфигурирования множества модулей для инструмента, применяемого при бурении, для получения множества инструментов, включающий обеспечение множества модулей, каждый из которых включает в себя, по меньшей мере, один проточный канал и канал для бурового раствора, соединение множество модулей в первой конфигурации для получения первого скважинного инструмента и соединение множества модулей во второй конфигурации для получения второго скважинного инструмента.

Обеспечение множества модулей может включать в себя обеспечение модуля зонда и модуля бутыли для сбора проб.

Краткое описание чертежей

Чтобы вышеуказанные признаки и преимущества настоящего изобретения можно было понять во всех подробностях, приводится более конкретное описание изобретения, вкратце охарактеризованного выше, со ссылками на варианты его осуществления, которые проиллюстрированы на прилагаемых чертежах. Вместе с тем, следует отметить, что прилагаемые чертежи иллюстрируют лишь типичные варианты осуществления этого изобретения, так что их не следует считать ограничивающими объем его притязаний, поскольку изобретение равно применимо и к другим, столь же эффективным вариантам осуществления.

На фиг.1 представлено перспективное изображение, частично - в поперечном сечении, обычной бурильной колонны, проходящей от буровой вышки в ствол скважины, причем бурильная колонна имеет узел испытателя пласта, включающий множество модулей, соединенных между собой соединителем (соединителями).

На фиг.2 приведено схематическое представление части бурильной колонны согласно фиг.1, подробнее изображающее узел испытателя пласта и некоторые взаимно соединенные модули этого узла.

На фиг.3 приведено схематическое представление в поперечном сечении двух компонентов колонны скважинного инструмента, соединенных характерным модульным соединителем.

На фиг.4 представлено схематическое поперечное сечение двух компонентов колонны скважинного инструмента, соединенных соединителем, имеющим центральную ориентированную в осевом направлении трубу текучей среды и центральный ориентированный в осевом направлении электропроводный тракт.

На фиг.5 представлено схематическое поперечное сечение двух компонентов колонны скважинного инструмента, соединенных соединителем, имеющим ориентированную в осевом направлении кольцевую трубу текучей среды и центральный ориентированный в радиальном направлении электропроводный тракт.

На фиг.6 представлено схематическое поперечное сечение двух скважинных компонентов, соединенных соединителем, аналогичным соединителю согласно фиг.5, подробнее иллюстрирующее границу раздела между соединителем и соединенными компонентами.

На фиг.7 представлено схематическое поперечное сечение двух компонентов колонны со скважинными инструментами, соединенных соединителем, имеющим узел регулирования длины соединителя.

На фиг.8 представлено схематическое поперечное сечение двух компонентов колонны со скважинными инструментами, соединенных соединителем, снабженным альтернативным узлом регулирования длины соединителя.

На фиг.9 представлено схематическое поперечное сечение двух компонентов колонны со скважинными инструментами, соединенных соединителем, имеющим внутреннюю ориентированную в радиальном направлении трубу текучей среды и центральный ориентированный в радиальном направлении электропроводный тракт.

На фиг.10 представлено схематическое поперечное сечение двух компонентов колонны со скважинными инструментами, соединенных соединителем, имеющим центральную ориентированную в осевом направлении трубу текучей среды и нецентральный ориентированный в осевом направлении электропроводный тракт.

На фиг.11А-В представлены схематические поперечные сечения части системы монтажных бурильных труб, используемой ориентированным в осевом направлении электропроводным трактом соединителя согласно фиг.10.

На фиг.12 представлено схематическое поперечное сечение двух компонентов колонны со скважинными инструментами, соединенных соединителем, имеющим внешнюю радиально-симметричную трубу текучей среды и центральный ориентированный в радиальном направлении электропроводный тракт.

На фиг.13 представлено схематическое поперечное сечение двух компонентов колонны со скважинными инструментами, соединенных соединителем, имеющим нецентральную ориентированную в осевом направлении трубу текучей среды и ориентированный в осевом направлении электропроводный тракт.

На фиг.14А-В представлены поперечные сечения соединителя, имеющего клапаны для автоматической блокировки проточных каналов взаимно соединенных компонентов при разъединении первого и второго трубных элементов корпусного узла соединителя.

Подробное описание изобретения

В настоящем изобретении предложены соединитель и система, которые обеспечивают передачу текучей среды, а также электрических сигналов, между соседними инструментами или модулями во время проведения стандартных операций бурения. Таким образом, с помощью настоящего изобретения можно соединять два инструмента или модуля для КвПБ либо инструмента или модуля, спускаемых в скважину на тросе, с целью обеспечения соединения посредством текучей среды (гидравлического сообщения) и электрического соединения между ними.

Фиг.1 иллюстрирует обычную буровую вышку и бурильную колонну, в которой можно применить настоящее изобретение. Узел 110 наземной платформы и вышки расположен над стволом С скважины, пронизывающим подземный пласт П. В иллюстрируемом варианте осуществления ствол С скважины образован посредством бурения хорошо известным образом. Вместе с тем, обычные специалисты в данной области техники, ознакомившиеся с этим описанием, поймут, что настоящее изобретение также находит применение в приложениях, связанных с направленным бурением, а также в роторном бурении, и не ограничивается наземными буровыми вышками.

Внутри ствола С скважины вывешена бурильная колонна 112, включающая в себя буровое долото 115, находящееся на ее нижнем конце. Бурильная колонна 112 вращается роторным столом 116, питание которого осуществляют средства, не показанные на чертеже, причем этот стол введен в зацепление с ведущей бурильной трубой 117 на верхнем конце бурильной колонны. Бурильная колонна 112 свисает с крюка 118, прикрепленного к талевому блоку (который тоже не показан) через посредство ведущей бурильной трубы 117 и вертлюга 119, который обеспечивает вращение бурильной колонны относительно крюка.

Буровая текучая среда или буровой раствор 126 хранится в отстойнике 127, предусмотренном на буровой площадке. Насос 129 подает буровую текучую среду 126 (также известную под названием «буровой раствор») внутрь бурильной колонны 112 через отверстие в вертлюге 119, заставляя буровую текучую среду течь вниз по бурильной колонне 112, как показано направленной стрелкой 109. Буровая текучая среда 126 выходит из бурильной колонны 112 через отверстия в буровом долоте 115, а затем циркулирует вверх по кольцевому пространству между внешней поверхностью бурильной колонны и стенкой ствола скважины, как показано направленными стрелками 132. Таким образом, буровая текучая среда смазывает бурильный инструмент 115 и выносит пластовый шлам вверх на поверхность, когда возвращается в отстойник 126 для рециркуляции.

Бурильная колонна 112 дополнительно включает оборудование низа бурильной колонны, которое как единое целое обозначено позицией 100, около бурового долота 115 (иными словами, оборудование в пределах нескольких секций утяжеленных бурильных труб от бурового долота). Оборудование низа бурильной колонны, или ОНБК, обозначенное позицией 100, обладает возможностями измерения, обработки и хранения информации, а также связи с поверхностью. ОНБК 100 дополнительно включает транспортируемые на бурильных трубах инструменты, стабилизаторы и т.д. для выполнения различных других измерительных функций, а также субузел 150 связи с поверхностью и локальной связи, предназначенный для выполнения телеметрических функций.

В варианте осуществления согласно фиг.1 бурильная колонна 112 дополнительно оснащена утяжеленной бурильной трубой 130, в которой заключен инструмент для испытания пласта, имеющий различные соединенные модули 130а, 130b и 130с для выполнения различных соответствующих функций, таких как обеспечение электрической или гидравлической энергии, регулирование расхода, отбор проб текучих сред, анализ текучих сред и хранение проб текучих сред. Модуль 130b является модулем зонда, имеющим зонд 232 для контакта со стенкой ствола С скважины и извлечения характерных проб из пласта П, что в общем известно обычным специалистам в данной области техники. Другой из модулей (например, модуль 130с) оснащен камерами (известными также как баки или цилиндры) качества ОДТ («объем - давление температура»), которые предназначены для хранения характерных или «чистых» проб текучей среды, передаваемых посредством модуля 130b зонда.

На фиг.2 подробнее показан узел 130 испытателя пласта согласно фиг.1, в частности модуль 130b зонда и модуль 130 хранения проб. Модуль 130b зонда оснащен узлом 232 зонда для контакта со стенкой ствола С скважины и нагнетания текучей среды из пласта П в центральный проточный канал 236 через канал 234 зонда. Для гидравлического соединения зонда 232 с модулем регулирования расхода (не показан) с целью нагнетания текучей среды в проточный канал 236 и перекачивания отбираемой текучей среды в соответствующие модули внутри испытателя 130 пласта для анализа, выпуска в кольцевое пространство ствола скважины или хранения и т.д. предусмотрены манипуляции клапанами 238, 240 и 242 (помимо прочих). Модуль 130с зонда оснащен одной или более камерами хранения проб, предназначенными для приема и хранения проб текучей среды качества ОДТ с целью последующего анализа на поверхности.

Для проведения отобранной текучей среды между соседними модулями (которые на самом деле могут и не контактировать друг с другом, как предложено на фиг.2, и это дополнительно поясняется ниже) и для проведения электрических сигналов по электрической шине 250, которая также проходит через модули для передачи энергии, а возможно, и данных, между различными модулями (130а, b, с) испытателя 130 пласта применяются соединители 210. Можно использовать один или более манометров 232, взаимодействующих с одним или более зондами для отбора проб (показан только один такой зонд 232), чтобы облегчить отбор проб текучих сред и измерение давления, а также определение градиента давления и другие операции испытания коллекторов. Кроме того, путем надлежащего использования датчиков, таких как манометры 246, можно удостовериться в целостности соединителей 210. Соответственно, предлагаемый соединитель адаптируем к различным конфигурациям, а кроме того, его применение не ограничивается инструментами для испытания пластов, что будет очевидно для специалистов в данной области техники, обладающих преимуществом знания этого описания.

На фиг.3 изображен характерный модульный соединитель 310, используемый для соединения вспомогательных проточных