Способ получения субмикронных частиц паклитаксела

Иллюстрации

Показать все

Изобретение относится к лекарственным средствам и касается способа получения фармацевтической композиции субмикронных осажденных частиц паклитаксела или его производных, растворимость которых выше в смешивающемся с водой первом растворителе, чем во втором растворителе, который является водным, причем способ включает стадии: (i) смешивания со смешивающимся с водой первым или вторым растворителем или как со смешивающимся с водой первым растворителем, так и со вторым растворителем первого модификатора поверхности, включающего фосфолипид, конъюгированный с водорастворимым или гидрофильным полимером; (ii) смешивания со смешивающимся с водой первым или вторым растворителем или как со смешивающимся с водой первым растворителем, так и со вторым растворителем второго модификатора поверхности, выбранного из группы, состоящей из анионных, катионных и неионных поверхностно-активных веществ и поверхностно-активных биологических модификаторов; (iii) растворения паклитаксела или его производных в смешивающемся с водой первом растворителе с образованием раствора; (iv) смешивания раствора со вторым растворителем с получением предварительной суспензии частиц; и (v) гомогенизации предварительной суспензии с образованием суспензии осажденных мелких частиц, имеющих средний эффективный размер частиц менее приблизительно 1000 нм. 2 н. и 32 з.п. ф-лы, 21 ил., 2 табл.

Реферат

Данная заявка является частичным продолжением заявки № 10/390333, поданной 17 марта 2003 г., которая является частичным продолжением заявки № 10/246802, поданной 17 сентября 2002 г., которая является частичным продолжением заявки № 10/035821, поданной 19 октября 2001 г., которая является частичным продолжением заявки № 09/953979, поданной 17 сентября 2001 г., которая является частичным продолжением заявки № 09/874637, поданной 5 июня 2001 г., в которой испрашивается приоритет предварительной заявки № 60/258160, поданной 22 декабря 2000 г. Все указанные выше заявки включены в данное описание в качестве ссылки и составляют его часть.

Спонсируемое федерально исследование или разработка:

Не заявляются.

Настоящее изобретение касается создания субмикронных частиц антинеопластического агента, в частности паклитаксела, или соединений, являющихся его производными, с помощью осаждения антинеопластического агента в водной среде для образования предварительной суспензии с последующей гомогенизацией. Поверхностно-активные вещества с фосфолипидами, конъюгированные с водорастворимым или гидрофильным полимером, таким как полиэтиленгликоль (ПЭГ), используют в качестве покрытия для частиц. Полученные частицы обычно имеют средний размер менее приблизительно 1000 нм и не являются быстро растворимыми.

Существует постоянно увеличивающееся количество органических соединений, которые включают в состав для терапевтических или диагностических целей, которые являются плохо растворимыми или нерастворимыми в водных растворах. Такие лекарственные средства сталкиваются с проблемой их доставки путем введений, подробно указанных ниже. Соединения, которые нерастворимы в воде, могут иметь существенные преимущества при составлении их в виде стабильной суспензии субмикронных частиц. Тщательный контроль размера частиц осуществляют для безопасного и эффективного применения данных составов. Частицы должны быть менее семи микрон в диаметре для безопасного прохождения через капилляры без индукции эмболии (Allen et al., 1987; Davis and Taube, 1978; Schroeder et al., 1978; Yokel et al., 1981). Одним решением данной проблемы является получение малых частиц нерастворимого кандидатного лекарственного средства и создание суспензии микрочастиц или наночастиц. Таким способом лекарственные средства, которые ранее невозможно было составить в системе на основе воды, могут быть сделаны в форме, подходящей для внутривенного введения. Пригодность для внутривенного введения включает малый размер частиц (<7 мкм), низкую токсичность (как в отношении компонентов состава, так и остаточных растворителей) и биодоступность частиц лекарственного средства после введения.

Препараты малых частиц нерастворимых в воде лекарственных средств могут также подходить для перорального, легочного, местного офтальмологического, интраназального, защечного, ректального, вагинального, чрескожного или других путей введения. Малый размер частиц улучшает скорость растворения лекарственного средства и поэтому улучшает его биодоступность и потенциально профили его токсичности. При введении данными путями может быть желательно иметь размер частиц в диапазоне от 5 до 100 мкм в зависимости от пути введения, состава, растворимости и биодоступности лекарственного средства. Например, для перорального введения желательно иметь размер частиц менее приблизительно 7 мкм. Для легочного введения размер частиц предпочтительно составляет менее приблизительно 10 мкм.

В настоящем изобретении предлагаются способы получения и композиции субмикронных частиц антинеопластического агента, в частности паклитаксела или соединений, являющихся его производными. Растворимость антинеопластического агента является более высокой в смешиваемом с водой первом растворителе, чем во втором растворителе, который является водным. Способы включают (i) перемешивание в смешиваемом с водой первом растворителе, или во втором растворителе, или в обоих смешиваемом с водой первом растворителе и во втором растворителе первого модификатора поверхности, включающего фосфолипид, конъюгированный с водорастворимым или гидрофильным полимером; (ii) растворение антинеопластического агента в смешиваемом с водой первом растворителе с образованием раствора; (iii) смешивание раствора со вторым растворителем для предопределения предварительной суспензии частиц; и (iv) гомогенизацию предварительной суспензии с образованием суспензии частиц, имеющих средний эффективный размер частиц менее приблизительно 1 мкм. Предпочтительно, чтобы частицы имели средний эффективный размер частиц менее приблизительно 400 нм, более предпочтительно менее 200 нм и наиболее предпочтительно менее приблизительно 150 нм.

В предпочтительном варианте осуществления водорастворимый или гидрофильный полимер, конъюгированный с фосфолипидом, представляет собой полиэтиленгликоль (ПЭГ). Необязательно второй модификатор поверхности может быть смешан со смешиваемым с водой первым растворителем, или вторым растворителем, или с обоими смешиваемым с водой первым растворителем и со вторым растворителем. Предпочтительный второй модификатор поверхности представляет собой полоксамер.

В варианте осуществления гомогенизацию осуществляют при приблизительно 30°С или выше.

Способы могут дополнительно включать удаление смешиваемого с водой первого растворителя или полной жидкой фазы из суспензии. В предпочтительном варианте осуществления смешиваемый с водой первый растворитель удаляют одновременно с гомогенизацией.

Способ может также дополнительно включать стерилизацию композиции.

В предпочтительном варианте осуществления частицы являются нерастворимыми.

В другом предпочтительном варианте осуществления частицы не агрегируют при напряженных состояниях или при хранении.

Данные и другие аспекты и свойства настоящего изобретения будут обсуждаться со ссылкой на последующие фигуры и сопровождающее описание.

На фиг.1 показано диаграммное представление одного способа настоящего изобретения.

На фиг.2 - диаграммное представление другого способа настоящего изобретения.

На фиг.3 представлены аморфные частицы до гомогенизации.

На фиг.4 - частицы после отжига гомогенизацией.

Фиг.5 представляет собой рентгенограмму дифракции рентгеновских лучей микроосажденного итраконазола с 12-гидроксистеаратом полиэтиленгликоля-660 до и после гомогенизации.

На фиг.6 представлены кристаллы карбамазепина до гомогенизации.

На фиг.7 - микрочастицы карбамазепина после гомогенизации (Avestin C-50).

Фиг.8 представляет собой диаграмму, иллюстрирующую способ микроосаждения для преднизолона.

Фиг.9 - микрофотографию суспензии преднизолона до гомогенизации.

Фиг.10 - микрофотографию суспензии преднизолона после гомогенизации.

На фиг.11 иллюстрируется сравнение распределений по размеру наносуспензий (данного изобретения) и имеющейся в продаже эмульсии жиров.

На фиг.12 представлена порошковая рентгенограмма для исходного материала итраконазола (верх) и SMP-2-PRE (низ). Рентгенограмма исходного материала смещена вверх для ясности.

На фиг.13a - запись DSC для исходного материала итраконазола.

На фиг.13b - запись DSC для SMP-2-PRE.

На фиг.14 иллюстрируется запись DSC для SMP-2-PRE, показывающая плавление менее стабильного полиморфа при нагревании до 160°С, событие повторной кристаллизации при охлаждении и последующее плавление более стабильного полиморфа при повторном нагревании до 180°С.

На фиг.15 - сравнение образцов SMP-2-PRE после гомогенизации. Сплошная линия=образец с затравкой исходным материалом итраконазола. Прерывистая линия=образец без затравки. Сплошная линия смещена на 1 Вт/г для ясности.

На фиг.16 - эффект внесения затравки в процессе осаждения. Прерывистая линия = образец без затравки, сплошная линия=образец с затравкой исходным материалом итраконазола. Прерывистая линия смещена выше на 1,5 Вт/г для ясности.

На фиг.17 - эффект затравки концентрата лекарства в результате старения. Верхняя рентгенограмма представлена для кристаллов, полученных из свежего концентрата лекарства, и совместима со стабильным полиморфом (см. фиг.12, верх). Нижняя рентгенограмма представлена для кристаллов, полученных из состаренного (содержащего затравку) концентрата лекарства, и совместима с метастабильным полиморфом (см. фиг.12, низ). Верхний график смещен вверх для ясности.

На фиг.18 показано растворение двух составов субмикронных частиц паклитаксела.

На фиг.19 - влияние различных напряженных состояний на размер частиц субмикронных частиц паклитаксела.

На фиг.20 - влияние хранения на размер частиц субмикронных частиц паклитаксела.

Настоящее изобретение допускает варианты осуществления во многих различных формах. Предпочтительные варианты осуществления изобретения раскрыты с пониманием того, что настоящее раскрытие предназначено для рассмотрения в качестве примеров принципов изобретения и не предназначено для ограничения широких аспектов изобретения проиллюстрированными вариантами осуществления.

В настоящем изобретении предлагаются композиции и способы создания малых частиц органического соединения. Органическое соединение для применения в способе данного изобретения представляет собой любое органическое химическое вещество, чья растворимость снижается от одного растворителя к другому. Данное органическое соединение может представлять собой фармацевтически активное соединение, которое может быть выбрано из терапевтических агентов, диагностических агентов, косметических агентов, пищевых добавок и пестицидов.

Терапевтические агенты могут быть выбраны из множества известных фармацевтических агентов, таких как, но не ограничиваясь этим, анальгетики, анестетики, аналептики, адренергические агенты, адренергические блокирующие агенты, адренолитики, адренокортикоиды, адреномиметики, антихолинергические агенты, антихолинэстеразы, антиконвульсанты, алкилирующие агенты, алкалоиды, аллостерические ингибиторы, анаболические стероиды, анорексигенные агенты, антациды, антидиаррейные агенты, антидоты, антифолаты, антипиретики, антиревматоидные агенты, психотерапевтические агенты, блокирующие нервную систему агенты, противовоспалительные агенты, антигельминтные агенты, антиаритмические агенты, антибиотики, антикоагулянты, антидепрессанты, противодиабетические агенты, антиэпилептические агенты, противогрибковые агенты, антигистамины, антигипертензивные агенты, антимускариновые агенты, антимикобактериальные агенты, противомалярийные агенты, антисептики, антинеопластические агенты, антипротозойные агенты, иммуносуппрессорные агенты, иммуностимуляторные агенты, антитиреоидные агенты, противовирусные агенты, анксиолитические седативные агенты, вяжущие агенты, блокаторы бета-адренорецепторов, контрастирующие среды, кортикостероиды, подавляющие кашель агенты, диагностические агенты, диагностические визуализирующие агенты, диуретики, дофаминергические агенты, гемостатики, гематологические агенты, модификаторы гемоглобина, гормоны, гипнотические агенты, замуровывающие агенты, антигиперлипидемические и другие регулирующие липиды агенты, мускариновые агенты, мышечные релаксанты, парасимпатомиметики, паратиреоидные агенты, кальцитонин, простагландины, радиоактивные фармацевтические агенты, седативные агенты, половые гормоны, противоаллергические агенты, стимуляторы, симпатомиметики, тиреоидные агенты, вазодилататоры, вакцины, витамины и ксантины. Антинеопластические, или противораковые, агенты включают, но не ограничиваются ими, паклитаксел и соединения, являющиеся его производными, и другие антинеопластические агенты, выбранные из группы, состоящей из алкалоидов, антиметаболитов, ингибиторов ферментов, алкилирующих агентов и антибиотиков. Терапевтический агент может также быть биологическим, который включает, но не ограничивается этим, белки, полипептиды, углеводы, полинуклеотиды и нуклеиновые кислоты. Белок может быть антителом, которое может быть поликлональным или моноклональным.

Диагностические агенты включают рентгеновские визуализирующие агенты и контрастирующие среды. Примеры рентгеновских визуализирующих агентов включают WIN-8883 (этил-3,5-диацетамидо-2,4,6-трийодбензоат), также известный как этиловый эфир диатразоевой кислоты (EEDA), WIN 67722, т.е. (6-этокси-6-оксогексил-3,5-бис(ацетамид)-2,4,6-трийодобензоат; этил-2-(3,5-бис(ацетамид)-2,4,6-трийодбензоилокси)бутират (WIN 16318); этилдиатризоксиацетат (WIN 12901); этил-2-(3,5-бис(ацетамид)-2,4,6-трийодбензоилокси)пропионат (WIN 16923); N-этил-2-(3,5-бис(ацетамид)-2,4,6-трийодбензоилоксиацетамид (WIN 65312); изопропил-2-(3,5-бис(ацетамид)-2,4,6-трийодбензоилокси)ацетамид (WIN 12855); диэтил-2-(3,5-бис(ацетамид)-2,4,6-трийодбензоилоксималонат (WIN 67721); этил-2-(3,5-бис(ацетамид)-2,4,6-трийодбензоилокси)фенилацетат (WIN 67585); [[3,5-бис(ацетиламино)-2,4,5-трийиодбензоил]окси]бис(l-метил)овый эфир малоновой кислоты (WIN 68165) и 3,5-бис(ацетиламино)-2,4,6-трийод-4-(этил-3-этокси-2-бутеноат)эфир бензойной кислоты, (WIN 68209). Предпочтительные контрастирующие агенты включают такие, от которых требуется относительно быстрый распад в физиологических условиях, сводя тем самым к минимуму любую часть, связанную с воспалительным ответом. Распад может быть результатом ферментативного гидролиза, солюбилизации карбоновых кислот при физиологическом рН или других механизмов. Таким образом, предпочтительными могут быть плохо растворимые йодированные карбоновые кислоты, такие как йодипамид, диатризоевая кислота и метризоевая кислота вместе с гидролитически лабильными йодированными типами, такими как WIN 67721, WIN 12901, WIN 68165 и WIN 68209 или другие.

Другие контрастирующие среды включают, но не ограничиваются ими, препараты частиц для визуализации магнитного резонанса, такие как хелаты гадолиния или другие парамагнитные контрастирующие агенты. Примерами таких соединений являются гадопентетат димеглумина (Magnevist (E)) и гадотеридол (Prohance®).

Описание таких классов терапевтических агентов и диагностических агентов и перечисление их видов в пределах каждого класса можно найти в Martindale, The Extra Pharmacopoeia, Twenty-ninth Edition, The Pharmaceutical Press, London, 1989, который включен в данное описание в качестве ссылки и составляет его часть. Терапевтические агенты и диагностические агенты коммерчески доступны и/или могут быть получены способами, известными в данной области.

Косметический агент представляет собой любой активный ингредиент, способный обладать косметической активностью. Примерами таких активных ингредиентов могут быть, среди прочего, смягчающие агенты, увлажняющие агенты, ингибиторы свободных радикалов, противовоспалительные агенты, витамины, депигментирующие агенты, противоугревые агенты, противосеборейные агенты, кератолитики, агенты для похудения, окрашивающие кожу агенты и солнцезащитные агенты и, в частности, линолевая кислота, ретинол, ретиноевая кислота, алкиловые эфиры аскорбиновой кислоты, полиненасыщенные жирные кислоты, сложные эфиры никотиновой кислоты, никотинат токоферола, неомыляемые агенты риса, сои или масляного дерева, керамиды, оксикислоты, такие как гликолевая кислота, производные селена, антиоксиданты, бета-каротин, гамма-оризанол и стеарилглицерат. Косметические агенты коммерчески доступны и/или могут быть получены способами, известными в данной области.

Примеры пищевых добавок, рассматриваемых для применения в практике настоящего изобретения, включают, но не ограничиваются ими, белки, углеводы, водорастворимые витамины (например, витамин C, комплекс витаминов B и тому подобное), жирорастворимые витамины (например, витамины A, D, E, K и тому подобное) и экстракты растений. Пищевые добавки коммерчески доступны и/или могут быть получены способами, известными в данной области.

Термин “пестицид” понимается как охватывающий гербициды, инсектициды, акарициды, нематоциды, эктопаразитоциды и фунгициды. Примеры классов соединений, к которым в настоящем изобретении может принадлежать пестицид, включают производные мочевины, триазины, триазолы, карбаматы, сложные эфиры фосфорной кислоты, динитроанилины, морфолины, ацилаланины, пиретроиды, сложные эфиры бензиловой кислоты, дифенилэфиры и полициклические галогенизированные углеводороды. Конкретные примеры пестицидов в каждом из указанных классов перечислены в Pesticide Manual, 9th Edition, British Crop Protection Council. Пестициды коммерчески доступны и/или могут быть получены способами, известными в данной области.

Предпочтительно, чтобы органическое соединение или фармацевтически активное соединение плохо растворялось в воде. Под «плохой растворимостью в воде» подразумевается растворимость соединения в воде менее приблизительно 10 мг/мл и предпочтительно менее 1 мг/мл. Такие плохо растворимые в воде агенты больше всего подходят для препаратов в виде водной суспензии, так как существуют ограниченные альтернативы для создания составов данных агентов в водной среде.

Настоящее изобретение может быть также осуществлено с растворимыми в воде фармацевтически активными соединениями с помощью включения данных соединений в матрикс из твердого носителя (например, сополимер полиактаида-полигликолида, альбумин, крахмал) или с помощью инкапсулирования данных соединений в окружающий их пузырек, который является непроницаемым для фармацевтического соединения. Инкапсулирующий пузырек может представлять собой полимерное покрытие, такое как полиакрилат. Далее, малые частицы, полученные из данных водорастворимых фармацевтических агентов, могут быть модифицированы для улучшения химической стабильности и контроля фармакокинетических свойств агентов с помощью контролирования высвобождения агентов из частиц. Примеры водорастворимых фармацевтических агентов включают, но не ограничиваются ими, простые органические соединения, белки, пептиды, нуклеотиды, олигонуклеотиды и углеводы.

Частицы настоящего изобретения имеют средний эффективный размер частиц обычно менее приблизительно 100 мкм при измерении с помощью способов динамического рассеивания света, например фотокорреляционной спектроскопии, лазерной дифракции, лазерного рассеивания света под малым углом (LALLS), лазерного рассеивания света под средним углом (MALLS), способов затемнения света (например, способ Коултера), реологии или микроскопии (световой или электронной). Однако частицы могут быть получены в широком диапазоне размеров, таких как от приблизительно 20 мкм до приблизительно 10 нм, от приблизительно 10 мкм до приблизительно 10 нм, от приблизительно 2 мкм до приблизительно 10 нм, от приблизительно 1 мкм до приблизительно 10 нм, от приблизительно 400 нм до приблизительно 50 нм, от приблизительно 200 нм до приблизительно 50 нм или в любом представленном в данном описании диапазоне или сочетании диапазонов. Предпочтительный средний эффективный размер частиц зависит от таких факторов, как определенный путь введения, состав, растворимость, токсичность и биодоступность соединения.

Чтобы подходить для парентерального введения, частицы предпочтительно имеют средний эффективный размер менее приблизительно 7 мкм, более предпочтительно менее приблизительно 2 мкм, или любой представленный в данном описании диапазон или сочетание диапазонов. Парентеральное введение включает внутривенное, внутриартериальное, подоболочечное, внутрибрюшинное, внутриглазное, внутрисуставное, интрадуральное, внутрижелудочковое, внутриперикардиальное, внутримышечное, внутрикожное или подкожное введение.

Размеры частиц для пероральных единичных дозированных форм могут превышать 2 мкм. Частицы могут находиться в диапазоне размеров до приблизительно 100 мкм, предлагаемые так, чтобы частицы имели достаточную биодоступность и другие характеристики пероральной единичной дозированной формы. Пероральные единичные дозированные формы включают таблетки, капсулы, капсулообразные таблетки, капсулы из мягкого и твердого геля или другой доставляющий носитель для доставки лекарственного средства с помощью перорального введения.

Настоящее изобретение дополнительно подходит для обеспечения частицами органического соединения в форме, подходящей для легочного введения. Размеры частиц для легочных единичных дозированных форм могут превышать 500 нм и обычно менее приблизительно 10 мкм. Частицы в суспензии могут быть превращены в аэрозоль и введены с помощью небулайзера для легочного введения. Альтернативно частицы могут быть введены в виде сухого порошка с помощью ингалятора сухого порошка после удаления жидкой фазы из суспензии или сухой порошок может быть введен в неводном пропелленте для введения с помощью ингалятора с контролируемой дозировкой. Примером подходящего пропеллента является гидрофторуглерод (HFC), такой как HFC-134a (1,1,1,2-тетрафторэтан) и HFC-227ea (1,1,1,2,3,3,3-гептафторпропан). В отличие от хлорфторуглеродов (CFC), HFC характеризуются отсутствием или низким потенциалом снижения озона.

Дозированные формы для других путей доставки, таких как интраназальная, местная, офтальмологическая, назальная, защечная, ректальная, вагинальная, трансдермальная и тому подобное, также могут быть составлены из частиц, полученных по настоящему изобретению.

Способ получения частиц может быть разделен на четыре общих категории. Каждая из категорий способов охватывает стадии: (1) растворения органического соединения в смешиваемом с водой первом растворителе с образованием первого раствора, (2) смешивания первого раствора со вторым растворителем воды для осаждения органического соединения и создания предварительной суспензии и (3) придания энергии предварительной суспензии в форме смешивания с высоким сдвигом или нагревания, или сочетания обоих для обеспечения стабильной формы органического соединения, имеющего желаемые диапазоны размеров, определенные выше. Стадии смешивания и стадия придания энергии могут быть выполнены в виде последовательных стадий или одновременно.

Категории способов подразделяются на основе физических свойств органического соединения, что определяется исследованиями дифракции рентгеновских лучей, исследованиями дифференциальной сканирующей калориметрии (DSC) или другим подходящим исследованием, проведенными перед стадией придания энергии или после стадии придания энергии. В первой категории способа перед стадией придания энергии органическое соединение в предварительной суспензии имеет аморфную форму, полукристаллическую форму или переохлажденную жидкую форму и имеет средний эффективный размер частиц. После стадии придания энергии органическое соединение находится в кристаллической форме, имеющей средний эффективный размер частиц по существу тот же самый или менее, чем в предварительной суспензии.

Во второй категории способа перед стадией придания энергии органическое соединение находится в кристаллической форме и имеет средний эффективный размер частиц. После стадии придания энергии органическое соединение находится в кристаллической форме, имеющей по существу тот же самый средний эффективный размер частиц, как перед стадией придания энергии, но кристаллы после стадии придания энергии агрегируют с меньшей вероятностью.

Более низкая тенденция органического соединения к агрегации наблюдается при лазерном динамическом рассеивании света и при световой микроскопии.

В третьей категории способа перед стадией придания энергии органическое соединение находится в кристаллической форме, которая является хрупкой, и имеет средний эффективный размер частиц. Под термином «хрупкий» подразумевается, что частицы являются ломкими и с большей легкостью разбиваются на более мелкие частицы. После стадии придания энергии органическое соединение находится в кристаллической форме, имеющей средний эффективный размер частиц, меньший, чем кристаллы в предварительной суспензии. С помощью использования стадий, необходимых для перевода органического соединения в кристаллическую форму, которая является хрупкой, последующая стадия придания энергии может быть осуществлена более быстро и эффективно по сравнению с органическим соединением с менее хрупкой морфологией кристаллов.

В четвертой категории способа первый раствор и второй растворитель одновременно подвергают стадии придания энергии. Таким образом, физические свойства органического соединения перед и после стадии придания энергии не измеряются.

Стадия придания энергии может быть осуществлена любым способом, в котором предварительная суспензия или первый раствор и второй растворитель подвергаются кавитации, сдвигу или ударной силе. В одной предпочтительной форме изобретения стадия придания энергии представляет собой стадию отжига. Отжиг определяется в данном изобретении как процесс превращения вещества, которое является термодинамически не стабильным, в более стабильную форму с помощью единственного или повторяющегося приложения энергии (прямого нагревания или механического напряжения), с последующей тепловой релаксацией. Данное снижение энергии может быть достигнуто с помощью превращения твердой формы из менее упорядоченной в более упорядоченную решетчатую структуру. Альтернативно данная стабилизация может осуществляться с помощью реорганизации молекул поверхностно-активного вещества на поверхности раздела твердая-жидкая фазы.

Данные четыре категории способа будут обсуждаться ниже по отдельности. Однако должно быть понятно, что условия способа, такие как выбор поверхностно-активных веществ или сочетания поверхностно-активных веществ, количество используемого поверхностно-активного вещества, температура реакции, скорость смешивания растворов, скорость осаждения и тому подобное, могут быть выбраны так, чтобы дать возможность получения любого лекарственного средства с помощью любой из категорий, обсуждаемых ниже.

Первая категория способа, так же как и вторая, третья и четвертая категории способа, могут быть дополнительно подразделены на две субкатегории, способ A и способ B, представленные в виде диаграмм на фиг.1 и 2.

Первый растворитель в соответствии с настоящим изобретением представляет собой растворитель или смесь растворителей, в которых представляющее интерес органическое соединение является относительно растворимым и которое смешивается со вторым растворителем. Такие растворители включают, но не ограничиваются ими, смешиваемые с водой протонные соединения, в которых атом водорода в молекуле связан с электроотрицательным атомом, таким как кислород, азот или другая группа VA, VIA и VII A в периодической таблице элементов. Примеры таких растворителей включают, но не ограничиваются ими, спирты, амины (первичные или вторичные), оксимы, гидроксамовые кислоты, карбоновые кислоты, сульфоновые кислоты, фосфоновые кислоты, фосфорные кислоты, амиды и производные мочевины.

Другие примеры первого растворителя включают апротонные органические растворители. Некоторые из данных апротонных растворителей могут образовывать водородные связи с водой, но могут действовать только в качестве акцепторов протонов, потому что они не имеют эффективных донорских групп протонов. Один класс апротонных растворителей представляет собой диполярный апротонный растворитель, определенный Международным объединением чистой и прикладной химии (IUPAC Compendium of Chemical Terminology, 2nd Ed., 1997) как:

“Растворитель со сравнительно высокой относительной диэлектрической проницаемостью (или диэлектрической константой), большей, чем приблизительно 15, и с существенным перманентным дипольным моментом, который не может быть донором пригодных лабильных атомов водорода для образования сильных водородных связей, например диметилсульфоксид.

Диполярные апротонные растворители могут быть выбраны из группы, состоящей из: амидов (полностью замещенных, с азотом без присоединенных атомов водорода), мочевин (полностью замещенных, с отсутствием присоединения атомов водорода к азоту), сложных эфиров, циклических эфиров, нитрилов, кетонов, сульфонов, сульфоксидов, полностью замещенных фосфатов, сложных эфиров фосфоновой кислоты, фосфорамидов, нитросоединений и тому подобное. Среди других членами данного класса являются диметилсульфоксид (ДМСО), N-метил-2-пирролидинон (NMP), 2-пирролидинон, 1,3-диметилимидазолидинон (DMI), диметилацетамид (DMA), диметилформамид (ДМФА), диоксан, ацетон, тетрагидрофуран (ТГФ), тетраметиленсульфон (сульфолан), ацетонитрил и гексаметилфосфорамид (HMPA), нитрометан.

Могут быть также выбраны растворители, которые обычно не смешиваются с водой, но имеют достаточную растворимость в воде при низких объемах (менее 10%), действуя в качестве смешиваемого с водой первого растворителя при данных пониженных объемах. Примеры включают ароматические углеводороды, алкены, алканы и галогенизированные ароматические соединения и галогенизированные алканы. Ароматические соединения включают, но не ограничиваются ими, бензол (замещенный или незамещенный) и моноциклические или полициклические арены. Примеры замещенных бензолов включают, но не ограничиваются ими, ксилолы (орто, мета или пара) и толуол. Примеры алканов включают, но не ограничиваются ими, гексан, неопентан, гептан, изооктан и циклогексан. Примеры галогенизированных ароматических соединений включают, но не ограничиваются ими, хлорбензол, бромбензол и хлортолуол. Примеры галогенизированных алканов и алкенов включают, но не ограничиваются ими, трихлорэтан, метиленхлорид, этилендихлорид (EDC) и тому подобное.

Примеры всех указанных выше классов растворителей включают, но не ограничиваются ими: N-метил-2-пирролидинон (также называемый N-метил-2-пирролидон), 2-пирролидинон (также называемый 2-пирролидон), 1,3-диметил-2-имидазолидиннон (DMI), диметилсульфоксид, диметилацетамид, уксусную кислоту, молочную кислоту, метанол, этанол, изопропанол, 3-пентанол, н-пропанол, бензиловый спирт, глицерин, бутиленгликоль (бутандиол), этиленгликоль, пропиленгликоль, моно- и диацилированные моноглицериды (такие как глицерилкаприлат), диметилизосорбид, ацетон, диметилсульфон, диметилформамид, 1,4-диоксан, тетраметиленсульфон (сульфолан), ацетонитрил, нитрометан, тетраметилмочевину, гексаметилфосфорамид (HMPA), тетрагидрофуран (ТГФ), диоксан, диэтиловый эфир, трет-бутилметиловый эфир (TBME), ароматические углеводороды, алкены, алканы, галогенизированные ароматические соединения, галогенизированные алкены, галогенизированные алканы, ксилол, толуол, бензол, замещенный бензол, этилацетат, метилацетат, бутилацетат, хлорбензол, бромбензол, хлортолуол, трихлорэтан, метиленхлорид, этилендихлорид (EDC), гексан, неопентан, гептан, изооктан, циклогексан, полиэтиленгликоль (ПЭГ, например, ПЭГ-4, ПЭГ-8, ПЭГ-9, ПЭГ-12, ПЭГ-14, ПЭГ-16, ПЭГ-120, ПЭГ-75, ПЭГ-150), эфиры полиэтиленгликоля (примеры, такие как ПЭГ-4 дилаурат, ПЭГ-20 дилаурат, ПЭГ-6 изостеарат, ПЭГ-8 пальмитостеарат, ПЭГ-150 пальмитостеарат), сорбиты полиэтиленгликоля (такие как ПЭГ-20 сорбит изостеарат), моноалкиловые эфиры полиэтиленгликоля (примеры, такие как ПЭГ-3 диметиловый эфир), ПЭГ-4 диметиловый эфир), полипропиленгликоль (PPG), полипропиленальгинат, PPG-10 бутандиол, PPG-10 метилглюкозный эфир, PPG-20 метилглюкозный эфир, PPG-15 стеариловый эфир, пропиленгликоль дикаприлат/дикапрат, пропиленгликоль лаурат и гликофурол (эфир тетрагидрофурфурилового спирта и полиэтиленгликоля). Предпочтительным первым растворителем является N-метил-2-пирролидинон. Другим предпочтительным первым растворителем является молочная кислота.

Второй растворитель представляет собой водный растворитель. Данный водный растворитель может быть водой самой по себе. Данный растворитель может также содержать буферы, соли, поверхностно-активное(ные) вещество(а), водорастворимые полимеры и сочетания данных наполнителей.

Способ А

В способе A (см. фиг.1) органическое соединение («лекарство») сначала растворяют в первом растворителе для создания первого раствора. Органическое соединение может быть добавлено от приблизительно 0,1% (мас./об.) до приблизительно 50% (мас./об.) в зависимости от растворимости органического соединения в первом растворителе. Нагревание концентрата от приблизительно 30°С до приблизительно 100°С может быть необходимым для обеспечения полного растворения соединения в первом растворителе.

Второй водный растворитель предлагается с добавлением в него одного или более необязательных модификаторов поверхности, таких как анионное поверхностно-активное вещество, катионное поверхностно-активное вещество, неионное поверхностно-активное вещество или поверхностно-активная биологическая молекула. Подходящие анионные поверхностно-активные вещества включают, но не ограничиваются ими, алкилсульфонаты, алкилфосфаты, алкилфосфонаты, лаурат калия, стеарат триэтаноламина, лаурилсульфат натрия, додецилсульфат натрия, сульфаты алкилполиоксиэтилена, альгинат натрия, диоктилсульфосукцинат натрия, фосфатидилхолин, фосфатидилглицерин, фосфатидилинозин, фосфатидилсерин, фосфатидная кислота и ее соли, эфиры глицерина, натриевая соль карбоксиметилцеллюлозы, холевая кислота и другие желчные кислоты (например, холевая кислота, дезоксихолевая кислота, гликохолевая кислота, таурохолевая кислота, гликодезоксихолевая кислота) и их соли (например, дезоксихолат натрия и т.д.). Подходящие катионные поверхностно-активные вещества включают, но не ограничиваются ими, четвертичные аммониевые соединения, такие как хлорид бензалкония, бромид цетилтриметиламмония, хитозаны, хлорид лаурилдиметилбензиламмония, гидрохлориды ацилкарнитина или галогениды алкилпиридиния. В качестве анионных поверхностно-активных веществ могут быть использованы фосфолипиды. Подходящие фосфолипиды включают, например, фосфатидилхолин, фосфатидилэтаноламин, диацилглицерофосфоэтаноламин (такой как димиристоилглицерофосфоэтаноламин (DMPE), дипальмитоилглицерофосфоэтаноламин (DPPE), дистеароилглицерофосфоэтаноламин (DSPE) и диолеолилглицерофосфоэтаноламин (DOPE)), фосфатидилсерин, фосфатидилинозитол, фосфатидилглицерин, фосфатидную кислоту, лизофосфолипиды, фосфолипид яйца или сои или их сочетание. Фосфолипид может быть в солевой или несолевой форме, гидрогенизированным или частично гидрогенизированным или природным полусинтетическим или синтетическим. Фосфолипид может также быть конъюгированным с водорастворимым или гидрофильным полимером. Предпочтительный полимер представляет собой полиэтиленгликоль (ПЭГ), который также известен как монометоксиполиэтиленгликоль (мПЭГ). Молекулярные массы ПЭГ могут варьироваться, например, от 200 до 50000. Некоторые обычно применяемые ПЭГ, которые коммерчески доступны, включают ПЭГ 350, ПЭГ 550, ПЭГ 750, ПЭГ 1000, ПЭГ 2000, ПЭГ 3000 и ПЭГ 5000. Фосфолипид или конъюгат ПЭГ-фосфолипид может также включать функциональную группу, которая может ковалентно присоединяться к лиганду, включая, но не ограничиваясь этим, белки, пептиды, углеводы, гликопротеиды, антитела или фармацевтически активные агенты. Данные функциональные группы могут конъюгироваться с лигандами через, например, образование амидной связи, образование дисульфида или тиоэфира или связывание биотин/стрептавидин. Примеры связывающих лиганд функциональных групп включают, но не ограничиваются ими, гексаноиламин, додеканиламин, 1,12-додекандикарбоксилат, тиоэтанол,

4-(п-малеимидфенил)бутирамид (MBP),

4-(п-малеимидметил)циклогексанкарбоксамид (MCC),

3-(2-пиридилдитио)пропионат (PDP), сукцинат, глютарат,

додеканоат и биотин.

Подходящие неионные поверхностно-активные вещества включают эфиры полиоксиэтилена с жирными спиртами (Macrogol и Brij), эфиры полиоксиэтиленсорбитана и жирных кислот (полисорбаты), эфиры полиоксиэтилена и жирных кислот (Myrj), эфиры сорбитана (Span), моностеарат глицерина, полиэтиленгликоли, полипропиленгликоли, цетиловый спирт, цетостеариловый спирт, стеариловый спирт, арилалкилполиэфирные спирты, полиоксиэтилен-полиоксипропилен сополимеры (полоксамеры), полоксамины, метилцеллюлозу, гидроксиметилцеллюлозу, гидроксипропилцеллюлозу, гидроксипропилметилцеллюлозу, некристаллическую целлюлозу, полисахариды, включая крахмал и производные крахмала, такие как гидроксиэтилкрахмал (HES), поливиниловый спирт и поливинилпирролидон. В предпочтительной форме изобретения неионное поверхностно-активное вещество представляет собой сополимер полиоксиэтилена и полиоксипропилена и предпочтительн