Применение триоксопиримидина для лечения и предупреждения воспалительных заболеваний бронхов

Иллюстрации

Показать все

Предложено применение 5-бифенил-4-ил-5-[4-(4-нитрофенил)-пиперазин-1-ил]пиримидин-2,4,6-триона для приготовления лекарственного средства для лечения или предупреждения воспалительных заболеваний бронхов. Показаны эффективность лечения астмы, снижение эозинофиллии, вызванной действием аллергена, и фармакокинетические преимущества соединения. 1 з.п. ф-лы, 5 табл., 13 ил.

Реферат

Настоящее изобретение относится к применению триоксопиримидина для лечения и предупреждения воспалительных заболеваний бронхов.

Введение

Матриксные металлопротеазы (ММП) являются семейством цинк- и кальцийзависимых протеаз, которые способны разрушать внеклеточный матрикс (ВКМ) и базальную мембрану (Egeblad M. and Werb Z. Nat. Rev. Cancer 2 (2002) 161-174; Overall C.M. and Lopez-Otin С., Nat. Rev. Cancer 2 (2002) 657-672). Предполагается, что они играют главную роль в эмбриональном развитии и росте (Holmbeck К. et al., Cell 99 (1999) 81-92; Vu Т.Н. et al., Cell 93 (1998) 411-422), а также в ремоделировании и восстановлении ткани (Shapiro S.D. Curr. Opin. Cell Biol. 10 (1998) 602-608; Lund L.R. et al., EMBO J. 18 (1999) 4645-4656). Поэтому чрезмерное или неадекватное экспрессирование ММП может способствовать патогенезу многих процессов ремоделирования ткани, включая прогрессирование опухоли (Egeblad M. and Werb Z. Nat. Rev. Cancer 2 (2002) 161-174; Overall C.M. and Lopez-Otin, С. Nat. Rev. Cancer 2 (2002) 657-672) и образование аневризмы (Carmeliet P. et al. Nat. Genet. 17 (1997) 439-444). Воздействие ММП не ограничивается только разложением ВКМ (Chang С. and Werb D. Trends Cell Biol. 11 (2001) S37-43). После разложения посредством ММП-9 становятся доступными пептидные факторы роста, которые секвестрированы белками ВКМ (Manes S. et al. J. Biol. Chem. 274 (1999) 6935-6945). ММП может увеличивать биологическую доступность VEGF (эндотелиального фактора роста сосудов) (Bergers G. et al. Nat. Cell Biol. 2 (2000) 737-744), но также генерируют ингибиторы ангиогенеза, такие как ангиостатин, путем расщепления плазминогена (Dong Z. et al. Cell 88 (1997) 801-810).

Ингибирование ММП или с помощью природных тканевых ингибиторов металлопротеаз (ТИМП), или с помощью низкомолекулярных ингибиторов для подопытных животных приводит к значительному противоопухолевому и противометастатическому эффекту (Brown P.D. Med. Oncol. 14 (1997) 1-10). Большинство низкомолекулярных ингибиторов ММП образовано из соединений группы, к которой относится гидроксамовая кислота, и они ингибируют все ММП, не являясь селективными по отношению к ММП-2 и ММП-9, которые являются ключевыми ММП при инвазии опухолей, распространении метастазов и ангиогенезе. Однако например, в WO 97/23465 и WO 01/25217, описаны ингибирующие ММП молекулы другой структурной группы, триоксопиримидинов. Соединения этой группы являются чрезвычайно активными и высокоселективными и характеризуются почти исключительной специфичностью по отношению к ММП-2, ММП-9, слабо воздействуя на большинство других представителей группы протеаз ММП.

Некоторые ингибиторы ММП, преимущественно соединения группы гидроксамовой кислоты, обладающие специфичностью по отношению к различным субстратам, участвовали и частично продолжают участвовать в клинических исследованиях, посвященных лечению опухолей. Все опубликованные результаты клинических исследований этих ингибиторов оказались разочаровывающими, поскольку клиническая эффективность не обнаружена или оказалась незначительной (Fletcher L. Nat. Biotechnol. 18 (2000) 1138-1139). Причиной такого отсутствия эффективности при клинических исследованиях, вероятнее всего, является то, что пациентам не смогли вводить дозы, достаточные для обеспечения противоопухолевого и противометастатического эффекта, вследствие побочных эффектов, связанных с применением этих ингибиторов широкого спектра действия. Этими ограничивающими дозы побочными эффектами преимущественно являются артралгии и миалгии (Drummond A.H. et al. Ann. N.Y. Acad. Sci. 878 (1999) 228-235). В качестве возможного пути преодоления этого затруднения в исследованиях на животных изучены комбинации ингибиторов ММП с цитостатическими/цитотоксическими соединениями. При этих исследованиях обнаружено, что комбинации ингибиторов ММП с цитостатическими/цитотоксическими лекарственными средствами обладают повышенной способностью подавлять опухоли (Giavazzi R. et al. Clin. Cancer Res. 4 (1998) 985-992). Кроме того, в заявке на международный патент № РСТ/ЕР02/04744 представлены комбинации основанных на триоксопиримидине ингибиторов желатиназы с цитостатическими/цитотоксическими соединениями, такими как цисплатин, паклитаксел, гемцитабин или этопозид.

Было предпринято много попыток выявления соединений, которые предупреждают или подавляют воспалительные заболевания бронхов. Ингаляции синтетических глюкокортикостероидов широко применяются для лечения бронхиальной астмы и они являются весьма эффективными средствами первичного лечения. Однако целый ряд нежелательных побочных эффектов и нередко сложные режимы введения этих лекарственных средств часто приводит к тому, что пациенты плохо соблюдают режим лечения. При клинических исследованиях изучено влияние на воспаление дыхательных путей лотепреднолэтабоната, неактивного метаболита мягкого стероида (Szelenyi I. et al. Drugs Today 36 (2000) 313-320). Для циклезонида, пролекарства мягкого стероида, обнаружено эффективное и не сопровождающееся побочными эффектами воздействие на страдающих астмой пациентов при введении препарата один раз в сутки, и разработана схема его применения для лечения и астмы, и хронического обструктивного заболевания легких (Rohatagi S. et al. J. Clin. Pharmacol. 43 (2003) 365-378).

Поэтому необходимы высокоактивные вещества, которые можно применять для лечения или предупреждения воспалительных заболеваний бронхов.

Описание изобретения

Согласно изобретению неожиданно было установлено, что ингибиторы ММП на основе триоксопиримидина, которые являются высокоселективными по отношению к ММП-2, ММП-9 ММП-14, применимы для лечения или предупреждения воспалительных заболеваний бронхов.

Поэтому настоящее изобретение относится к применению триоксопиримидина, обладающего ингибирующей активностью по отношению к ММП-1, ММП-2, ММП-3, ММП-9 и ММП-14, определяемой следующим образом

a) значение IC50 равно менее 5 мкМ для ММП-2, ММП-9 и ММП-14;

b) отношение значении IС50 для пар ММП-1:ММП-2, ММП-1: ММП-9, ММП-1:ММП-14 превышает 100; и

c) отношение значении IC50 для пар ММП-3:ММП-2, ММП-3: ММП-9, ММП-3:ММП-14 превышает 10,

для лечения или предупреждения воспалительных заболеваний бронхов у страдающего ими млекопитающего, нуждающегося в таком лечении.

Значения IC50 измеряют с помощью проводимого in vitro исследования ферментативной активности ММП. Такое исследование описано в публикации Stack M.S. and Gray R.D. J. Biol. Chem. 264 (1989) 4277-4281. Это исследование основано на определении ферментативной активности ММП по отношению к динитрофенольному субстрату и измерении флуоресценции субстрата после расщепления с помощью ММП.

Настоящее изобретение также относится к применению таких триоксопиримидинов для приготовления лекарственного средства, предназначенного для лечения воспалительных заболеваний бронхов у пациента, страдающего от такого заболевания.

Матриксные металлопротеазы хорошо известны в данной области техники и их характеризуют, например, номерами ЕС (ММП-1, ЕС 3.4.24.7; ММП-2, ЕС 3.4.24.24; ММП-3, ЕС 3.4.24.17, ММП-9, ЕС 3.4.24.35, ММП-14, ЕС 3.4.24).

Триоксопиримидины, применимые в настоящем изобретении, являются соединениями хорошо известного структурного класса. Такие соединения описаны, например, в патентах US №№6242455 и 6110924; WO 97/23465; WO 98/58915; WO 01/25217, которые включены в настоящее изобретение в качестве ссылки, и в публикации Grams F. et al. Biol. Chem. 382 (2001) 1277-1285, и являются эффективными и высокоселективными по отношению к ММП-2, ММП-9 и ММП-14.

В контексте настоящего изобретения особенно предпочтительными являются следующие соединения:

5-бифенил-4-ил-5-[4-(4-нитрофенил)-пиперазин-1-ил]пиримидин-2,4,6-трион (соединение I)

5-(4-феноксифенил)-5-(4-пиримидин-2-ил-пиперазин-1-ил)-пиримидин-2,4,6-трион (соединение II)

5-[4-(4-хлорфенокси)-фенил]-5-(4-пиримидин-2-ил-пиперазин-1-ил)-пиримидин-2,4,6-трион (соединение III)

5-[4-(3,4-дихлорфенокси)-фенил]-5-(4-пиримидин-2-ил-пиперазин-1-ил)-пиримидин-2,4,6-трион (соединение IV)

5-[4-(4-бромфенокси)-фенил]-5-(4-пиримидин-2-ил-пиперазин-1-ил)-пиримидин-2,4,6-трион (соединение V).

В контексте настоящего изобретения ингибиторы на основе триоксопиримидина следует вводить пациенту, страдающему от такого заболевания и нуждающемуся в таком лечении, в течение нескольких месяцев или лет (в особенности в случае предупреждения заболевания). Триоксопиримидины предпочтительно вводить в виде аэрозолей в нетоксичных дозах при концентрациях, находящихся в диапазоне от микро- до макромолярных.

Настоящее изобретение относится к способу, применяющемуся для лечения воспалительных заболеваний бронхов, предпочтительно - астмы и хронического обструктивного заболевания легких (ХОЗЛ) у страдающего ими млекопитающего, нуждающегося в таком лечении, например, у пациента, страдающего таким заболеванием, проводимому путем введения пациенту триоксопиримидина, предлагаемого в настоящем изобретении, в фармацевтически эффективном количестве. Астма является воспалительным заболеванием бронхиального дерева, связанным или не связанным с воздействием аллергена. Это воспаление провоцирует у пациентов симптомы, стимулируя сокращения гладких мышц бронхов, усиливая секрецию слизи и вызывая морфологические изменения бронхов, что считается факторами, осложняющими течение этого заболевания. Гиперчувствительность дыхательных путей является отличительным признаком этого заболевания и она приводит к большинству симптомов. Бронхиальное дерево является очень сложной тканью, содержащей множество типов клеток (эпителиальные клетки, гладкомышечные клетки, воспалительные клетки, нервные клетки, клетки, вырабатывающие слизь, фибробласты и т.п.), и ремоделирование бронхов, которое включает множество аспектов, в основном заключается в осаждении компонентов внеклеточного матрикса на стенках бронхов и гиперплазию клеток, вырабатывающих слизь. Применение триоксопиримидинов, предлагаемых в настоящем изобретении, подавляет приток воспалительных клеток в области смывания альвеол бронхов и перибронхиальную ткань и подавляет гиперчувствительность, которая определяется как аномальная реакция на стимулирующие агенты, такие как метахолин. Обзор по этому заболеванию и современным методикам его лечения приведен, например, в публикациях GINA Workshop Report, Global Strategy for Asthma Management and Prevention (NIH Publication No. 02-3659) и Fabbri L.M. and Hurd, S.S. Eur. Respir. J. 22 (2003) 1-2.

Поэтому настоящее изобретение также относится к способу лечения воспалительных заболеваний бронхов у пациента, страдающего от такого заболевания, с применением триоксопиримидина, предлагаемого в настоящем изобретении, в терапевтически эффективном количестве.

Настоящее изобретение предпочтительно также относится к способу лечения эмфиземы у пациента, страдающего от такого заболевания, путем применения триоксопиримидинов, предлагаемых в настоящем изобретении. При таком заболевании стенки альвеол разрушаются вследствие протекания протеолитических процессов и это разрушение нарушает перенос кислорода в кровь. Патофизиологические нарушения также возникают вследствие чрезмерного расширения, которое приводит к аномалиям газообмена вследствие нарушения функции дыхательных мышц и вследствие гипертензии в легочных артериях, что в поздних стадиях заболевания приводит к сердечной недостаточности.

Точная дозировка ингибиторов ММП будет меняться, но ее легко определить. Обычно предпочтительная суточная доза ингибиторов будет находиться в диапазоне от 1 мкмоль/кг в сутки до 100 нмоль/кг в сутки.

Фармацевтические композиции представляют собой водные композиции, являющиеся физиологически совместимыми. Композиции дополнительно включают вспомогательные вещества, буферы, консерванты, растворители и/или изменяющие вязкость агенты. Подходящие буферные системы основаны на фосфате натрия, ацетате натрия или борате натрия. Консерванты необходимы для предотвращения микробного загрязнения фармацевтической композиции при ее применении. Подходящими консервантами являются, например, бензалконийхлорид, хлорбутанол, метилпарабен, пропилпарабен, фенилэтиловый спирт, сорбиновая кислота. Такие консерванты обычно используют в количестве, составляющем от 0,01 до 1% мас./об.

Подходящие вспомогательные вещества и фармацевтические препараты описаны в публикации Remington's Pharmaceutical Sciences, 16th ed., 1980, Mack Publishing Co., edited by Oslo et al. Обычно в препарате используют количество фармацевтически приемлемой соли, необходимое для того, чтобы препарат стал изотоническим. Примеры фармацевтически приемлемых веществ включают физиологический раствор, раствор Рингера и раствор декстрозы. Значение рН раствора предпочтительно составляет от примерно 5 до примерно 8 и более предпочтительно - от примерно 7 до примерно 7,5.

Другим предпочтительным объектом настоящего изобретения является фармацевтическая композиция триоксопиримидина, предлагаемого в настоящем изобретении, предназначенная для лечения воспалительных заболеваний бронхов, и ее применение, композиция содержит комплекс триоксопиримидин-циклодекстрин (включение триоксопиримидина в циклодекстрин), образованный из такого триоксопиримидина или его соли и циклодекстрина, предпочтительно - растворимого в воде производного циклодекстрина (растворимый в воде определяется, как обладающий растворимостью, составляющей не менее 0,5 г/100 мл воды при 25°С). В комплексе предпочтительно, если 1 моль триоксопиримидина образует комплекс с 1 моль α-, β- или γ-циклодекстрина или его производного и включается в него. Предпочтительными циклодекстринами являются

- альфа-циклодекстрин и его синтетические производные, такие как ГПαЦД, метилированный αЦД, гидроксибутил-αЦД, мальтозил-αЦД, глюкозил-αЦД;

- бета-циклодекстрин и его синтетические производные, такие как ГПβЦД, СБОβЦД, СМβЦД, ДИМЕβЦД, ТРИМЕβЦД, гидроксибутил-βЦД, глюкозил-βЦД, мальтозил-βЦД;

- гамма-циклодекстрин и его синтетические производные, такие как ГПγЦД, СМγЦД и ДИМЕγЦД, гидроксибутил-γЦД, глюкозил-γЦД, мальтозил-γЦД.

Циклодекстрины, применимые в контексте настоящего изобретения, являются циклическими олигосахаридами, полученными ферментативным разложением крахмала, которые содержат разное количество глюкопиранозных звеньев, чаще всего 6, 7 или 8: эти циклодекстрины соответственно называются α-, β- и γ-циклодекстринами (αЦД, βЦД и γЦД). Циклодекстрины, предлагаемые в настоящем изобретении, представляют собой сами циклодекстрины или производные циклодекстрина, которые растворимы в воде по меньшей мере в количестве, равном 0,5 г/100 мл при 25°С.

Растворимое в воде производное циклодекстрина, предпочтительно применяющееся в настоящем изобретении, означает производное, обладающее растворимостью в воде, по меньшей мере такой же, как β-циклодекстрин. Примерами таких растворимых в воде производных циклодекстрина являются сульфобутилциклодекстрин, гидроксипропилциклодекстрин, мальтозилциклодекстрин и их соли. Предпочтительными являются сульфобутил-β-циклодекстрин, гидроксипропил-β-циклодекстрин, мальтозил-β-циклодекстрин и их соли.

Производными, предпочтительными в контексте настоящего изобретения, также являются метилциклодекстрины (продукты метилирования циклодекстринов), диметилциклодекстрины (ДИМЕЦД) (предпочтительно - замещенные в положениях 2 и 6), триметилциклодекстрины (предпочтительно - замещенные в положениях 2, 3 и 6), "статистически метилированные" циклодекстрины (предпочтительно - статистически замещенные в положениях 2, 3 и 6, но содержащие от 1,7 до 1,9 метальных групп в пересчете на глюкопиранозное звено, СМβЦД), гидроксипропилциклодекстрины (ГПЦД, гидроксипропилированные циклодекстрины предпочтительно - статистически замещенные в основном в положениях 2 и 3 (ГП-βЦД, ГП-γЦД)), сульфобутоксициклодекстрины (СБОЦД), гидроксиэтилциклодекстрины, карбоксиметилэтилциклодекстрины, этилциклодекстрины, амфифильные циклодекстрины, полученные прививкой углеводородных цепей к гидроксигруппам и способные образовывать наночастицы, холестеринциклодекстрины и триглицеридциклодекстрины, полученные прививкой моноаминированных циклодекстринов (со спейсерной группой).

Комплекс триоксопиримидин-циклодекстрин, предлагаемый в настоящем изобретении, можно получить путем приготовления водного раствора, содержащего триоксопиримидин или его соль и растворимое в воде производное циклодекстрина. Растворимое в воде производное циклодекстрина используют в количестве, предпочтительно составляющем 1 моль или более в пересчете на 1 моль триоксопиримидина или его соли, более предпочтительно - 1-10 моль и особенно предпочтительно - 1-2 моль циклодекстрина на 1 моль триоксопиримидина.

Чем выше концентрация растворимого в воде производного циклодекстрина, тем сильнее увеличивается растворимость триоксопиримидина. На методику приготовления водного раствора не налагается каких-либо специальных ограничений и, например, его готовят путем использования воды или буферного раствора в температурном диапазоне, составляющем примерно от -5 до 35°С.

Когда водный раствор циклодекстрина перемешивают с избытком триоксопиримидина, то происходит образование комплекса этих двух молекул. Фильтрование раствора позволяет извлечь комплекс, растворенный в фильтрате, поскольку комплекс растворим в воде. Комплекс также можно получить путем смешивания известного количества солюбилизованного триоксопиримидина в водном растворе с известным количеством солюбилизованного ЦД, соотношение которых рассчитано заранее.

Другая методика получения комплекса заключается в прибавлении раствора триоксопиримидина в растворителе (например, спирте, ацетоне и т.п.) к водному раствору циклодекстрина. Комплекс может образоваться после достаточно длительного перемешивания или после выпаривания растворителя, или даже в присутствии растворителя.

Лиофилизация или распыление растворов комплекса, предлагаемого в настоящем изобретении, позволяет получить комплекс в твердой форме. Таким образом можно получить комплекс в форме аморфного порошка. Комплекс в твердом состоянии также можно получить после растворения ЦД и триоксопиримидина в подходящем органическом растворителе с последующим выпариванием растворителя.

Для получения твердых комплексов можно использовать другие методики, которые представляют собой энергичное перемешивание суспензии триоксопиримидина и ЦД в очень небольшом количестве воды, последующий сбор комплекса после сушки, или использование СО2 в надкритическом состоянии для смешивания триоксопиримидина и ЦД в присутствии СО2 в надкритическом состоянии.

Комплекс, предлагаемый в настоящем изобретении, можно получить, например, по методике, которая сама по себе известна, из раствора или с использованием пасты, при которой отношение массы циклодекстрина к массе триоксопиримидина составляет от 2 до 540 и предпочтительно - от 2 до 25, особенно предпочтительно - в диапазоне от 2,6 до 3,5 (для комплекса с циклодекстрином состава 1:1) или от 5,2 до 6,2 (для комплекса с циклодекстрином состава 1:2).

Предпочтительно готовить комплекс из концентрированного водного препарата циклодекстрина. Концентрация циклодекстрина в препарате предпочтительно равна от 50 до 400 мМ. Предпочтение отдается концентрации циклодекстрина, равной от 100 до 250 мМ. В зависимости от консистенции смеси интенсивно перемешивают или замешивают. Содержание циклодекстрина в мас.% приводится в пересчете на полную массу водного препарата циклодекстрина.

Температура проведения реакции обычно равна от 20 до 80°С, предпочтительно - от 20 до 60°С, особенно предпочтительно - от 25 до 45°С. Длительность проведения реакции зависит от температуры и составляет от 1 ч до нескольких дней. Предпочтение отдается длительности проведения реакции, равной не менее 7 дней, чтобы установилось равновесие комплексообразования.

Согласно изобретению было установлено, что комплексы триоксопиримидина и циклодекстрина резко повышают растворимость триоксопиримидина в воде. Также установлено, что образование комплекса не оказывает неблагоприятного влияния на фармакологические характеристики триоксопиримидина.

Все эти характеристики позволяют приготовить жидкие препараты в виде растворов для инъекции или для распыления и позволяют улучшить биологическую доступность, особенно пероральную. Комплекс триоксопиримидин-циклодекстрин, предлагаемый в настоящем изобретении, можно применять в том виде, в котором он получен, или в порошкообразной форме, которую получают путем удаления содержащейся в нем воды. Примеры методик удаления воды включают лиофилизацию и сушку при пониженном давлении. Особенно предпочтительным является препарат, полученный лиофилизацией.

Комплекс триоксопиримидин-циклодекстрин, предлагаемый в настоящем изобретении, оказывает свое воздействие при пероральном или парентеральном введении и его предпочтительно готовить в виде препарата для парентерального введения, предпочтительно - в виде композиции для инъекции, или препарата для местного применения, предпочтительно - в виде аэрозольного препарата.

Примеры форм препаратов включают таблетки, капсулы, порошки и гранулы. Их можно приготовить по известным технологиям с использованием типичных добавок, таких как инертные наполнители, смазывающие вещества и связующие.

Предпочтительный препарат для распыления содержит триоксопиримидин, циклодекстрин (ЦД), NaCl и воду. Особенно предпочтительной является комбинация, содержащая (в 200 мл раствора):

триоксопиримидина 0,05-0,2 г, предпочтительно - 0,1 г; 10-50 г ЦД, предпочтительно - 20 г ЦД, предпочтительно - ГПβЦД; хлорида натрия 1,2-1,5 г, предпочтительно - 1,42 г (изотоничность) и воду, предпочтительно - апирогенную, стерильную, очищенную воду, прибавляемую для доведения объема до 200 мл.

Такой препарат применим для лечения воспалительных заболеваний бронхов.

Раствор готовят путем растворения ЦД в 100 мл очищенной воды, прибавления триоксопиримидина и NaCl при перемешивании так, чтобы они растворились, и дополнительного прибавления воды так, чтобы получить 200 мл раствора. Раствор предпочтительно стерилизовать путем фильтрования через полипропиленовую мембрану с отверстиями размером 0,22 мкм или с помощью способа стерилизации паром.

Приведенные ниже примеры, литературные ссылки и чертежи предоставлены для облегчения понимания настоящего изобретения, полный объем которого указан в прилагаемой формуле изобретения. Следует понимать, что в описанные методики можно внести изменения без отклонения от сущности настоящего изобретения.

Описание чертежей

Фиг.1 - влияние внутрибрюшинной инъекции суспензии соединения I на количество эозинофилов по данным БАЛ (фиг.1а) и показатель перибронхиального воспаления (фиг.1b). Контрольными являлись мыши, на которых воздействовали только с помощью ЗФФ и на которых не воздействовали аллергеном (ЗФФ), и мыши, на которых воздействовали с помощью ОВА путем ингаляции и с помощью плацебо путем внутрибрюшинной инъекции (ОВА).

Фиг.2 - терапевтическое воздействие комплекса соединение I-ГП-β-ЦД, флутиказона и плацебо, введенных в виде аэрозолей, на исследованную с помощью БАЛ эозинофилию (2а), показатель перибронхиального воспаления (2b) и показатель инфильтрации эозинофилов в ткань (2с) в модели кратковременного (5 дней) воздействия аллергена.

Фиг.3 - терапевтическое воздействие комплекса соединение I-ГП-β-ЦД, флутиказона и плацебо (ЗФФ), введенных в виде аэрозолей, на исследованную с помощью БАЛ эозинофилию (3а), показатель перибронхиального воспаления (3b) и показатель инфильтрации эозинофилов в ткань (3с) в модели длительного (11 недель) воздействия аллергена. Мышей, сенсибилизированных, но не подвергнутых воздействию аллергена (ЗФФ), и мышей, сенсибилизированных и подвергнутых воздействию ОВА (плацебо), лечили путем ингаляции ЗФФ.

Фиг.4 - фазовая диаграмма растворимости соединения I с ГП-β-ЦД в очищенной воде (●), в присутствии L-лизина 50 мМ (х) или L-лизина 500 мМ (▲).

Фиг.5 - зависимость средней (±СП = стандартное отклонение) концентрации соединения I в сыворотке (а) и логарифма средней концентрации соединения I в сыворотке (b) от времени после внутривенного введения (5 мг/кг) овцам (n=6).

Фиг.6 - зависимость средней (±СП) концентрации соединения I в сыворотке (а) и логарифма средней концентрации соединения I в сыворотке (b) от времени после перорального введения (15 мг/кг) раствора (▲) и суспензии (●) овцам (n=5 для введения раствора и n=6 для введения суспензии).

Аббревиатуры

ЦД циклодекстрин
ГПβЦД или ГП-β-ЦД гидроксипропил-β-циклодекстрин
ВВ внутривенное
ММП матриксная металлопротеаза
ОВА овальбумин
ЗФФ забуференный фосфатом физиологический раствор

Пример 1

Приготовление растворимого комплекса соединения I с циклодекстрином (ЦД)

1.1. Отвешивают 20 мг соединения I. Прибавляют 2 мл раствора ГПβЦД 200 мМ. Перемешивают в течение 24 ч при 37°С. Фильтруют через миллипористый фильтр Millex HV с отверстиями размером 0,45 мкм. Полученный после фильтрования раствор содержит комплекс соединение I-ЦД.

1.2. Отвешивают 2,5 мг соединения I. Прибавляют 2 мл раствора ГПβЦД 200 мМ. Перемешивают при 37°С в течение 24 ч или до полного растворения соединения I. Полученный таким образом раствор содержит комплекс соединение I-ЦД.

Пример 2

Увеличение растворимости растворимого комплекса соединения I и циклодекстрина (ЦД) путем прибавления раствора L-лизина.

Исследования растворимости проводили по методике, описанной в публикации Higuchi Т. and Connors K.A. Advances in Analytical Chemistry and Instrumentation 4 (1965) 117-212. Избыточные количества соединения I прибавляли к растворам ГП-β-ЦД увеличивающихся концентраций (0-200 мМ) в 5 мл растворяющей среды - очищенной воды или растворов L-лизина (50 или 500 мМ). Стеклянные емкости закрывали и суспензии встряхивали на водяной бане при 25°С до установления равновесия комплексообразования (7 дней). Аликвоты фильтровали через мембранный фильтр с отверстиями размером 0,45 мкм, изготовленный из ПВДФ, и содержание соединения I определяли с помощью аттестованной методики жидкостной хроматографии (ЖХ).

На фиг.4 приведена фазовая диаграмма растворимости для соединения I, полученная при 25°С в присутствии ГП-β-ЦД в очищенной воде, в 50 мМ растворе L-лизина и в 500 мМ растворе L-лизина. В этих трех случаях растворимость соединения I в воде увеличивается при увеличении концентрации ЦД. Диаграмма растворимости, полученная при отсутствии L-лизина, подтверждает отмеченный ранее результат: растворимость соединения I в 200 мМ растворе ГП-β-ЦД составляет примерно 5,5 мг/мл (11 мМ), что соответствует примерно 10000-кратному увеличению растворимости соединения I в воде.

В присутствии L-лизина растворимость соединения I в растворах ГП-β-ЦД является еще более высокой. Растворимость в 200 мМ растворе ГП-β-ЦД увеличивается примерно в 2 и 7 раз в присутствии 50 и 500 мМ раствора L-лизина соответственно. В таблице 1 приведены данные по растворимости соединения I в разных средах. Результаты свидетельствуют о синергетическом эффекте при одновременном присутствии L-лизина и ГП-β-ЦД. Растворимость в присутствии и 500 мМ L-лизина, и 200 мМ ГП-β-ЦД (38,14 мг/мл) является большей, чем ожидаемая при суммировании влияния ГП-β-ЦД и L-лизина по отдельности (5,53 мг/мл и 0,09 мг/мл). Этот синергетический эффект L-лизина и ГП-β-ЦД обеспечивает значительное увеличение растворимости соединения I в воде (70000-кратное при присутствии 500 мМ L-лизина и 200 мМ ГП-β-ЦД).

Таблица 1

Растворимость соединения I [мг/мл] в очищенной воде и L-лизине (50 и 500 мМ) без прибавления и с прибавлением ГП-β-ЦД (200 мМ)

Растворимость без ЦД [мкг/мл] Растворимость с прибавлением ГП-β-ЦД (200 мМ) [мкг/мл]
Очищенная вода 0,56 5530
L-лизин 50 мМ 50 17080
L-лизин 500 мМ 90 38140

Пример 3

Определение ферментативной активности ММП

Ингибиторы изучали с помощью модифицированной флуоресцентной методики анализа, описанной в публикации Stack M.S. and Gray R.D. J. Biol. Chem. 264 (1989) 4277-4281. ММП-1, ММП-2, ММП-3, ММП-9 ММП-14 человека имеются в продаже (например, выпускаются фирмой Calbiochem). Непосредственно перед проведением исследования проферменты активировали с помощью 1 мМ АРМА (альфа-амино-3-гидрокси-5-метил-4-изоксазолпропионат) (инкубация в течение 30 мин при 37°С). Активированный фермент разводили до 100 нг/мл в инкубационном буфере (50 мМ Tris [Tris=трис(гидроксиметиламинометан)], 100 мМ NaCl, 10 мМ СаСl2, рН 7,6). Соединения растворяли в 100% ДМСО (диметилсульфоксид). Для определения IC50 готовили не менее 8 разведении в диапазоне 0,5-1000 нМ. Субстрат DNP (дезоксирибонуклеопротеин) (Bachem M1855, 255 мкМ) растворяли в инкубационном буфере.

Пробирка содержала 970 мкл инкубационного буфера, 10 мкл раствора ингибитора и 10 мкл раствора фермента. Реакцию инициировали путем прибавления 10 мкл раствора субстрата.

Кинетику активности определяли с использованием возбуждения при длине волны, равной 280 нм, и испускания при длине волны, равной 346 нм, и исследования проводили с помощью прибора FluoroMaxтм (Spex Industries Inc., Edison, NJ, USA) в течение 120 с. В контрольной пробе вместо раствора ингибитора использовали ДМСО.

Значения IC50 определяли как концентрацию ингибитора, которая приводит к сигналу, составляющему 50% от сигнала для положительной контрольной пробы фермента.

Значения IC50 (нМ) приведены в таблице 2.

Таблица 2
ММП-1 ММП-2 ММП-3 ММП-9 ММП-14
Соединение I [нМ] 53000 65 3500 260 1
Batimastat [нМ] 25 32 67 23 19

Пример 4

Фармацевтические композиции

Ниже в качестве неограничивающих примеров описаны составы препаратов.

Предпочтительным примером препарата для инъекции является следующий:

- ГП-βЦД - 200 мМ; соединение I -1 мг/мл; стерильная вода для инъекции - сколько требуется.

Для 25 мл раствора:

a) Приготовление раствора:

Отвешивают 6,77 г ГПβЦД (4,2% Н2О) и растворяют в 25 мл воды для инъекции. Прибавляют 25 мг соединения I и нагревают на водяной бане до полного растворения последнего. Раствор стерилизуют фильтрованием.

b) Характеристики раствора:

Осмолярность раствора равна 308 мОс/кг. Значение рН равно 7,2.

Концентрации соединения I и/или ЦД при необходимости можно изменить. Предпочтительно регулировать тоничность путем прибавления NaCl.

Предпочтительным препаратом для распыления является:

для 200 мл раствора:

- соединение I - 0,1 г (ММ: 485);

- апирогенный ГПβЦД - 20,15 г (75 мМ);

- хлорид натрия -1,42 г (для обеспечения изотоничности);

- апирогенная, стерильная, очищенная вода - сколько требуется до 200 мл.

a) Отвешивают 20,15 г апирогенного ГПβЦД (3,2% Н2О, ROQUETTE) и растворяют в 100 мл очищенной воды.

b) Отвешивают 0,1 г соединения I и 1,42 г хлорида натрия и прибавляют к раствору (а) при энергичном перемешивании для его растворения.

c) Прибавляют количество воды, необходимое для получения 200 мл раствора.

d) Стерилизуют путем фильтрования через полипропиленовую мембрану с отверстиями размером 0,22 мкм.

Пример 5

Применение композиций, содержащих соединение I и ГПβЦД, для лечения вызванного аллергеном воспаления дыхательных путей и гиперчувствительности бронхов с помощью экспериментальной модели астмы на мышах

Материалы

Использовали ГП-β-ЦД (степень замещения =0,64), выпускающийся фирмой Roquette (France). Использовали апирогенный забуференный фосфатом физиологический раствор (ЗФФ), выпускающийся фирмой Bio-Wittaker (Verviers, Belgium), и метахолин, выпускающийся фирмой Sigma-Aldrich (Germany). Все остальные материалы являлись чистыми для анализа. Во всем исследовании использовали стерильную воду для инъекций. Готовили стерильные, апирогенные и изотонические растворы ЦД концентрации 20, 50 и 75 мМ. Имеющийся в продаже раствор флутиказона для ингаляций (Flixotide® 1 мг/мл) приобретали у фирмы Glaxo-Smithkline (Genval, Belgium)

Сенсибилизация, воздействие аллергена и схемы лечения

Для изучения изменения воспаления дыхательных путей после внутрибрюшинной инъекции соединения I мышей сенсибилизировали с помощью 10 мкг овальбумина, адсорбированного на оксиде алюминия (aluminject, perbio, Erembodegem, Belgium), вводимого внутрибрюшинно в дни 0 и 7, и затем на них воздействовали аэрозолями ОВА 1% или ЗФФ в течение 30 мин в дни от 21 до 24. Внутрибрюшинные инъекции выполняли за 30 мин до ингаляций ОВА. Использовали следующие препараты для инъекций: кремофор 10% - ДМСО 10% - ЗФФ 80% - соединение I 30 мг/кг (суспензия); кремофор 10% - ДМСО 10% - ЗФФ 80% - соединение I 3,75 мг/кг (раствор); ГПβЦД 200 мМ - соединение I 7,5 мг/кг (раствор); ГПβЦД 200 мМ. Все результаты сопоставляли с результатами, полученными для мышей, сенсибилизированных и подвергнутых воздействию ЗФФ и ОВА, которых лечили с помощью ЗФФ путем внутрибрюшинных инъекций. Для изучения изменения воспаления дыхательных путей после ингаляции соединения I мышей сенсибилизировали так, как описано выше. Использовали две схемы, называемые пробой с кратковременным воздействием и пробой с длительным воздействием. В случае пробы с кратковременным воздействием на мышей в дни от 21 до 27 в течение 30 мин воздействовали аэрозолями комплекса соединения I при концентрациях активного соединения в водном растворе, равных 0,03 и 0,3 мг/мл; мыши находились в камере для воздействия, изготовленной из плексигласа (30×20×15 см). В дни от 23 до 27 через 30 мин после ингаляции соединения I на мышей воздействовали аэрозолями ОВА. В случае так называемой пробы с длительным воздействием на мышей в течение 30 мин воздействовали аэрозолями соединения I при концентрациях в водном растворе, равных 0,03 и 0,3 мг/мл, в комплексе с ГПβЦД в течение 5 дней в нечетные недели и аэрозолями ОВА в течение 3 дней в нечетные недели в течение 11 недель. В четные недели ингаляции не проводили.

Аэрозоли вырабатывали с помощью ультразвукового распылителя SYSTAM (Système Assistance Medical, Le Ledat, France) при частоте колебаний, равной 2,4 МГц при различных интенсивностях колебаний и объемах вентиляции. Интенсивность колебаний была установлена постоянной в позиции 6 и объем вентиляции составлял 25 (ν1/2) л/мин.

Исследование чувствительности дыхательных путей

Через 24 ч после последнего воздействия аллергена гиперчувствительность бронхов определяли путем измерения значения параметра Penh с помощью барометрического плетизмографа по методике, предложенной в публикации Hamelmann E. et al. Am. J Respir. Crit. Care Med. 156 (1997) 766-775). Значение параметра Penh измеряли в исходном состоянии и через 5 мин после ингаляции увеличивающихся доз (25, 50, 75 и 100 мМ) метахолина (Mch).

Бронхоальвеолярный лаваж (БАЛ) и гистологическое исследование

Сразу же после исследования чувствительности дыхательных путей мышей умерщвляли и 1 мл ЗФФ, не содержащего ионов кальция и магния, но с прибавлением 0,05 мМ раствора натриевой соли ЭДТК (этилендиаминтетрауксусная кислота) по каплям 4 раза вливали через трахеальную канюлю и извлекали путем проводимого вручную осторожного отсасывания. Извлеченную после бронхоальвеолярного лаважа жидкость (БАЛ) центрифугировали (1800 об/мин в течение 10 мин при 4°С). Таблетку клеток дважды промывали и затем повторно суспендировали в 1 мл ЗФФ. Полное количество клеток подсчитывали в камере Thoma и количества разных клеток в образцах, содержащих не менее 400 клеток, определяли для цитоцентрифугированных препаратов (Cytospin 2; Cytospin, Shandon td., Runcorn, Cheshire, U.K.) с использованием стандартных морфологических критериев после окрашивания с помощью Diff-Quick (Dade, Germany). После БАЛ вскрывали грудную клетку и пережимали левый главный бронх. Левое легкое вырезали и сразу же замораживали в жидком N2 для химического анализа белка и экстракции мРНК, а правое легкое обрабатывали для проведения гистологического исследования. По описанной ранее методике (Cataldo D.D. et al. Am. J. Pathol. 161 (2002) 491-498) правое легкое заполняли 4% параформальдегидом и помещали в парафин. Срезы толщиной 5 мкм для всех долей окрашивали гематоксилином и эозином. Степень перибронхиальной инфильтрации оценивали с помощью показателя воспаления. Срезы кодировали и перибронхиальное воспаление оценивали по слепой схеме с использованием воспроизводимой системы показателей, описанной ранее (Cataldo D.D. et al. Am. J. Pathol. 161 (2002) 491-498). Каждый исследованный срез ткани оценивали с помощью показателей, равных от 0 до 3. Значение 0 присваивали в случае, когда воспаление не обнаруживалось, значение 1 - в случае, когда вокруг бронхов иногда скапливались воспалительные клетки, значение 2 - в случае, когда большинство бронхов было окружено тонким слоем (1-5 клеток) воспалительных клеток и значение 3 - в случае, когда большинство бронхов было окружено толстым слоем (>5 клеток) воспалительных клеток. После