Ингибиторы рецепторов фактора роста эндотелия сосудов типа 2
Иллюстрации
Показать всеНастоящее изобретение относится к области биотехнологии и может быть использовано в медицине при диагностике и лечении состояний, связанных с аномальным ангиогенезом. На основе аминокислотной последовательности домена 10 человеческого фибронектина III типа (10Fn3) получена группа мутантных полипептидов, способных конкурировать с природным фактором роста эндотелия сосудов (VEGF-A) за связывание с рецептором VEGFR-2 (KDR), а также ПЭГ-илированные формы этих полипептидов с улучшенными фармакокинетическими характеристиками. Предлагается использовать новые полипептиды и их ПЭГ-производные для ингибирования биологических активностей, опосредованных VEGF, в частности, в терапии раковых заболеваний. 7 н. и 11 з.п., 31 ил., 11 табл.
Реферат
Родственные заявки
Данная заявка испрашивает приоритет на основании даты подачи предварительной заявки США № 60/527886, озаглавленной "Ингибиторы рецепторов фактора роста эндотелия сосудов" и поданной 5 декабря 2003. Все доктрины вышеуказанной заявки включены в данное описание в качестве ссылки.
Предпосылки создания изобретения
Настоящее изобретение относится к новым полипептидам, связывающим рецепторы факторов роста эндотелия сосудов (VEGFR), а также к способам применения данных полипептидов для ингибирования биологических активностей, опосредованных факторами роста эндотелия сосудов (VEGF).
Ангиогенез представляет собой процесс формирования новых кровеносных сосудов из предсуществующих капилляров или пост-капиллярных венул; он является важной составной частью многих физиологических процессов, включающих в себя овуляцию, эмбриональное развитие, заживление раны и образование коллатеральных сосудов в миокарде. Ангиогенез также играет центральную роль в ряде патологических состояний, таких как опухолевые рост и метастазирование, диабетическая ретинопатия и дегенерация желтого пятна. Во многих случаях процесс начинается с активации существующих клеток эндотелия сосудов в ответ на ряд цитокинов и факторов роста. При раковом заболевании высвобождаемые опухолью цитокины или ангиогенные факторы стимулируют клетки эндотелия сосудов посредством взаимодействия с рецепторами клеточной поверхности. Активированные эндотелиальные клетки секретируют ферменты, которые разрушают базальную мембрану сосудов и создают возможность для инвазии эндотелиальных клеток в опухолевую ткань. Заняв определенное положение, эндотелиальные клетки дифференцируются с образованием новых ответвлений уже существующих сосудов. Новые кровеносные сосуды поставляют опухоли питательные вещества, обеспечивая дальнейший рост, и, кроме того, они определяют направление метастазирования.
В настоящее время идентифицировано большое количество ангиогенных факторов, в том числе особенно активный фактор VEGF. Изначально VEGF был выделен из кондиционированной среды звездчатых фолликулярных клеток и из ряда клеточных линий. Позже был идентифицирован ряд структурных гомологов и образующихся в результате альтернативного сплайсинга форм VEGF. Различные формы VEGF связываются как высокоаффинные лиганды с семейством рецепторов VEGF (VEGFR). VEGFR представляют собой тирозинкиназные рецепторы, многие из которых являются важными регуляторами ангиогенеза. Семейство VEGFR включает в себя 3 основных подтипа: VEGFR-1, VEGFR-2 (также известный как рецептор с инсерцией киназного домена, "KDR", встречающийся у людей) и VEGFR-3. Известно, что такие формы VEGF, как VEGF-A, VEGF-C и VEGF-D, связывают и активируют VEGFR-2.
VEGF, действуя через распознающие его рецепторы, в процессе ангиогенеза может функционировать как специфичный эндотелиальный митоген. Кроме того, существуют убедительные доказательства того, что при состояниях, характеризующихся аномальным ангиогенезом, таких как рак, существует повышающая регуляция VEGF и VEGFR. Поэтому внимание многих исследователей было сосредоточено на идентификации терапевтических средств, направленных на VEGF или VEGFR, или ингибирующих VEGF или VEGFR.
Существующие в настоящее время терапевтические средства, направленные на VEGF или VEGFR или ингибирующие VEGF или VEGFR, включают в себя антитела, пептиды и низкомолекулярные ингибиторы киназ. Из них наиболее часто используются антитела, распознающие и ингибирующие in vivo лиганды и клеточные рецепторы. Высокоспецифичные антитела используют для блокировки взаимодействия рецептора с лигандом и нейтрализации посредством этого биологической активности компонентов, а также для специфической доставки токсичных агентов к клеткам, экспрессирующим на поверхности узнаваемый рецептор. Хотя антитела и обладают высокой эффективностью, они представляют собой большие сложные молекулы, получение которых основано на экспрессии в рекомбинантных клетках млекопитающих. Антитела также вызывают ряд побочных эффектов, зачастую нежелательных, в том числе активацию путей комплемента и антитело-зависимую клеточную цитотоксичность. Следовательно, остается потребность в эффективных терапевтических средствах, которые могут специфично ингибировать пути VEGF/VEGFR и использоваться для лечения заболеваний, характеризующихся аномальным ангиогенезом, таких как рак.
Краткое описание изобретения
В частности, данное описание предлагает новые однодоменные полипептиды, которые связываются с рецепторами VEGFR-2, особенно с человеческим рецептором VEGFR-2 (также известным как KDR) и мышиным VEGFR-2 (также известным как Flk-1). Описанные в данном документе VEGFR-2-связывающие белки можно использовать, например, для детекции VEGFR-2 in vivo или in vitro. Кроме того, некоторые из описанных в данном документе VEGFR-2-связывающих белков можно использовать для лечения заболеваний, связанных с биологической активностью, опосредованной VEGFR-2. Например, KDR опосредует про-ангиогенные эффекты VEGF и, соответственно, некоторые KDR-связывающие белки данного описания можно использовать для ингибирования ангиогенеза у людей. Некоторые VEGFR-2-связывающие белки данного изобретения можно использовать для лечения таких заболеваний, как рак, воспалительные заболевания, аутоиммунные заболевания и ретинопатии. Многие нарушения, связанные с гиперпролиферацией клеток ткани, включают в себя ангиогенный компонент и, следовательно, полагают, что некоторые описанные в данном документе VEGFR-2-связывающие белки можно использовать для лечения таких нарушений.
Описанный в данном документе однодоменный полипептид, как правило, представляет собой полипептид, который связывается с мишенью, такой как VEGFR-2, где мишень-связывающую активность обеспечивает один структурный домен, в отличие, например, от антител и одноцепочечных антител, в которых проявление антиген-связывающей активности обусловлено наличием и вариабельного домена тяжелой цепи, и вариабельного домена легкой цепи. Данное описание также предлагает более крупные белки, которые могут содержать однодоменные полипептиды, связывающиеся с мишенью. Например, несколько однодоменных полипептидов могут быть соединены с образованием композитной молекулы с повышенной авидностью. Аналогично, однодоменный полипептид может быть соединен (например, с образованием гибридного белка) с любым числом других полипептидов. В некоторых аспектах однодоменный полипептид может содержать, по меньшей мере, от пяти до семи бета-цепей или бета-подобных цепей, распределенных, по меньшей мере, среди двух бета-слоев, как, например, в иммуноглобулиновых и иммуноглобулин-подобных доменах. Бета-подобная цепь представляет собой нить аминокислот, участвующих в стабилизации однодоменного полипептида, но не обязательно принимает конформацию бета-цепи. Чтобы определить, участвует ли бета-цепь в стабилизации белка, осуществляют делецию нити или изменяют последовательность нити и анализируют, изменилась ли стабильность белка. Стабильность можно определить, например, путем термической денатурации и ренатурации молекулы. Предпочтительно, однодоменный полипептид содержит не более двух бета-подобных цепей. Бета-подобная цепь обычно находится не в альфа-спиральной конформации, а в виде статистического клубка. В иммуноглобулиновом домене или иммуноглобулин-подобном домене бета-подобная цепь чаще всего находится в положении, которое обычно занимает основная часть N-концевой бета-цепи или основная часть C-концевой бета-цепи. Если аминокислотная нить находится в средней части белковой последовательности, она обычно образует бета-цепь, а если аминокислотная нить находится в положении, близком к N- или C-концу, ее конформация отличается от бета-цепи и в данном описании упоминается как бета-подобная цепь.
В некоторых воплощениях данное изобретение предлагает однодоменные полипептиды, которые связываются с VEGFR-2. Предпочтительно однодоменные полипептиды связываются с человеческим KDR, мышиным Flk-1 или и с тем, и с другим. Однодоменный полипептид может содержать приблизительно от 80 до 150 аминокислот, которые образуют структуру, включающую в себя: по меньшей мере, семь бета-цепей или бета-подобных цепей, распределенных между, по меньшей мере, двумя бета-слоями, и, по меньшей мере, один петлеобразный участок, соединяющий две бета-цепи или бета-подобные цепи, причем указанный петлеобразный участок участвует в связывании VEGFR-2. Другими словами, петлеобразный участок может соединять две бета-цепи, две бета-подобные цепи, или одну бета-цепь и одну бета-подобную цепь. Как правило, в связывании VEGFR-2 участвуют один или несколько петлеобразных участков, хотя один или несколько участков бета-цепи или бета-подобной цепи также могут участвовать в связывании VEGFR-2, особенно участков бета-цепи или бета-подобной цепи, расположенных вблизи петлеобразных участков. Однодоменный полипептид может содержать в качестве структурного элемента иммуноглобулиновый домен или иммуноглобулин-подобный домен. Однодоменный полипептид может связываться с любой частью VEGFR-2, хотя полипептиды, которые связываются с внеклеточным доменом VEGFR-2, являются предпочтительными. Связывание можно оценить с помощью равновесных констант (например, константы диссоциации, KD) и кинетических констант (например, константы скорости прямой реакции, kon, и константы скорости обратной реакции, koff). Как правило, выбирают такой однодоменный полипептид, который связывает VEGFR-2 с KD менее чем 10-6 M или менее чем 10-7 M, 5×10-8, 10-8 M или менее чем 10-9 M. Полипептиды, связывающие VEGFR-2, могут конкурировать за связывание с одним, двумя или более членами семейства VEGF, особенно с VEGF-A, VEGF-C и VEGF-D, и могут ингибировать одно или несколько VEGFR-2-опосредованных биологических событий, таких как пролиферация эндотелиальных клеток, пермеабилизация кровеносных сосудов и повышение подвижности эндотелиальных клеток. Полипептиды, связывающие VEGFR-2, можно использовать для терапевтических целей, а также для других целей, включающих в себя детекцию или связывание VEGFR-2. Как правило, полипептиды, предназначенные для терапевтического применения, имеют KD менее 5×10-8 M, менее 10-8 M или менее 10-9 M, хотя могут быть приемлемыми более высокие значения KD, если koff является достаточно низкой, а kon является достаточно высокой. В некоторых воплощениях однодоменный полипептид, который связывается с VEGFR-2, содержит VEGFR-2-связывающую консенсусную последовательность, выбранную из группы, состоящей из: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3 и SEQ ID NO:4. Предпочтительно, такая последовательность расположена в петле, особенно в петле FG.
В некоторых воплощениях однодоменный полипептид содержит иммуноглобулиновый (Ig) вариабельный домен. Вариабельный домен Ig может быть выбран, например, из группы, состоящей из: человеческого домена VL, человеческого домена VH и верблюжьего домена VHH. В связывании VEGFR-2 может участвовать одна, две, три или более петель вариабельного домена Ig, как правило, в связывании VEGFR-2 участвует любая из петель, известных как CDR1, CDR2 или CDR3.
В некоторых воплощениях однодоменный полипептид содержит иммуноглобулин-подобный домен. В связывании VEGFR-2 могут участвовать одна, две, три или более петли иммуноглобулин-подобного домена. Предпочтительным иммуноглобулин-подобным доменом является домен фибронектина типа III (Fn3). Такой домен может содержать в направлении от N-конца к C-концу бета-цепь или бета-подобную цепь A; петлю AB; бета-цепь B; петлю, BC; бета-цепь C; петлю CD; бета-цепь D; петлю DE; бета-цепь F; петлю FG и бета-цепь или бета-подобную цепь G. Пример структурной организации приведен на фиг.22. В связывании VEGFR-2 необязательно может участвовать любая из петель или все петли AB, BC, CD, DE, EF и FG, хотя предпочтительными петлями являются BC, DE и FG. Предпочтительным доменом Fn3 является домен Fn3 из человеческого фибронектина, особенно 10ый домен Fn3 фибронектина, обозначаемый 10Fn3. Следует отметить, что ни один из VEGFR-2-связывающих полипептидов, раскрытых в данном описании, не имеет аминокислотной последовательности, идентичной нативному 10Fn3; данная последовательность была модифицирована с получением VEGFR-2-связывающих белков, тем не менее белки, обладающие основными структурными признаками 10Fn3, в особенности те из них, которые сохраняют распознаваемую гомологию последовательности по сравнению с нативным 10Fn3, тоже называют "полипептиды 10Fn3". Данная система присвоения терминов согласуется с терминологией, используемой для обозначения антител, где, например, домен VL рекомбинантного антитела, полученный против конкретного белка-мишени, может не быть идентичным какому-либо природному домену VL, однако данный белок распознается как белок VL. Полипептид 10Fn3 может быть идентичен человеческому домену 10Fn3 с последовательностью SEQ ID NO:5, по меньшей мере, на 60%, 65%, 70%, 75%, 80%, 85% или 90%. Наибольшая вариабельность преимущественно наблюдается в одной или нескольких петлях. Каждая из бета- или бета-подобных цепей полипептида 10Fn3 может по существу состоять из аминокислотной последовательности, по меньшей мере, на 80%, 85%, 90%, 95% или 100% идентичной последовательности бета- или бета-подобной цепи SEQ ID NO: 5, при условии, что такие вариации не нарушают стабильность полипептида в физиологических условиях. Каждая из петель AB, CD и EF полипептида 10Fn3 может по существу состоять из аминокислотной последовательности, по меньшей мере, на 80%, 85%, 90%, 95% или 100% идентичной последовательности соответствующей петли из SEQ ID NO: 5. Во многих случаях любая из петель BC, DE и FG или все петли BC, DE и FG обладают низкой степенью консервативности по сравнению с SEQ ID NO: 5. Например, все петли BC, DE и FG могут быть менее чем на 20%, 10% или 0% идентичны соответствующим петлям из SEQ ID NO: 5.
В некоторых воплощениях данное изобретение предлагает отличный от антитела полипептид, содержащий домен, имеющий иммуноглобулин-подобную складку, которая связывается с VEGFR-2. Отличный от антитела полипептид может иметь молекулярную массу менее 20 кДа или менее 15 кДа, и, как правило, его получают (например, путем изменения аминокислотной последовательности) из базового белка или "каркаса", например из каркаса Fn3. Отличный от антитела полипептид может связывать VEGFR-2 с KD менее 10-6 M или менее 10-7 M, менее 5×10-8 M, менее 10-8 M или менее 10-9 M. Неизмененный базовый белок либо не способен в значительной степени связывать VEGFR-2, либо связывает его с KD более 10-6 M. Отличный от антитела полипептид может ингибировать сигнальный путь VEGF, особенно, если отличный от антитела полипептид имеет KD менее 5×10-8 M, менее 10-8 M или менее 10-9 M, хотя и более высокие значения KD могут быть приемлемыми, если koff является достаточно низким (например, менее 5×10-4 с-1). Иммуноглобулин-подобная складка может представлять собой полипептид 10Fn3.
В некоторых воплощениях описание предлагает полипептид, состоящий из одного домена, содержащего иммуноглобулиновую складку, которая связывается с VEGFR-2. Полипептид может иметь молекулярную массу менее 20 кДа или менее 15 кДа и, как правило, его получают (например, путем изменения аминокислотной последовательности) из вариабельного домена иммуноглобулина. Данный полипептид может связывать VEGFR-2 с KD менее 10-6 M или менее 10-7 M, менее 5×10-8 M, менее 10-8 M или менее 10-9 M. Полипептид может ингибировать сигнальный путь VEGF, особенно, если он имеет KD менее 5×10-8 M, менее 10-8 M или менее 10-9 M, хотя и более высокие значения KD могут быть приемлемыми, если koff является достаточно низким или если kon является достаточно высоким. В некоторых предпочтительных воплощениях однодоменный полипептид, содержащий иммуноглобулиновую складку, полученную из вариабельного домена легкой цепи иммуноглобулина, и способный связывать VEGFR-2, может содержать аминокислотную последовательность, выбранную из группы, состоящей из SEQ ID NO: 241-310.
В некоторых предпочтительных воплощениях описание предлагает VEGFR-2-связывающие полипептиды, содержащие любую из аминокислотных последовательностей SEQ ID NO: 192-194. В случае полипептида, содержащего аминокислотную последовательность SEQ ID NO: 194, фрагмент PEG или другой представляющий интерес фрагмент может быть ковалентно связан с цистеином в положении 93. Фрагмент PEG также может быть ковалентно связан с аминовым фрагментом полипептида. Аминовый фрагмент может представлять собой, например, первичный амин, расположенный на N-конце полипептида, или аминогруппу, присутствующую в аминокислоте, такой как лизин или аргинин. В некоторых воплощениях фрагмент PEG присоединен в положении полипептида, выбранном из группы, состоящей из: a) N-конца; b) положения между N-концом и основной частью N-концевой бета-цепи или бета-подобной цепи; c) петли, расположенной на стороне полипептида, противоположной мишень-связывающему сайту; d) положения между C-концом и основной частью С-концевой бета-цепи или бета-подобной цепи и e) C-конца.
В некоторых аспектах данное изобретение предлагает короткие пептидные последовательности, которые опосредуют связывание VEGFR-2. Такие последовательности могут опосредовать связывание VEGFR-2 в выделенном виде, или в составе конкретной белковой структуры, такой как иммуноглобулиновый или иммуноглобулин-подобный домен. Примеры таких последовательностей включают в себя последовательности, раскрытые как SEQ ID NO: 1-4, а также другие последовательности, которые, по меньшей мере, на 85%, 90% или 95% идентичны последовательностям SEQ ID NO: 1-4 и сохраняют VEGFR-2-связывающую активность. Соответственно, данное изобретение предлагает по существу чистые полипептиды, содержащие аминокислотную последовательность, по меньшей мере, на 85% идентичную любой из последовательностей SEQ ID NO: 1-4, где указанные полипептиды связывают VEGFR-2 и конкурируют с разновидностями VEGF за связывание с VEGFR-2. Примеры таких полипептидов включают в себя полипептид, содержащий аминокислотную последовательность, по меньшей мере, на 80%, 85%, 90%, 95% или 100% идентичную аминокислотной последовательности, по меньшей мере, на 85% идентичной любой из последовательностей SEQ ID NO: 6-183, 186-197 и 199. Предпочтительно, такой полипептид ингибирует биологическую активность VEGF и может связываться с VEGFR-2 с KD менее 10-6 M или менее 10-7 M, менее 5×10-8 M, менее 10-8 M или менее 10-9 M.
В некоторых воплощениях любой из VEGFR-2-связывающих полипептидов, описанных в данном документе, может быть связан с одним или несколькими дополнительными фрагментами, в том числе, например, с фрагментом, который также связывается с VEGFR-2 (например, со вторым VEGFR-2-связывающим полипептидом, идентичным первому или отличающимся от него), с фрагментом, который связывается с другой мишенью (например, с получением агента, обладающего двойной специфичностью связывания), маркирующим фрагментом, с фрагментом, который облегчает очистку, или с фрагментом, который улучшает фармакокинетику. Улучшенную фармакокинетику можно оценить в соответствии с осознаваемой терапевтической потребностью. Зачастую желательно увеличить биодоступность и/или увеличить время между приемами доз, возможно, путем увеличения времени, в течение которого белок остается доступным в сыворотке после введения дозы. В некоторых случаях желательно повысить постоянство концентрации белка в сыворотке с течением времени (например, уменьшить разницу в сывороточной концентрации белка сразу после введения и сразу перед следующим введением). Фрагменты, которые способны замедлять выведение белка из крови, включают в себя полиэтиленгликоль, сахара (например, сиаловые кислоты) и хорошо переносимые белковые фрагменты (например, фрагмент Fc или сывороточный альбумин). Однодоменный полипептид может быть присоединен к фрагменту, который уменьшает скорость выведения полипептида у млекопитающего (например, мыши, крысы или человека) более чем в три раза по сравнению с немодифицированным полипептидом. Другие показатели улучшения фармакокинетики могут включать в себя период полужизни в сыворотке, который часто подразделяют на альфа-фазу и бета-фазу. Одну или обе фазы можно существенно улучшить путем добавления подходящего фрагмента. Если используют полиэтиленгликоль, одна или несколько молекул PEG могут быть присоединены к белку в разных положениях путем взаимодействия с аминогруппами, тиольными группами или другими подходящими реакционноспособными группами. Пэгилирование можно проводить сайт-направленным способом, при котором в белок вводят реакционноспособную группу, чтобы создать участок, по которому будет предпочтительно проходить пэгилирование. В предпочтительном воплощении белок модифицируют путем введения в желательное положение цистеинового остатка, чтобы обеспечить направленное пэгилирование по цистеину. PEG может иметь разную молекулярную массу и может быть разветвленным или линейным. Следует отметить, что в настоящем изобретении показано, что пэгилирование совместимо с мишень-связывающей активностью полипептидов 10Fn3 и что пэгилирование не улучшает фармакокинетику таких полипептидов. Соответственно, в одном воплощении данное изобретение предлагает пэгилированные формы полипептидов 10Fn3 независимо от мишени, которую могут связывать такие полипептиды.
В некоторых воплощениях данное изобретение предлагает композицию, содержащую любой из описанных VEGFR-2-связывающих полипептидов. Композиция может представлять собой терапевтическую композицию, содержащую VEGFR-2-связывающий полипептид и фармацевтически приемлемый носитель. Композиция также может представлять собой сочетанную композицию, содержащую дополнительное активное средство, такое как противораковое или противоангиогенное средство.
В некоторых аспектах изобретение предлагает способы применения VEGFR-2-связывающего белка, связанные с ингибированием биологической активности VEGF в клетке или с ингибированием биологической активности, опосредованной VEGFR-2. Клетка может находиться in vivo или ex vivo и может представлять собой, например, клетку живого организма, культивируемую клетку или клетку образца ткани.
Данный способ может предусматривать контактирование указанной клетки с любым из VEGFR-2-ингибирующих полипептидов, раскрытых в данном описании, в количестве и в течение времени, достаточных для ингибирования такой биологической активности.
В некоторых аспектах изобретение предлагает способы лечения субъекта, страдающего от состояния, реагирующего на ингибирование VEGF или VEGFR-2. Такой способ может предусматривать введение указанному субъекту эффективного количества любого из описанных в данном документе VEGFR-2-ингибирующих полипептидов. Состояние может сопровождаться аномальным ангиогенезом. Состояние может представлять собой гиперпролиферативное состояние. Примеры подходящих для лечения состояний (или нарушений) включают в себя аутоиммунные нарушения, воспалительные нарушения, ретинопатии (особенно, пролиферативные ретинопатии) и раковые заболевания. Любой из описанных в данном документе VEGFR-2-ингибирующих полипептидов можно использовать для получения лекарственного средства для лечения нарушения, особенно нарушения, выбранного из группы, состоящей из аутоиммунного нарушения, воспалительного нарушения, ретинопатии и ракового заболевания.
В некоторых аспектах изобретение предлагает способы детекции VEGFR-2 в образце. Способ может предусматривать контактирование образца с описанным в данном документе VEGFR-2-связывающим полипептидом, где указанное контактирование осуществляют в условиях, обеспечивающих образование комплекса полипептид-VEGFR-2, с последующей детекцией указанного комплекса, а следовательно, и детекцией указанного VEGFR-2 в указанном образце. Детекцию можно проводить с использованием любого известного в данной области метода, такого как, например, радиография, иммунологический анализ, флуоресцентная детекция, масс-спектроскопия или метод поверхностного плазмонного резонанса. Образец зачастую представляет собой биологический образец, такой как биопсийный материал, особенно биопсийный материал опухоли и предполагаемой опухоли, или ткань, которая предположительно подвержена нежелательному ангиогенезу.
Образец может быть взят от человека или от другого млекопитающего. VEGFR-2-связывающий полипептид можно метить маркирующим фрагментом, таким как радиоактивный фрагмент, флуоресцентный фрагмент, хромогенный фрагмент, хемилюминесцентный фрагмент или гаптеновый фрагмент. VEGFR-2-связывающий полипептид можно иммобилизовать на твердом носителе.
Другой аспект описания относится к нуклеиновой кислоте, содержащей нуклеотидную последовательность, кодирующую раскрытый в данном описании полипептид. В некоторых воплощениях нуклеиновая кислота может содержать нуклеотидную последовательность, кодирующую полипептид, выбранный из группы, состоящей из SEQ ID No. 6-183, 186-197, 199 и 241-528. В некоторых воплощениях нуклеиновая кислота содержит нуклеиновую кислоту, которая гибридизуется в жестких условиях с нуклеотидной последовательностью SEQ ID NO: 184 и кодирует полипептид, который связывается с человеческим KDR с KD менее 1×10-6 M. В конкретных воплощениях нуклеиновая кислота может содержать нуклеотидную последовательность, выбранную из группы, состоящей из SEQ ID NO: 184 и SEQ ID NO: 185.
В другом аспекте данное изобретение относится к вектору экспрессии, содержащему нуклеиновую кислоту, функционально связанную с промотором, где нуклеиновая кислота кодирует раскрытый в данном описании полипептид. Другой аспект данного описания относится к клетке, содержащей раскрытую в данном описании нуклеиновую кислоту. Также предлагается способ получения полипептида, связывающегося с VEGFR-2, например KDR, предусматривающий экспрессию нуклеиновой кислоты, кодирующей полипептид данного изобретения. В некоторых воплощениях нуклеиновая кислота может содержать последовательность, кодирующую полипептид, выбранный из группы, состоящей из любой из последовательностей SEQ ID NO: 6-183, 186-197, 199 и 241-528. В некоторых воплощениях нуклеиновая кислота содержит последовательность, которая гибридизуется в жестких условиях с нуклеотидной последовательностью SEQ ID NO: 184. В некоторых воплощениях нуклеиновая кислота содержит нуклеотидную последовательность, выбранную из группы, состоящей из SEQ ID NO: 184 и SEQ ID NO: 185. В некоторых воплощениях нуклеиновая кислота экспрессируется в клетке. Альтернативно нуклеиновая кислота экспрессируется в бесклеточной системе.
В некоторых аспектах изобретение предлагает открытия, применимые к любому полипептиду 10Fn3 независимо от того, с какой мишенью связывается полипептид, полученный методом генной инженерии. Как указано выше, изобретение демонстрирует, что PEG можно успешно использовать для улучшения фармакокинетики полипептида 10Fn3 и что он по существу не препятствует связыванию мишени. Соответственно, изобретение предлагает пэгилированные полипептиды 10Fn3, которые связываются с мишенью и обладают улучшенной фармакокинетикой по сравнению с непэгилированным полипептидом. В следующем воплощении изобретение демонстрирует, что делеция первых восьми аминокислот полипептида 10Fn3 может увеличить сродство связывания с мишенью. Соответственно, данное изобретение предлагает полипептиды 10Fn3, утратившие восемь исходных аминокислот (аминокислоты пронумерованы в соответствии с последовательностью SEQ ID No: 5). Понятно, что к делетированной форме пептида снова можно добавить одну или две аминокислоты, чтобы обеспечить трансляцию и соответствующий процессинг. Изобретение демонстрирует, что подкожное введение полипептида 10Fn3 приводит к замедленному высвобождению полипептида в кровоток и к уменьшению максимальной сывороточной концентрации полипептида 10Fn3. Соответственно, данное изобретение предлагает способы введения полипептида 10Fn3 пациенту путем подкожного введения. Данный способ введения позволяет достичь замедленного высвобождения по сравнению с внутривенным введением и/или уменьшения максимального сывороточного уровня полипептида 10Fn3, по меньшей мере, на 25% или, по меньшей мере, на 50% по сравнению с максимальным сывороточным уровнем, достигаемым при внутривенном введении равной дозы. Вводимый полипептид 10Fn3 может быть присоединен к фрагменту, который увеличивает период полужизни в сыворотке (или уменьшает скорость выведения, или подобным образом влияет на другой фармакокинетический параметр) полипептида 10Fn3, такому как фрагмент полиэтиленгликоля. Предпочтительно, вводимый полипептид 10Fn3 содержит аминокислотную последовательность, которая, по меньшей мере, на 60%, 65%, 70%, 75%, 80%, 85%, 90% идентична SEQ ID NO: 5.
В некоторых аспектах изобретение предлагает однодоменные полипептиды, которые связываются с предварительно выбранным белком-мишенью из первого млекопитающего и с его гомологом из второго млекопитающего. Такие однодоменные полипептиды являются особенно полезными, если первое млекопитающее представляет собой человека, а второе млекопитающее представляет собой животное, подходящее для проведения предклинических испытаний, такое как мышь, крыса, морская свинка, собака или отличный от человека примат. Данное изобретение демонстрирует, что с помощью методов генной инженерии можно получить однодоменные полипептиды, обладающие такой двойной специфичностью, что двойная специфичность упрощает разработку лекарственного препарата, поскольку она позволяет проводить испытания одного и того же полипептида на клетках человека, на людях и на животных моделях. Предпочтительно, предварительно выбранный белок-мишень из первого млекопитающего и его гомолог из второго млекопитающего имеют достаточно похожие аминокислотные последовательности, чтобы обеспечить получение полипептидов с двойной специфичностью. Например, предварительно выбранный белок-мишень из первого млекопитающего и его гомолог из второго млекопитающего могут обладать, по меньшей мере, 80%, 90% или 95% идентичностью на участке, состоящем, по меньшей мере, из 50 аминокислот, и необязательно могут обладать, по меньшей мере, 80%, 90% или 95% идентичностью на протяжении всей последовательности белка или на протяжении последовательности внеклеточного домена в случае мембранного белка. Однодоменный полипептид, характеризующийся двойной специфичностью связывания данного типа, может содержать иммуноглобулиновый или иммуноглобулин-подобный домен и предпочтительно связывается как с предварительно выбранным человеческим белком-мишенью, так и с его гомологом - с константой диссоциации менее 1×10-6 M, 1×10-7 M, 5×10-8 M, 1×10-8 M или 1×10-9 M.
Краткое описание чертежей
На фиг.1A-1D приведены графики и фотографии, характеризующие KDR-связывающие отдельные клоны из 6 цикла KDR-селекции. На фиг.1A приведен график, демонстрирующий специфическое связывание связывающих белков на основе фибронектина с 25 нМ KDR-Fc, полученный с помощью радиоактивного равновесного анализа связывания. На фиг.1B приведен график, демонстрирующий ингибирование специфического связывания KDR-Fc с выбранными связывающими белками на основе фибронектина в присутствии 100-кратного избытка VEGF165. Как показано на данной фигуре, некоторые связывающие белки конкурируют с VEGF165 за связывание с KDR-Fc, тогда как другие, например, относящиеся к клону 8, не конкурируют с VEGF165. На фиг.1C приведен график, демонстрирующий ингибирование взаимодействия KDR-Fc с иммобилизованным VEGF165 в присутствии выбранных связывающих белков на основе фибронектина, полученный с помощью анализа BIAcore. На фиг.1D приведена фотография, демонстрирующая связывание VR28 с KDR-экспрессирующими и контрольными клетками, обнаруженное с помощью иммунофлюоресцентного анализа.
На фиг.2 приведен график, демонстрирующий профиль селекции для созревания аффинности VR28, связывающего KDR. Слева показано связывание клона VR28 с KDR-Fc и Flk1-Fc (очень низкий, непомеченный столбик). В центре показано связывание KDR-Fc с мутировавшим пулом до селекции и после обогащающих циклов селекции. Справа показано связывание Flk-1-Fc с клонами, полученными в результате последующих обогащающих циклов. Связывание оценивают с помощью радиоактивного равновесного анализа связывания как процент от исходного, используя 1 нМ KDR-Fc или Flk1-Fc.
На фиг.3A и 3B приведены графики, характеризующие KDR-связывающие отдельные клоны из 4 цикла аффинного созревания VR28, связывающегося с KDR. На фиг.3A показано насыщающее связывание VR28 (-■-) и аффинно зрелых K1 (-▲-), K6 (-▼-), K9 (-♦-), K10 (-•-), K12 (-□-), K13(-∆-), K14 (-∇-), K15 (-◇-) c KDR-Fc, определенное с помощью радиоактивного равновесного анализа связывания. На фигуре 3B показано связывание клонов, содержащих или не содержащих N-концевую делецию, с KDR-Fc. Делеция ∆1-8 в N-конце связывающих белков на основе фибронектина улучшает связывание с KDR-Fc. Данные представляют среднее связывание с KDR-Fc 23 независимых клонов, содержащих или не содержащих N-концевую делецию.
На фиг.4 приведен график, демонстрирующий связывание выбранных клонов с KDR и Flk-1. Специфическое связывание VR28 с выбранными клонами после четырех циклов аффинного созревания к человеческому KDR (клоны K) и семи циклов аффинного созревания к человеческому (KDR) и мышиному (flk-1) (клоны E). Химерные белки VEGFR-2-Fc сравнивают с помощью радиоактивного равновесного анализа связывания. Данные представляют среднее значение по 3 независимым экспериментам. Как показано в данном описании, после созревания против мышиных и человеческих белков VEGFR-2 получают связывающие средства, которые связываются с обоими белками.
На фиг.5A и 5B приведены графики, характеризующие VEGFR-2-связывающие отдельные клоны из 7 цикла аффинного созревания связывающего белка VR28. Насыщающее связывание VR28 (-■-) и клонов со зрелой специфичностью Е3 (-▲-), Е5 (-▼-), Е6 (-♦-), Е9 (-•-), Е18 (-□-), Е19 (-∆-), Е25 (-∇-), Е26 (-◇-), Е28 (-○-), Е29 (-×-) c KDR (фиг.5A) и химерными белками Flk1 (фигура 5B)-Fc анализируют с помощью радиоактивного равновесного анализа связывания.
На фиг.6A и 6B приведены графики, характеризующие связывание VEGFR-2 отдельными клонами из 7 цикла аффинного созревания связывающего белка VR28. Фиг.6A демонстрирует значение аргинина в положениях 79 и 82 в связывающих балках с двойной специфичностью к человеческому и мышиному VEGFR-2 для связывания с мышиным VEGFR-2 (Flkl). Если аминокислоту в любом из данных положений заменить на аминокислоту, отличную от R (X79=E, Q, W, P; X82=L, K), связывание с Flk1, но не с KDR, значительно уменьшается. Фиг.6B демонстрирует значение всех трех вариабельных петель (BC, DE и FG) KDR-связывающих белков на основе фибронектина для связывания данных белков с мишенью. Замена любой петли за один прием последовательностью NNS влияет на связывание с KDR и Flk1. Результаты связывания представлены в виде среднего от клонов E6 и E26.
На фиг.7A и 7B приведены графики, демонстрирующие связывание выбранных связывающих белков на основе фибронектина с клетками CHO, экспрессирующими человеческий рецептор KDR (фиг.7A) и химерным белком EpoR-Flk1 (фиг.7B). Анализируют каркасные белки на основе фибронектина E18 (-■-), E19 (-▲-), E26 (-▼-), E29 (-♦-) и WT (-□-). Связывание с контрольными клетками CHO не наблюдается (данные не показаны).
На фиг.8A и 8B приведены графики, демонстрирующие ингибирование VEGF-индуцированной пролиферации клеток Ba/F3-KDR (фиг.8A) и Ba/F3-Flk1 (фиг.8B), экспрессирующих KDR и Flk1 в присутствии разных количеств связывающих белков на основе фибронектина: E18 (-■-), E19 (-▲-), E26 (-▼-), E29 (-♦-), WT (-□-) и Ab(-∆-) против KDR или против flk-1. Данные представлены в виде среднего значения по 2 независимым экспериментам.
На фиг.9 приведен график, демонстрирующий результаты пролиферации HUVEC в присутствии разных количеств каркасных белков на основе фибронектина: E18 (-■-), E19 (-▲-), E26 (-▼-), E29 (-♦-), M5 (-○-), WT (-□-). Данные представлены в виде среднего значения по 2 независимым экспериментам. Показано, что белки, связывающие KDR, уменьшают пролиферацию приблизительно на 40%.
На фиг.10 приведен ряд графиков, демонстрирующих обратимое повторное свертывание M5FL в оптимизированном буфере.
На фиг.11 приведена фотография с результатами анализа SDS-PAGE пэгилированных форм M5FL. M, маркер