Антибактериальное средство, состоящее из серебросодержащих частиц гидроксида сульфата алюминия, и его применение

Иллюстрации

Показать все

Изобретение относится к антибактериальному средству, состоящему из серебросодержащих частиц гидроксида сульфата алюминия, представленных следующими формулами (X-I) или (Y-I): (AgaBb-a)bAlcAx(SO4)y(OH)z·pH2O (X-I), где а, b, с, х, у, z и р удовлетворяют неравенствам 0,00001≤а<0,5 0,7≤b≤1,35; 2,7<с<3,3; 0,001≤х≤0,5; 1,7<у<2,5; 4<z<7 и 0≤р≤5 соответственно, В представляет собой по меньшей мере один одновалентный катион, выбранный из группы, состоящей из Na+,

NH4+, K+ и Н3О+, суммарная величина (1b+3с), полученная путем умножения валентностей на число молей катионов, удовлетворяет неравенству 8<(1b+3с)<12, и А представляет собой анион органической кислоты; [AgaBb-a]b[M3-cAlc](SO4)y(OH)z·pH2O (Y-I), где а, b, с, у, z и р удовлетворяют неравенствам 0,00001≤а<0,5; 0,8≤b≤1,35; 2,5≤с≤3; 1,7<у<2,5; 4<z<7 и 0≤р≤5 соответственно, В представляет собой по меньшей мере один одновалентный катион, выбранный из группы, состоящей из Na+, NH4+, К+ и Н3О+, и М представляет собой Ti или Zn. Из указанного выше антибактериального средства настоящего изобретения, после его смешивания со смолой, получают антибактериальную полимерную композицию, из которой получают сформованные изделия, пленку, волокно, нетканый материал, покрытие, уплотнитель, а также противогрибковые средства, косметические средства, антибактериальную бумагу, антибактериальные дезодоранты в виде спреев и агрохимикаты. Способ получения вышеуказанного антибактериального средства включает стадии: добавления водного раствора щелочи, имеющей одновалентный катион, и органической кислоты к смешанному водному раствору сульфата алюминия и сульфата и/или нитрата, имеющего одновалентный катион, для инициации гидротермической реакции с получением частиц гидроксида сульфата алюминия, содержащих анион органической кислоты; и контактирования полученных частиц с водным раствором, содержащим серебро при перемешивании, для инициации реакции ионного обмена нескольких катионов указанных частиц с ионами серебра. Технический результат - получение антибактериального средства, обладающего высокой степенью диспергируемости, прозрачности, белизны и превосходными антибактериальными свойствами, особенно способностью сохранять свое антибактериальное действие после контакта с водопроводной водой. 25 н. и 18 з.п. ф-лы, 35 табл., 21 ил.

Реферат

Настоящее изобретение относится к антибактериальному средству, состоящему из серебросодержащих частиц гидроксида сульфата алюминия. Более конкретно, настоящее изобретение относится к антибактериальному средству, состоящему из серебросодержащих частиц гидроксида сульфата алюминия, обладающих специфическими для частиц свойствами (такими как форма частиц, однородность частиц по размеру, средний вторичный диаметр, площадь удельной поверхности и т.п.). Настоящее изобретение также относится к способу изготовления указанного антибактерильного средства.

Кроме того, настоящее изобретение относится к антибактериальной полимерной композиции (включая маточную смесь), обладающей превосходной проходимостью через фильтр в процессе смешивания и экструзии, а также превосходной диспергируемостью, то есть свойствами, необходимыми для замеса и смешивания со смолой. Настоящее изобретение также относится к антибактериальным полимерным изделиям, сформованным из полимерной композиции и обладающим превосходной диспергируемостью, прозрачностью, белизной и антибактериальными свойствами (включая способность сохранять антибактериальное действие после контакта с водопроводной водой), а также к антибактериальным полимерным продуктам, таким как антибактериальные пленки, антибактериальные волокна, антибактериальные покрытия, антибактериальные нетканые материалы и антибактериальные уплотнители. Кроме того, настоящее изобретение относится к противогрибковым средствам, антибактериальным дезодорантам, антибактериальной бумаге, агрохимикатам и косметическим препаратам.

Вообще говоря, размножение бактерий происходит при высокой температуре и при высокой влажности, и поэтому их распространение в жилых помещениях может приводить к серьезным проблемам с точки зрения безопасности и гигиены. Для решения этой проблемы была предложена технология, основанная на получении антибактериальных полимерных композиций, которые получают путем смешивания органического антибактериального средства или неорганического антибактериального средства со смолой или с другими компонентами в целях получения антибактериальных препаратов для защиты от бактерий. В настоящее время спрос на неорганические антибактериальные средства все больше возрастает благодаря их относительной безопасности.

В качестве неорганических антибактериальных средств было предложено множество антибактериальных полимерных композиций, включающих антибактериальное средство, которое содержит серебро, нанесенное на неорганическое соединение или включенное в это неорганическое соединение посредством ионного обмена, поскольку серебро обладает относительно высокой антибактериальной активностью и является достаточно безопасным.

Так, например, в заявке JP-A 6-212019 описана технология получения антибактериальной полимерной композиции, содержащей серебро, нанесенное на фосфат циркония. Хотя такая антибактериальная полимерная композиция, полученная путем смешивания антибактериального средства со смолой, имеет несколько лучшую белизну, однако эта композиция не обладает всеми необходимыми антибактериальными свойствами, диспергируемостью, прозрачностью и способностью к сохранению своего антибактериального действия после контакта с водопроводной водой, и поэтому такая композиция пока еще не решает указанных выше проблем.

В частности, при применении композиций известного уровня, сталкиваются с проблемой, заключающейся в том, что при контакте такой антибактериальной полимерной композиции с водопроводной водой антибактериальная активность данной полимерной композиции полностью утрачивается или в значительной степени снижается, и поэтому такая композиция не может быть использована в течение длительного времени и не может служить защитой от бактерий. Следовательно, решение данной проблемы пока остается актуальным.

Рассматривая данную проблему на конкретном примере, следует отметить, что водопроводная вода всегда используется на кухнях, в ванных комнатах и в туалетах, и, кроме того, водопроводную воду часто используют для стирки одежды. Поэтому антибактериальные полимерные продукты, используемые для обработки помещений и одежды или применяемые в описанных выше условиях окружающей среды, должны обладать антибактериальными свойствами, предохраняющими от поражения бактериями, даже если эти продукты будут находиться в длительном контакте с водопроводной водой. Хотя указанный известный антибактериальный полимерный продукт сразу после его изготовления обладает достаточно хорошими антибактериальными свойствами, после длительного контакта данного продукта с водопроводной водой его антибактериальная активность полностью утрачивается или в значительной степени снижается, и такой полимерный продукт не может служить защитой от бактерий в течение длительного периода времени.

В JP-A 2000-7326 описан щелочной гидроксид сульфата алюминия веретенообразной или сферической формы, представленный формулой MAl3(SO4)2(OH)6 (M означает щелочной металл или аммониевую группу) и имеющий площадь удельной поверхности БЭТ 30 м2/г или менее. В примерах приведенного документа описаны частицы, имеющие показатель крутизны кривой распределения по размерам Rs=D25/D75, вычисляемый путем деления диаметра частицы D25 (диаметра крупных частиц, составляющих 25%) на диаметр частицы D75 (диаметр малых частиц, составляющих 75% от всех величин диаметров интегральной кривой объемного распределения частиц по размерам, измеренным на счетчике Колтера) и составляющий 1,45-1,61, а также способы получения таких частиц и изготовления полимерной композиции, содержащей данные частицы.

В вышеуказанном патентном документе приводится общее описание получения антибактериальных частиц, где указывается, что М может включать элемент, обладающий антибактериальными свойствами, такой как Ag, Zn или Cu. Однако в данном документе не приводится каких-либо описаний и примеров антибактериального средства и антибактериального полимерного продукта.

В JP-A 2000-7326 указано, что частицы, имеющие высокий показатель крутизны, составляющий 1,4 или менее, могут быть изготовлены в виде однородной смеси, и частицы могут полностью диспергироваться с образованием монодисперсной фазы, что дает возможность получения частиц, которые обладают улучшенными свойствами и хорошей проходимостью через фильтр в процессе их смешивания и экструзии, а также имеют высокую степень белизны.

В указанном патентном документе не приводится какого-либо подробного описания антибактериальной полимерной композиции, полученной путем смешивания частиц антибактериального средства со смолой; или изделий, сформованных из антибактериальной смолы, полученной на основе полимерной композиции, а также антибактериальных полимерных продуктов, таких как антибактериальные пленки, антибактериальные волокна, антибактериальные покрытия и антибактериальные уплотнители, и противогрибковых средств, антибактериальных дезодорантов, антибактериальной бумаги, агрохимикатов и косметических средств.

Поэтому целью настоящего изобретения является предоставление антибактериального средства, состоящего из серебросодержащих частиц гидроксида сульфата алюминия и не имеющего недостатков, присущих неорганическим антибактериальным средствам известного уровня, где указанное антибактериальное средство обладает высокой степенью диспергируемости, прозрачности, белизны и другими превосходными антибактериальными свойствами, особенно способностью сохранять свое антибактериальное действие после контакта с водопроводной водой при его смешивании с веществом, которому необходимо придать антибактериальные свойства, такому как смола в качестве антибактериального средства, и содержит определенное количество серебра, причем антибактериальное средство состоит из серебросодержащих частиц гидроксида сульфата алюминия, которые предназначены для придания антибактериальному средству превосходных свойств, в частности свойств, указанных выше, и обладают специфическими для частиц свойствами (такими как форма частиц, однородность частиц по размеру, средний вторичный диаметр, площадь поверхности и т.п.), а также предоставление способа изготовления указанного антибактериального средства.

Другой целью настоящего изобретения является предоставление антибактериальной полимерной композиции (включая маточную смесь), обладающей превосходной проходимостью через фильтр в процессе ее смешивания и экструзии, осуществляемого в экструдере для смешивания полимеров, а также превосходной диспергируемостью; сформованных антибактериальных полимерных изделий, полученных из указанной полимерной композиции и обладающих превосходной диспергируемостью, прозрачностью, белизной и антибактериальными свойствами, в частности способностью сохранять свое антибактериальное действие после контакта с водопроводной водой; и антибактериальных полимерных продуктов, таких как антибактериальные пленки, антибактериальные волокна, антибактериальные покрытия, антибактериальные нетканые материалы и антибактериальные уплотнители.

Проблема, связанная с применением антибактериальных средств известного уровня, заключается в том, что при их контактировании с водопроводной водой, присутствующей повсюду, они полностью или в значительной степени утрачивают свою антибактериальную активность за короткий промежуток времени. Исходя из этого, другой целью настоящего изобретения является предоставление антибактериальной полимерной композиции, которая сохраняет свои антибактериальные свойства в течение продолжительного периода времени, даже при длительном контакте с водопроводной водой, которая всегда используется на кухнях, в ванных комнатах и в туалетах, а также в условиях контакта с изделием, таким как одежда, для стирки которой требуется длительное использование водопроводной воды; продуктов, сформованных из данной композиции, и антибактериального средства, смешиваемого с указанной полимерной композицией; а также разработка способа получения указанного антибактериального средства.

Другой важной целью настоящего изобретения является разработка способа, который, как правило, осуществляют перед получением антибактериального полимерного продукта, то есть способа, который решает проблему, связанную с нарушением работы устройства в течение длительного периода времени и необходимостью замены фильтров через короткий период времени, обусловленной низкой пропускной способностью фильтра (давлением в экструдере) в процессе смешивания и экструзии смолы при изготовлении маточной смеси (МС) из смолы и антибактериального средства с использованием экструдера для смешивания со смолами. Если данное устройство сможет работать в течение длительного периода времени, то это даст возможность уменьшить трудоемкость указанного процесса и значительно снизить материальные и энергетические затраты, а также время, требуемое на его осуществление, в результате чего могут быть получены не дорогостоящие антибактериальные полимерные композиции и антибактериальные полимерные продукты, представляющие собой огромное промышленное значение.

Другой целью настоящего изобретения является применение продуктов, то есть противогрибковых средств, антибактериальных дезодорантов, антибактериальной бумаги, агрохимикатов и косметических препаратов, которые, благодаря сообщенным им антибактериальным свойствам, отличаются от вышеописанных антибактериальных полимерных продуктов.

Для достижения указанных выше целей авторами настоящего изобретения были проведены интенсивные исследования и было обнаружено, что серебросодержащие частицы гидроксида сульфата алюминия, представленные нижеследующими формулами (X-I) или (Y-I), обладают превосходными антибактериальными свойствами, присущими антибактериальному средству; причем полимерная композиция, содержащая указанные частицы, и изделия, сформованные из указанной композиции, также обладают превосходными антибактериальными свойствами, хорошей проходимостью через фильтр в процессе смешивания и экструзии и высокой степенью белизны, прозрачности и способности к сохранению своего антибактериального действия после контакта с водопроводной водой; и, кроме того, было обнаружено, антибактериальные полимерные продукты, такие как антибактериальные пленки, антибактериальные волокна, антибактериальные покрытия, антибактериальные нетканые материалы и антибактериальные уплотнители, также обладают превосходной белизной, прозрачностью и способностью к сохранению своего антибактериального действия после контакта с водопроводной водой. Результаты этих исследований были положены в основу разработки настоящего изобретения.

Авторами настоящего изобретения было также обнаружено, что вышеуказанные частицы благодаря своим антибактериальным свойствам могут быть преимущественно использованы не только в сформованных изделиях, но также и в противогрибковых средствах, антибактериальных дезодорантах, агрохимикатах и косметических средствах. И эти данные были положены в основу разработки настоящего изобретения.

В соответствии с этим настоящее изобретение относится к антибактериальному средству, состоящему из серебросодержащих частиц гидроксида сульфата алюминия и представленному нижеследующими формулами (X-I) или (Y-I).

В формуле (X-I) а, b, с, х, y, z и р удовлетворяют неравенствам 0,00001≤а<0,5; 0,7≤b≤l,35; 2,7<c<3,3; 0,001≤х≤0,5; 1,7<y<2,5; 4<z<7 и 0≤р≤5 соответственно, В представляет собой по меньшей мере один одновалентный катион, выбранный из группы, состоящей из Na+, NH4+, К+ и Н2О+, суммарная величина (1b+3с), полученная путем умножения валентностей на число молей катионов, удовлетворяет неравенству 8<(1b+3с)<12, и А представляет собой анион органической кислоты.

В формуле (Y-I) а, b, с, y, z и р удовлетворяют неравенствам 0,00001≤а<0,5; 0,8≤b≤1,35; 2,5≤с≤3; 1,7<y<2,5; 4<z<7 и 0≤р≤5 соответственно, В представляет собой по меньшей мере один одновалентный катион, выбранный из группы, состоящей из Na+, NH4+, K+ и H3O+, и M представляет собой Ti или Zn.

На фиг.1 - СЭМ-микрофотография (полученная с помощью сканирующей электронной микроскопии) сферических частиц A1, описанных в примере X-I-1;

На фиг.2 - СЭМ-микрофотография сферических частиц A20, описанных в примере X-I-20;

на фиг.3 - СЭМ-микрофотография сферических частиц A21, описанных в примере X-I-21;

на фиг.4 - СЭМ-микрофотография сферических частиц A22, описанных в примере X-I-22;

на фиг.5 - СЭМ-микрофотография сферических частиц A30, описанных в примере X-I-30;

на фиг.6 - СЭМ-микрофотография сферических частиц A31, описанных в примере X-I-31;

на фиг.7 - СЭМ-микрофотография дискообразных частиц В1-1, описанных в примере X-I-32-1;

на фиг.8 - СЭМ-микрофотография сдвоенных частиц С1, описанных в примере X-I-35;

на фиг.9 - СЭМ-микрофотография подобных рисовым зернам частиц D1, описанных в примере X-I-38;

на фиг.10 - СЭМ-микрофотография частиц Е1, имеющих форму прямоугольного параллелепипеда и описанных в примере X-I-41;

на фиг.11 - СЭМ-микрофотография частиц Fl, имеющих форму шестиугольных пластин и описанных в примере X-I-45;

на фиг.12 - СЭМ-микрофотография восьмигранных частиц G1, описанных в примере X-I-46;

на фиг.13 - СЭМ-микрофотография столбчатых частиц HI, описанных в примере X-I-47;

на фиг.14 - СЭМ-микрофотография агломерированных частиц V1, описанных в сравнительном примере X-I-1;

на фиг.15 - СЭМ-микрофотография сферических частиц Y-A-1-1, описанных в примере Y-I-1-1;

на фиг.16 - СЭМ-микрофотография сферических частиц Y-A-4, описанных в примере Y-I-4;

на фиг.17 - СЭМ-микрофотография сферических частиц Y-A-5, описанных в примере Y-I-5;

на фиг.18 - СЭМ-микрофотография дискообразных частиц Y-A-19, описанных в примере Y-I-19;

на фиг.19 - СЭМ-микрофотография сферических частиц Y-A-18, описанных в примере Y-I-18;

на фиг.20 - СЭМ-микрофотография частиц Y-I-30, имеющих форму прямоугольного параллелепипеда и описанных в примере Y-I-30; и

на фиг.21 - СЭМ-микрофотография агломерированных частиц Y-V-1, описанных в сравнительном примере Y-I-1.

Ниже подробно описаны антибактериальное средство настоящего изобретения и его применение.

Частицы гидроксида сульфата алюминия, используемые в качестве антибактериального средства настоящего изобретения, представляют собой соединения, представленные указанными выше формулами (X-I) или (Y-I). Соединения, представленные формулами (X-I) и (Y-I), содержат серебро и благодаря этому проявляют превосходное антибактериальное действие. Частицы соединений, представленных указанными выше формулами (X-I) и (Y-I), являются уникальными по своей форме, распределению, размеру, когезионной способности и однородности и обладают превосходными свойствами, в частности, такими как диспергируемость в смоле, аффинность, стабильность и формуемость.

Среди частиц гидроксида сульфата алюминия настоящего изобретения соединение, представленное формулой (X-I), содержит в молекулах серебро и анион органической кислоты (A), и соединение, представленное формулой (Y-I), содержит в молекулах серебро, но не содержит аниона органической кислоты (A).

В нижеследующем описании соединение, представленное формулой (X-I), может называться “гидроксидом сульфата алюминия, содержащим серебро и анион органической кислоты”. Частицы соединения, представленного формулой (X-I), могут называться “частицами (X-I)", и антибактериальное средство, состоящее из частиц (X-I), может называться “частицами антибактериального средства (X-I)".

Кроме того, частицы соединения, представленного формулой (Y-I), могут называться “частицами (Y-I)", и антибактериальное средство, состоящее из частиц (Y-I), может называться “частицами антибактериального средства (Y-I)".

Следует отметить, что в настоящем описании термин “антибактериальное средство настоящего изобретения” или “антибактериальное средство” включает частицы антибактериального средства (X-I) и частицы антибактериального средства (Y-I).

Частицы соединения, представленного формулой (X-I), и частицы соединения, представленного формулой (Y-I) настоящего изобретения, будут описаны ниже в соответствующем порядке.

I). Частицы гидроксида сульфата алюминия, представленные формулой (X-I)

В соответствии с настоящим изобретением было обнаружено, что частицы антибактериального средства, представленные указанной выше формулой (X-I), независимо обладают следующими свойствами (i), (ii) и (iii), а именно:

(i) их средний вторичный диаметр, измеренный методом лазерного дифракционного анализа, составляет 0,1-12 мкм, предпочтительно 0,1-5 мкм,

(ii) площадь удельной поверхности по БЭT (по уравнению Брунауэра-Эммета-Теллера) составляет от 0,1 до 250 м2/г, предпочтительно от 1 до 100 м2/г,

(iii) показатель крутизны кривой распределения частиц по размерам определяется как Dr=D75/D25 (D2S означает диаметр частиц малого размера, составляющих 25% от всех величин интегральной кривой объемного распределения частиц по размерам, измеренных методом дифракционного анализа, и D75 означает диаметр частиц большого размера, составляющих 75% от всех величин диаметров указанного распределения частиц по размерам) и составляет 1,0-1,8, предпочтительно 1,01-1,5, более предпочтительно 1,01-1,3 и наиболее предпочтительно 1,01-1,2.

Вышеуказанные параметры, а именно средний вторичный диаметр частицы (i), площадь удельной поверхности по БЭТ (ii) и показатель крутизны кривой распределения частиц по размерам (Dr) (iii), являются независимыми. Для осуществления настоящего изобретения предпочтительными являются частицы, обладающие двумя из трех указанных выше свойств одновременно, и наиболее предпочтительными являются частицы, обладающие всеми указанными свойствами.

Кроме того, частицы антибактериального средства (X-I) настоящего изобретения отличаются тем, что они не подвергаются агломерации, являются монодисперсными и имеют форму, описанную ниже.

Хотя частицы антибактериального средства (X-I) настоящего изобретения имеют различные формы, они характеризуются тем, что имеют однородное распределение по своей форме и размеру, редко агломерируются и являются монодисперсными. Что касается форм частиц, то частицы антибактериального средства можно грубо разделить на сферические частицы; дискообразные частицы (подобные “обкатанным” камням типа “гальки”); сдвоенные частицы (подобно “гамбургеру”); частицы, подобные рисовым зернам; частицы, имеющие форму прямоугольного параллелепипеда; частицы, имеющие форму шестиугольных пластин; столбчатые (бочкообразные) и восьмигранные частицы. Такие формы частиц более подробно описаны ниже со ссылками на фиг.1-13.

На фиг.1-13 представлены СЭМ-микрофотографии конкретных частиц, полученных, как описано в примерах настоящего изобретения. Такие формы частиц можно видеть на СЭМ-микрофотографиях, увеличенных приблизительно в 10000-20000 раз. На фиг.14 представлена СЭМ-микрофотография стандартных частиц из щелочного гидроксида сульфата алюминия.

Примеры сферических частиц представлены на фиг.1-6. Сферические частицы могут быть подразделены на сферические частицы, имеющие гладкую поверхность, как показано на фиг.1; сферические частицы, имеющие слегка зернистую поверхность, как показано на фиг.2; сферические частицы, имеющие неровную поверхность и дефекты (царапины или трещины), как показано на фиг.3; сферические частицы, имеющие небольшие углубления (выбоины), как показано на фиг.4, сферические частицы, имеющие гладкую поверхность и более плоские участки, как показано на фиг.5, чем частицы, представленные на фиг.1; и сферические частицы, имеющие шероховатую и складчатую поверхность, как показано на фиг.6.

Пример дискообразных частиц представлен на фиг.7. Такие частицы имеют почти симметричную и выпуклую переднюю и заднюю поверхности и имеют форму, напоминающую гальку. Дискообразные частицы, представленные на фиг.7, имеют гладкую поверхность.

Пример сдвоенных частиц представлен на фиг.8. Отличительным признаком данных частиц является то, что две дискообразные частицы, имеющие плоскую нижнюю поверхность и выпуклую противоположную поверхность, спарены своими нижними поверхностями, представляющими собой плоскости симметрии; и между двумя данными частицами на их периферии имеется некоторое пространство. В центральной части сдвоенных поверхностей присутствует соль гидроксида алюминия, связывающая два диска. Указанные сдвоенные частицы по своей форме напоминают гамбургер.

Пример частиц, имеющих форму рисовых зерен, представлен на фиг.9. Плоскость проекции каждой такой рисоподобной частицы имеет отчетливую эллиптическую форму, а ее поперечное сечение, перпендикулярное продольному сечению, представляет собой почти окружность. Частицы, представленные на фиг.9, имеют небольшие неровности на своей поверхности.

Пример частиц, имеющих форму прямоугольного параллелепипеда, представлен на фиг.10, и они похожи на правильный шестиугольник и имеют гладкую поверхность.

Пример частиц, имеющих форму шестиугольных пластин, представлен на фиг.11. Такие шестиугольные частицы имеют форму, напоминающую пластину, верхняя поверхность которой имеет шесть сторон. Шесть сторон необязательно должны иметь одинаковые длины, и углы, образованные двумя смежными сторонами, могут быть скругленными.

Пример частиц, имеющих форму восьмигранников, представлен на фиг.12. Такие частицы по своей форме напоминают восьмигранник, состоящий из двух пирамид, или неправильный восьмигранник.

Пример столбчатых частиц представлен на фиг.13. Каждая столбчатая частица может иметь выпуклую среднюю часть, очень напоминающую бочонок для сакэ (или винную бочку), либо она может иметь форму цилиндра с почти круглым сечением.

Частицы, представленные на фиг.13, имеют на своей поверхности большое число неровностей.

Как видно на фиг.1-13 (по микрофотографиям), частицы настоящего изобретения являются однородными по форме и размеру и обладают высокой диспергируемостью. Формы указанных частиц являются четко выраженными для их классификации, однако данные частицы могут быть слегка деформированными либо включать небольшое количество других частиц. Что касается гладкости поверхности, то на поверхности каждой частицы могут присутствовать или не присутствовать едва заметные неровности и небольшие дефекты, которые не имеют конкретных ограничений.

Ниже приводится описание способа определения формы частиц (X-I) настоящего изобретения.

Одним из критериев определения формы частиц является округлость и сферичность по Уэделлу, которые обычно используются в порошковой промышленности.

Сферичность по Уэделлу “s" определяют как s=(площадь поверхности сферы, имеющей объем, равный объему частицы)/(площадь поверхности частицы). Чем ближе величина “s" к 1, тем более сферической является данная частица.

Округлость по Уэделлу “с" определяют как с=(длина окружности, имеющей площадь, равную площади проекции частицы)/(периметр плоскости проекции частицы). Чем ближе величина “с" к 1, тем более круглой является данная частица.

В соответствии с настоящим изобретением сферическая форма частицы означает, что данная частица может иметь форму шара, как показано на фиг.1-6, и имеет сферичность по Уэделлу “s", которая предпочтительно удовлетворяет неравенству 0,95≤s≤1.

В соответствии с настоящим изобретением дискообразная форма частицы (напоминающая плоскую гальку) представляет собой сфероид, имеющий меньший диаметр по оси вращения, как показано фиг.7. Более конкретно, проецируемое изображение такой частицы, если смотреть в направлении оси вращения, имеет округлость “c" по Уэделлу, где величина “c" удовлетворяет неравенству 0,95 ≤s≤1, и отношение “а” (малый диаметр/большой диаметр) эллиптической плоскости сечения удовлетворяет неравенству 0,05≤s≤0,5.

В соответствии с настоящим изобретением сдвоенная форма частицы (напоминающая гамбургер) представляет собой две полусферические частицы, которые сдвоены, как показано на фиг.8. Между двумя сдвоенными поверхностями двух полусферических частиц на их периферии имеется некоторое пространство (канавка). При этом предпочтительно, чтобы отношение “t" (малый диаметр/большой диаметр) указанных сдвоенных частиц удовлетворяло неравенству 0,1<t<0,5 и отношение “u" (ширина канавки между сдвоенными поверхностями полусфер/малый диаметр) удовлетворяло неравенству 0,05<u<0,5.

В соответствии с настоящим изобретением форма частиц, напоминающих рисовые зерна, представляет собой сфероид с малым диаметром по оси вращения, как показано на фиг.9. При этом предпочтительно, чтобы отношение “а" (малый диаметр/большой диаметр) эллипса удовлетворяло неравенству 0,1≤а≤0,5 и сферичность по Уэделлу “s" удовлетворяла неравенству 0,5≤s<0,75.

В соответствии с настоящим изобретением термин “форма частиц, напоминающих прямоугольный параллелепипед”, означает, что частицы могут иметь форму шестигранника, показанную на фиг.10, или правильного шестигранника. При этом предпочтительно, чтобы сферичность по Уэделлу “s" удовлетворяла неравенству 0,5≤s<0,8.

В соответствии с настоящим изобретением форма частиц, напоминающих шестиугольную пластину, представляет плоскую столбовидную фигуру в виде правильного шестиугольника, как показано на фиг.11. При этом предпочтительно, чтобы округлость по Уэделлу “с" проецируемого изображения частицы, если смотреть сверху или снизу, удовлетворяла неравенству 0,95≤с<0,99 и отношение “b" (толщина/длина диагонали правильного шестиугольника) удовлетворяло неравенству 0,05≤b<0,5.

В соответствии с настоящим изобретением восьмигранная форма частиц представляет собой форму, напоминающую восьмигранник, образованный из двух сложенных вместе пирамид, или неправильный восьмигранник, как показано на фиг.12. Вышеуказанная сферичность по Уэделлу “s" предпочтительно удовлетворяет неравенству 0,5≤s≤0,9. Даже на первый взгляд восьмигранная частица напоминает шестигранную частицу из-за нечеткости изображения, обусловленной недостаточным разрешением СЭМ-микрофотографии.

В соответствии с настоящим изобретением столбчатая (бочкообразная) форма частиц представляет собой столбообразную форму, показанную на фиг.13, и имеет радиус в своей продольной центральной части, который в 1,0-1,2 раза превышает радиус ее верхней и нижней поверхностей. Округлость по Уэделлу “с", определяемая по проецированным изображениям верхней и нижней поверхностей, предпочтительно удовлетворяет неравенству 0,95≤s<0,99 и отношение “d" (высота)/(диаметр верхней поверхности или нижней поверхности) удовлетворяет неравенству 0,95≤d≤3.

В соответствии с настоящим изобретением для конкретных целей его осуществления и применения могут быть получены описанные выше частицы гидроксида сульфата алюминия, которые содержат серебро и анион органической кислоты (X-I) и которые являются различными по своей форме, например, такие как сферические частицы; дискообразные частицы (типа “гальки”); сдвоенные частицы; частицы, имеющие форму прямоугольного параллелепипеда; частицы, имеющие форму шестиугольных пластин; частицы, подобные рисовым зернам; восьмигранные и столбчатые частицы, причем диаметры данных частиц могут регулироваться.

Тем не менее, в зависимости от целей применения и требований к упаковке могут быть получены частицы гидроксида сульфата алюминия, содержащие серебро и анион органической кислоты, имеющие оптимальный диаметр.

Такие частицы не подвергаются агломерации и обладают превосходной диспергируемостью в смоле, и при их смешивании со смолой не происходит или редко происходит агломерация антибактериального средства, и такое свойство рассматривается как один из факторов, указывающих на то, что полимерный продукт, содержащий антибактериальное средство и смолу, обладает антибактериальными свойствами даже при очень низком содержании серебра в полимерном продукте. Неожиданно было обнаружено, что высокой антибактериальной активностью обладает только вышеописанная монодисперсная система, которая не может быть получена с применением технологии известного уровня.

Что касается механизма действия частиц антибактериального средства (X-I) настоящего изобретения, которые обладают такой неожиданно обнаруженной высокой антибактериальной активностью, следует отметить, что такая активность может быть также обусловлена вторым предполагаемым фактором, указанным ниже.

Предполагается, что частицы антибактериального средства (X-I) обладают такими превосходными антибактериальными свойствами благодаря тому, что радикал, такой как гидроксильный радикал (OH-), легко высвобождается из частиц антибактериального средства в течение длительного периода времени после его облучения светом, в результате чего образуются анионы органической кислоты, которые вводятся во внутреннюю структуру молекулы каждой частицы антибактериального средства, что является одним из факторов, обеспечивающих сохранение антибактериальной активности антибактериального средства настоящего изобретения в течение длительного периода времени.

Большинство серебросодержащих антибактериальных средств известного уровня техники имеют серьезный недостаток, заключающийся в том, что указанные средства теряют свои антибактериальные свойства после высвобождения ими ионов серебра, хотя они обладали такими антибактериальными свойствами в процессе высвобождения ионов серебра. Настоящее изобретение дает возможность радикального решения данной проблемы.

Кроме того, в соответствии с настоящим изобретением существует и третий фактор, обеспечивающий улучшение антибактериальных свойств, которое достигается путем введения органической кислоты в молекулярную структуру каждой частицы антибактериального средства (X-I) настоящего изобретения в качестве аниона, при этом предполагается, что повышенная антибактериальная активность может обеспечиваться не только указанным выше дисперсионным эффектом и эффектом образования указанного радикала, но также и эффектом улучшения совместимости между атомами углерода органической кислоты частицы антибактериального средства и смолы, то есть совместным действием указанных трех факторов настоящего изобретения.

Композиция соединения формулы (X-I) будет подробно описана ниже.

В формуле (X-I) настоящего изобретения “a" означает количество обмененных ионов серебра в частицах антибактериального средства. Чем больше численное значение “a", тем больше ионов серебра обменивается в данных частицах антибактериального средства, что приводит к улучшению антибактериальных свойств. Если численное значение “a" слишком велико, то серебро может высвобождаться или элюироваться из ионообменника (твердого раствора) в окружающую среду с образованием окиси серебра, в результате чего сформованное из смолы изделие, содержащее антибактериальное средство, может приобретать темно-коричневый цвет, и его применение становится экономически нецелесообразным. Если "a" равно 0,5 или более, то ионный обмен становится затрудненным. Если численное значение “a" слишком мало, то количество обмененных ионов серебра в частицах антибактериального средства является небольшим, и антибактериальные свойства почти не обнаруживаются. Поэтому для баланса между сохранением соответствующих антибактериальных свойств и появлением соответствующего цвета желательно, чтобы значение “a" оставалось в пределах определенного интервала. В соответствии с этим “a" в формуле (X-I) находится в пределах 0,00001-0,5, предпочтительно 0,00001-0,35 и более предпочтительно 0,001-0,3.

В соответствии с настоящим изобретением слово “содержащий” в выражении “антибактериальное средство, состоящее из частиц гидроксида сульфата алюминия, содержащих серебро и анион органической кислоты”, означает, что указанным антибактериальным средством является вещество, содержащее такое малое количество соединения, содержащего серебро и органическую кислоту, и представленного формулой, отличающейся от формулы (X-I), что пик, полученный от соединения, отличающегося от соединения формулы (X-I), не обнаруживается при измерении частиц методом порошкового рентгеноструктурного анализа.

Поэтому частицами антибактериального средства считаются частицы, содержащие небольшое количество серебра не только в форме ионообменника, но также и в другой форме, которая не обнаруживается как пик, измеряемый методом порошкового рентгеноструктурного анализа, и/или частицы, имеющие небольшое количество аниона органической кислоты, адсорбированного на поверхности.

Что касается серебра, то в этом случае считается, что частицы антибактериального средства, состоящие только из твердого раствора, в котором происходит ионный обмен с серебром в допустимых пределах, оказывают некоторое незначительное влияние на цвет полимерного продукта. В соответствии с этим частицы антибактериального средства предпочтительно состоят только из чистого ионообменника с ионами серебра (твердого раствора).

В соединении формулы (X-I) настоящего изобретения В может представлять собой одновалентный катион любого типа. Действительно, если принять во внимание, что "B" имеет радиус, относительно близкий радиусу иона серебра, и может образовывать сильные ионообменники в широких пределах, то есть ионообменники, в которых серебро при его смешивании со смолой не высвобождается с образованием оксида серебра, в результате чего почти не происходит снижения степени белизны полимерного продукта (полимерный продукт меняет белый цвет на темно-коричневый или коричневый сразу после формования в течение определенного промежутка времени под действием света), при этом подходящим В с точки зрения безопасности и экономии является Na+, NH4+, K+ или H3O+. В зависимости от указанных выше целей относительно предпочтительным B является Na+, NH4+ или H3О+, более предпочтительно NH4+ или H3O+ и наиболее предпочтительно NH4+. Для предо