Воздушный гибридный двигатель с расщепленным циклом (варианты)
Иллюстрации
Показать всеИзобретение относится к двигателестроению, в частности к двигателям с расщепленным циклом. Изобретение позволяет объединить характеристики двигателя с расщепленным циклом, имеющего воздушный резервуар воздушной гибридной системы, с различными упрощенными характеристиками регулирования, чтобы создать новые конструкции для эксплуатации и регулирования полученных вариантов гибридного двигателя. Очевидное преимущество настоящего изобретения заключается в том, что два или больше описанных здесь режимов двигателя могут быть осуществлены одновременно (то есть в параллель). Воздушный гибридный двигатель с расщепленным циклом содержит коленчатый вал, силовой поршень, силовой цилиндр, выполненный с возможностью избирательного управления, чтобы устанавливать силовой поршень в рабочий режим или в холостой режим; поршень сжатия, введенный в цилиндр сжатия с возможностью скольжения и соединенный с коленчатым валом. Цилиндр сжатия выполнен с возможностью избирательного управления, чтобы устанавливать поршень сжатия в режим сжатия или в холостой режим; воздушный резервуар, введенный между цилиндром сжатия и силовым цилиндром и избирательно действующий для приема сжатого воздуха из цилиндра сжатия и для подачи сжатого воздуха в силовой цилиндр, для использования в передаче мощности на коленчатый вал при работе двигателя; и клапаны, избирательно управляющие потоком газа, поступающим в цилиндр сжатия, и силовой цилиндр, и в воздушный резервуар и выходящим из них, так что двигатель выполнен с возможностью работы, по меньшей мере, в трех режимах, в том числе в режиме двигателя внутреннего сгорания (ICE), в режиме воздушного компрессора (АС) и в режиме накопления энергии предварительно сжатого воздуха (РАР). В ICE режиме поршень сжатия и силовой поршень находятся соответственно в режиме сжатия и в рабочем режиме. Поршень сжатия всасывает и сжимает входной воздух для использования в силовом цилиндре. Сжатый воздух поступает в начале рабочего такта в силовой цилиндр вместе с топливом, которое воспламеняется, сгорает и расширяется в этом же рабочем такте силового поршня, передавая мощность на коленчатый вал, а продукты горения выпускают в такте выпуска. В АС режиме поршень сжатия находится в режиме сжатия и всасывает и сжимает воздух, который накоплен в резервуаре, для дальнейшего использования в силовом цилиндре. В РАР режиме силовой поршень находится в рабочем режиме и получает из резервуара сжатый воздух, который расширяется в рабочем такте силового поршня, передавая мощность на коленчатый вал. Расширенный воздух выпускают в такте выпуска, при этом сжатый воздух из цилиндра сжатия не поступает в воздушный резервуар. Также предложены еще два варианта двигателя. 3 н. и 31 з.п. ф-лы, 6 ил.
Реферат
Область применения изобретения
Настоящее изобретение в общем имеет отношение к двигателям с расщепленным циклом, а более конкретно к двигателям с расщепленным циклом, которые содержат воздушную гибридную систему.
Предпосылки к созданию изобретения
Термин «двигатель с расщепленным циклом», используемый в описании настоящего изобретения, еще не имеет постоянного значения (смысла), обычно используемого специалистами в области конструирования двигателей. В связи с этим, для большей ясности, далее приводится определение термина «двигатель с расщепленным циклом», которое может быть применено как к известным ранее двигателям, так и к двигателям в соответствии с настоящим изобретением.
Двигатель с расщепленным циклом в соответствии с этим определением содержит
коленчатый вал, выполненный с возможностью вращения относительно своей оси;
силовой поршень, введенный в силовой цилиндр с возможностью скольжения и соединенный с коленчатым валом так, что силовой поршень совершает возвратно-поступательное движение в течение рабочего такта (или такта расширения) и такта выпуска, при одном обороте коленчатого вала;
поршень сжатия, введенный в цилиндр сжатия с возможностью скольжения и соединенный с коленчатым валом так, что поршень сжатия совершает возвратно-поступательное движение в течение такта впуска и такта сжатия, при одном обороте коленчатого вала; и
газовый канал, соединяющий силовой цилиндр и цилиндр сжатия, причем газовый канал содержит впускной клапан и выпускной (или переходный) клапан, образующие напорную камеру между ними.
Для большей ясности далее приводится список акронимов для различных описанных здесь рабочих режимов двигателя:
АС режим - режим воздушного компрессора;
AM режим - режим прокрутка воздухом;
СВ режим - режим сжатия-торможения;
ICE режим - режим двигателя внутреннего сгорания;
РАР режим - режим выработки мощности предварительно сжатого воздуха;
РСА режим - режим предварительного сжатия воздуха для горения,
В патентах США 6543225 В2, 6609371 В2 и 6952923 на имя заявителя настоящего изобретения раскрыты примеры двигателей с расщепленным циклом внутреннего сгорания, соответствующих приведенному определению. В этих патентах содержится большой список патентов США и других патентов и публикаций, использованных в качестве аналогов при выдаче указанных патентов. Термин "с расщепленным циклом" использован для этих двигателей потому, что они фактически расщепляют четыре такта обычного цикла Отто давление/ объем (то есть такт впуска, такт сжатия, рабочий такт и такт выпуска) между двумя означенными цилиндрами, из которых один цилиндр предназначен для такта сжатия высокого давления, а другой цилиндр предназначен для рабочего такта высокого давления.
Недавно были проведены важные исследования, посвященные воздушным гибридным двигателям, имеющим преимущества по сравнению, например, с электрическими гибридными системами. Электрическая гибридная система требует добавки к обычному четырехтактному двигателю батарей, электрического генератора и электрического двигателя. Воздушная гибридная система требует добавки только воздушного напорного резервуара к двигателю, имеющему функции компрессора и воздушного двигателя, вместе с функциями обычного двигателя, что позволяет использовать преимущества гибридной системы. Эти функции включают в себя накопление (хранение) сжатого воздуха во время торможения и использование сжатого воздуха для привода двигателя в ходе последующего запуска и разгона.
Однако известные решения предусматривают только приспособление обычного четырехтактного двигателя для осуществления функций сжатия, горения и прокрутки в единственном цилиндре. Это требует применения сложной системы клапанов и цепи привода и применения системы управления, которая позволяет во время работы переключаться из режима сжатия-торможения (СВ) в режим прокрутки воздухом (AM) и назад в режим обычного двигателя внутреннего сгорания (ICE).
В типичном примере, когда не запасают и не используют сжатый воздух для привода автомобиля, известный ранее воздушный гибридный двигатель работает как обычный двигатель внутреннего сгорания, в котором осуществляют четыре такта цикла Отто (такт впуска, такт сжатия, рабочий такт и такт выпуска) в каждом цилиндре, в течение каждых двух оборотов коленчатого вала. Однако во время режима сжатия-торможения каждый цилиндр обычного двигателя сконфигурирован с возможностью работы как двухтактный воздушный компрессор с возвратно-поступательным ходом поршня, с приводом от колес движущегося автомобиля. Воздух поступает из внешней атмосферы в цилиндры двигателя, сжимается в них и вытесняется в воздушный резервуар. Работа, выполненная поршнями двигателя, поглощает кинетическую энергию автомобиля и замедляет или ограничивает его движение. Указанным образом кинетическая энергия движения автомобиля преобразуется в энергию сжатого воздуха, запасенного в воздушном резервуаре.
Во время режима прокрутки воздухом каждый цилиндр двигателя сконфигурирован с возможностью использования запасенного сжатого воздуха для осуществления рабочих тактов, для создания тяги без сжатия. Это может быть осуществлено за счет первоначального расширения запасенного сжатого воздуха в цилиндрах, чтобы перемещать поршни вниз из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ), для первого рабочего такта. Затем поршни сжимают расширенный газ, когда они движутся из НМТ в ВМТ. После этого топливо впрыскивают в цилиндры и воспламеняют его непосредственно перед ВМТ. Расширяющиеся продукты сгорания затем вновь перемещают поршни вниз для второго рабочего такта при втором обороте коленчатого вала.
Альтернативно, прокрутка воздухом может быть осуществлена за счет расширения запасенного сжатого воздуха для перемещения силового поршня вниз из ВМТ в НМТ, чтобы осуществлять рабочий такт без горения, для каждого оборота коленчатого вала. Этот альтернативный процесс прокрутки воздухом может продолжаться до тех пор, пока давление в воздушном резервуаре не падает ниже порогового уровня, после чего двигатель может переключаться в ранее описанный режим прокрутки воздухом или в обычный ICE режим работы двигателя.
Для переключения СВ, AM и ICE режимов требуется сложная, дорогая и трудная в управлении и эксплуатации система клапанов/цепи привода. Кроме того, так как каждый цилиндр должен выполнять все функции для каждого режима, их не просто оптимизировать. Например, поршни и цилиндры должны выдерживать взрывное сгорание, даже когда они действуют только как воздушный компрессор. Соответственно, за счет допусков и материалов, которые требуются для того, чтобы выдержать теплоту горения, приходится идти на некоторое ухудшение эффективности режима компрессора.
Другая проблема, связанная с осуществлением всех функций для каждого режима (ICE, СВ и AM) в каждом цилиндре, заключается в том, что два режима не могут быть осуществлены в параллель (то есть одновременно). Так как в известных воздушных гибридных системах используют обычные двигатели, они могут работать только в каждом режиме последовательно, что создает ограничения их возможностей. Например, так как СВ режим не может быть использован, когда двигатель работает как двигатель внутреннего сгорания (в ICE режиме), то воздушный резервуар может быть заряжен только во время торможения движущегося автомобиля. Это ограничение ведет к проблемам поддержания запасенного (накопленного) заряда в воздушном резервуаре. Кроме того, это ограничение также означает, что известные ранее воздушные гибридные системы применимы только к движущимся автомобилям и не могут быть использованы для стационарных применений, таких как стационарные генераторы.
Сущность изобретения
Настоящее изобретение позволяет объединить характеристики двигателя с расщепленным циклом, имеющего воздушный резервуар воздушной гибридной системы с различными упрощенными характеристиками регулирования, чтобы создать новые конструкции для эксплуатации и регулирования полученных вариантов гибридного двигателя. Очевидное преимущество настоящего изобретения заключается в том, что два или больше описанных здесь режимов двигателя могут быть осуществлены одновременно (то есть в параллель).
В соответствии с первым вариантом осуществления предлагается воздушный гибридный двигатель с расщепленным циклом, который содержит
коленчатый вал, выполненный с возможностью вращения относительно своей оси;
силовой поршень, введенный в силовой цилиндр с возможностью скольжения и соединенный с коленчатым валом так, что силовой поршень совершает возвратно-поступательное движение во время рабочего такта и такта выпуска, при одном обороте коленчатого вала, причем силовой цилиндр выполнен с возможностью избирательного управления, чтобы устанавливать силовой поршень в рабочий режим или в холостой режим;
поршень сжатия, введенный в цилиндр сжатия с возможностью скольжения и соединенный с коленчатым валом так, что поршень сжатия совершает возвратно-поступательное движение во время такта впуска и такта сжатия, при одном обороте коленчатого вала, причем цилиндр сжатия выполнен с возможностью избирательного управления, чтобы устанавливать поршень сжатия в режим сжатия или в холостой режим;
воздушный резервуар, введенный между цилиндром сжатия и силовым цилиндром и избирательно действующий для приема сжатого воздуха из цилиндра сжатия и для подачи сжатого воздуха в силовой цилиндр, для использования в передаче мощности на коленчатый вал при работе двигателя; и
клапаны, избирательно управляющие потоком газа, поступающим в цилиндр сжатия, и силовой цилиндр, и в воздушный резервуар и выходящим из них так, что двигатель выполнен с возможностью работы по меньшей мере в трех режимах, в том числе в режиме двигателя внутреннего сгорания (ICE), в режиме воздушного компрессора (АС) и в режиме накопления энергии предварительно сжатого воздуха (РАР), причем
в ICE режиме поршень сжатия и силовой поршень находятся соответственно в режиме сжатия и в рабочем режиме, причем поршень сжатия всасывает и сжимает входной воздух для использования в силовом цилиндре, причем сжатый воздух поступает в начале рабочего такта в силовой цилиндр вместе с топливом, которое воспламеняется, сгорает и расширяется в этом же рабочем такте силового поршня, передавая мощность на коленчатый вал, а продукты горения выпускают в такте выпуска;
в АС режиме поршень сжатия находится в режиме сжатия и всасывает и сжимает воздух, который накоплен в резервуаре, для дальнейшего использования в силовом цилиндре;
в РАР режиме силовой поршень находится в рабочем режиме и получает из резервуара сжатый воздух, который расширяется в рабочем такте силового поршня, передавая мощность на коленчатый вал, причем расширенный воздух выпускают в такте выпуска, при этом сжатый воздух из цилиндра сжатия не поступает в воздушный резервуар;
В РАР режиме топливо перемешивают со сжатым воздухом в начале рабочего такта и смесь воспламеняется, сгорает и расширяется в одном и том же рабочем такте силового поршня, передавая мощность на коленчатый вал, а продукты горения выпускают в такте выпуска, при этом топливо воспламеняется в диапазоне от 5 до 40° угла поворота коленчатого вала (СА) после того, как силовой поршень дошел до своего положения верхней мертвой точки (ВМТ);
В РАР режиме сжатый воздух, поступивший в силовой цилиндр, расширяется без добавки топлива или начала горения.
В развитии этого варианта воздушный резервуар содержит газовый канал, размер которого позволяет получать и накапливать сжатый воздух из множества тактов сжатия, причем газовый канал соединяет цилиндр сжатия и силовой цилиндр, при этом газовый канал содержит впускной клапан и выпускной клапан, образующие напорную камеру между ними,
В другом воплощении этого варианта двигатель содержит газовый канал, соединяющий цилиндр сжатия и силовой цилиндр, причем газовый канал содержит впускной клапан и выпускной клапан, образующие напорную камеру между ними,
при этом воздушный резервуар соединен при помощи канала резервуара с напорной камерой, в местоположении между впускным клапаном и выпускным клапаном, при этом в канале резервуара установлен регулирующий клапан резервуара.
Воздушный резервуар двигателя может представлять собой накопитель, позволяющий поддерживать в нем постоянное давление в заранее установленном диапазоне давлений.
Двигатель может содержать множество пар цилиндр сжатия - силовой цилиндр, соединенных газовыми каналами, имеющими напорные камеры, причем все напорные камеры соединены с общим воздушным резервуаром.
В еще одном воплощении данного варианта двигатель содержит газовый канал, соединяющий цилиндр сжатия и силовой цилиндр, причем газовый канал содержит впускной клапан и выпускной клапан, образующие напорную камеру между ними; и
воздушный резервуар, соединенный в параллель с газовым каналом, с впускным и выпускным соединениями из воздушного резервуара в цилиндр сжатия и силовой цилиндр.
В предлагаемом двигателе в ICE режиме топливо воспламеняется в диапазоне от 5 до 40° угла поворота коленчатого вала (СА) после того, как силовой поршень дошел до своего положения верхней мертвой точки (ВМТ).
Двигатель может быть выполнен с возможностью работы в ICE режиме и АС режиме одновременно.
Степень сжатия и степень расширения предложенного двигателя равна или больше 26:1; 40:1; 80:1.
Второй вариант изобретения представляет собой воздушный гибридный двигатель с расщепленным циклом, который содержит:
коленчатый вал, выполненный с возможностью вращения относительно своей оси;
силовой поршень, введенный в силовой цилиндр с возможностью скольжения и соединенный с коленчатым валом так, что силовой поршень совершает возвратно-поступательное движение во время рабочего такта и такта выпуска, при одном обороте коленчатого вала;
поршень сжатия, введенный в цилиндр сжатия с возможностью скольжения и соединенный с коленчатым валом так, что поршень сжатия совершает возвратно-поступательное движение во время такта впуска и такта сжатия, при одном обороте коленчатого вала;
газовый канал, соединяющий цилиндр сжатия и силовой цилиндр, причем указанный газовый канал содержит впускной клапан и выпускной клапан, образующие напорную камеру между ними; и
воздушный резервуар, соединенный при помощи первого канала резервуара непосредственно с силовым цилиндром и при помощи второго канала резервуара непосредственно с цилиндром сжатия, причем воздушный резервуар не имеет прямого соединения с переходным каналом и включен в параллель с ним, при этом воздушный резервуар избирательно действует для приема сжатого воздуха из цилиндра сжатия и для подачи сжатого воздуха в силовой цилиндр, для использования в передаче мощности на коленчатый вал при работе двигателя.
Целесообразно, чтобы двигатель имел первый регулирующий клапан резервуара в первом канале резервуара и второй регулирующий клапан резервуара во втором канале резервуара.
Данный вариант выполнен с возможностью работы по меньшей мере в трех режимах, а именно в режиме двигателя внутреннего сгорания (ICE), в режиме воздушного компрессора (АС) и в режиме выработки мощности предварительно сжатого воздуха (РАР), причем
в ICE режиме поршень сжатия всасывает и сжимает входной воздух для использования в силовом цилиндре, причем входной воздух поступает в силовой цилиндр в начале рабочего такта вместе с топливом, причем топливо воспламеняется, сгорает и расширяется во время этого же рабочего такта силового поршня;
в АС режиме поршень сжатия всасывает и сжимает воздух, который накоплен в воздушном резервуаре, для дальнейшего использования в силовом цилиндре; и
в РАР режиме силовой цилиндр получает накопленный воздух из воздушного резервуара, который поступает в начале рабочего такта в силовой цилиндр вместе с топливом, которое воспламеняется, сгорает и расширяется в этом же рабочем такте силового поршня.
Во время ICE режима или РАР режима топливо воспламеняется в диапазоне от 5 до 40° СА после того, как силовой поршень дошел до своего положения ВМТ.
Этот вариант двигателя так же, как и первый, выполнен с возможностью работы в ICE режиме и АС режиме одновременно.
Третий вариант воздушного гибридного двигателя с расщепленным циклом содержит:
силовой поршень, введенный в силовой цилиндр с возможностью скольжения и соединенный с коленчатым валом так, что силовой поршень совершает возвратно-поступательное движение во время рабочего такта и такта выпуска, при одном обороте коленчатого вала;
поршень сжатия, введенный в цилиндр сжатия с возможностью скольжения и соединенный с коленчатым валом так, что поршень сжатия совершает возвратно-поступательное движение во время такта впуска и такта сжатия, при одном обороте коленчатого вала;
воздушный резервуар, включенный между цилиндром сжатия и силовым цилиндром и избирательно действующий для приема сжатого воздуха из цилиндра сжатия и для подачи сжатого воздуха в силовой цилиндр, для использования в передаче мощности на коленчатый вал при работе двигателя; и
клапаны для управления потоком газа, поступающим в цилиндр сжатия и силовой цилиндр и в воздушный резервуар и выходящим из них, причем:
силовой цилиндр избирательно действует так, чтобы устанавливать силовой поршень в следующие режимы:
рабочий режим, в котором сжатый воздух из воздушного резервуара или цилиндра сжатия поступает вместе с топливом или без него в силовой цилиндр; и
холостой режим, в котором сжатый воздух из воздушного резервуара или цилиндра сжатия не поступает в силовой цилиндр.
У этого варианта двигателя цилиндр сжатия избирательно действует так, чтобы устанавливать поршень сжатия в следующие режимы:
режим сжатия, в котором сжатый воздух поступает в воздушный резервуар или силовой цилиндр из цилиндра сжатия; и
холостой режим, в котором сжатый воздух из воздушного резервуара или цилиндра сжатия не поступает в силовой цилиндр.
Двигатель дополнительно содержит:
механизм регулирования, действующий так, чтобы выбирать любой один из по меньшей мере двух следующих режимов работы двигателя:
режим двигателя внутреннего сгорания, в котором по меньшей мере часть сжатого воздуха из цилиндра сжатия поступает вместе с топливом в силовой цилиндр;
режим воздушного компрессора, в котором сжатый воздух из цилиндра сжатия поступает в воздушный резервуар, а сжатый воздух из воздушного резервуара не поступает в силовой цилиндр;
режим выработки мощности предварительно сжатого воздуха, в котором сжатый воздух из воздушного резервуара поступает вместе с топливом или без него в силовой цилиндр, а сжатый воздух из цилиндра сжатия не поступает в воздушный резервуар.
Указанный механизм регулирования содержит выпускной клапан управления резервуара, введенный между воздушным резервуаром и силовым цилиндром и действующий для управления потоком сжатого воздуха из воздушного резервуара в силовой цилиндр;
впускной клапан управления, расположенный во впускном канале цилиндра сжатия и действующий для управления всасыванием воздуха в цилиндр сжатия.
Механизм регулирования может также содержать блок управления, предназначенный для избирательного и независимого управления выпускным клапаном управления резервуара и впускным клапаном управления.
Предложенный вариант может быть сконфигурирован так, что при работе в режиме выработки мощности предварительно сжатого воздуха топливо перемешивают со сжатым воздухом, поступившим в силовой цилиндр в начале рабочего такта, причем смесь воспламеняется, сгорает и расширяется в указанном рабочем такте силового поршня, передавая мощность на коленчатый вал, а продукты горения выпускают в следующем такте выпуска, или так, что при работе в режиме выработки мощности предварительно сжатого воздуха сжатый воздух, поступивший в силовой цилиндр, расширяется без добавки топлива или начала горения.
Двигатель может дополнительно содержать газовый переходный канал, соединяющий цилиндр сжатия и силовой цилиндр, причем газовый переходный канал содержит впускной клапан и выпускной клапан, образующие напорную камеру между ними, при этом указанные клапаны имеют независимое управление, а воздушный резервуар соединен с газовым переходным каналом при помощи регулирующего клапана резервуара.
Краткое описание чертежей
На фиг.1 схематично показан первый вариант воздушного гибридного двигателя с расщепленным циклом, имеющего воздушный резервуар и регулирующие клапаны в соответствии с настоящим изобретением.
На фиг.2 схематично показан второй вариант указанного двигателя, аналогичного двигателю, показанному на фиг.1, который содержит отдельный переходный (или газовый) канал, соединенный с воздушным резервуаром, и добавочный регулирующий клапан.
На фиг.3 схематично показан третий вариант указанного двигателя аналогичного двигателю, показанному на фиг.2, который содержит добавочный регулирующий клапан резервуара.
На фиг.4 схематично показан четвертый вариант указанного двигателя аналогичного двигателю, показанному на фиг.3, который содержит накопитель постоянного давления в воздушном резервуаре.
На фиг.5 схематично показан пятый вариант указанного двигателя аналогичного двигателю, показанному на фиг.4, который содержит общий резервуар для множества пар цилиндров.
На фиг.6 схематично показан шестой вариант указанного двигателя аналогичного двигателю, показанному на фиг.5, который содержит резервуар в параллель с переходным каналом и разделительные клапаны между цилиндрами.
Подробное описание изобретения
На фиг.1 показан первый примерный вариант воздушного гибридного двигателя с расщепленным циклом в соответствии с настоящим изобретением, обозначенного позицией 10. Двигатель 10, показанный схематично, в целом относится к типу двигателей с расщепленным циклом, описанных в патентах США 6543225 В2, 6069371 В2 и 6952923 В2 на имя Скудери (Scuderi), которые полностью включены в данное описание в качестве ссылки.
Можно видеть, что двигатель содержит блок 12 цилиндров, имеющий первый цилиндр 14 и смежный второй цилиндр 16, проходящие насквозь через блок 12. Коленчатый вал 18 установлен на цапфах в блоке 12 с возможностью вращения относительно оси 20 коленчатого вала, идущей перпендикулярно к плоскости чертежа. Верхние концы цилиндров 14, 16 закрыты головкой 22 цилиндров.
Первый и второй цилиндры 14, 16 имеют внутренние рабочие поверхности, в которые введены с возможностью возвратно-поступательного движения первый силовой поршень 24 и второй поршень сжатия 26 соответственно. Головка 22 цилиндров, силовой поршень 24 и первый цилиндр 14 образуют камеру 25 сгорания переменного объема в силовом цилиндре 14. Головка 22 цилиндров, поршень 26 сжатия и второй цилиндр 16 образуют камеру 27 сжатия в цилиндре 16 сжатия.
Коленчатый вал 18 содержит смещенные по оси и смещенные по углу первое и второе колена 28, 30, имеющие фазовый угол 31 между ними. Первое колено 28 шарнирно соединено при помощи первого шатуна 32 с первым силовым поршнем 24, а второе колено 30 шарнирно соединено при помощи второго шатуна 34 со вторым поршнем 26 сжатия так, чтобы поршни совершали возвратно-поступательное движение в их цилиндрах во временной связи, определяемой угловым смещением их колен и геометрическими соотношениями цилиндров, коленчатого вала и поршней.
По желанию, могут быть использованы альтернативные механизмы, обеспечивающие связь движений и синхронизацию поршней. Синхронизация может быть аналогична описанной в патентах на имя Скудери или, по желанию, может быть другой. Направление вращения коленчатого вала и относительные перемещения поршней вблизи от их положений нижней мертвой точки (НМТ) показаны стрелками, показанными на чертежах рядом с соответствующими компонентами.
Головка 22 цилиндров содержит различные каналы, отверстия и клапаны, необходимые для выполнения функций воздушного гибридного двигателя 10 с расщепленным циклом. В показанном первом варианте газовый канал/напорная камера указанных патентов Скудери заменены намного большим воздушным резервуаром 36, соединенным с головкой 22 через впускное отверстие 38 резервуара в закрытом конце второго цилиндра 16 и выпускное отверстие 40 резервуара в закрытом конце первого цилиндра 14. В отличие от небольшого газового канала, пример которого показан в патентах Скудери, воздушный резервуар 36 имеет размер, позволяющий принимать и накапливать энергию сжатого воздуха из множества тактов сжатия поршня 26 сжатия. Второй цилиндр 16 также соединен с обычным впускным каналом 42, а первый цилиндр 14 также соединен с обычным выпускным каналом 44.
Клапаны в головке 22 цилиндров, которые аналогичны клапанам двигателя в патентах Скудери, включают в себя впускной стопорный клапан 46 резервуара и три тарельчатых клапана с кулачковым управлением, выпускной клапан (или переходный клапан) 50 резервуара, впускной клапан 52 второго цилиндра и выпускной клапан 54 первого цилиндра. Стопорный клапан 46 позволяет проходить потоку сжатого воздуха только в одном направлении во входное отверстие 38 резервуара из второго цилиндра 16 (цилиндра сжатия). Выпускной клапан 50 резервуара открывается для пропускания имеющего высокое давление потока воздуха из резервуара 36 в первый (силовой) цилиндр 14.
Заявленный двигатель 10 содержит два дополнительных клапана, которые могут быть клапанами с электромагнитным управлением. Эти клапаны представляют собой впускной регулирующий клапан 56 во впускном канале 42 цилиндра и выпускной регулирующий клапан 58 резервуара в выпускном канале 40 резервуара. Эти клапаны могут быть двухпозиционными клапанами включения-выключения, однако они могут быть элементами управления с переменным положением и, по желанию, могут быть выполнены как дроссельные клапаны.
Тарельчатые клапаны 50, 52, 54 могут быть приведены в действие при помощи любых подходящих устройств, таких как распределительные валы 60, 62, 64, имеющие контуры кулачков 66, 68, 70, которые соответственно входят в зацепление с клапанами 50, 52, 54 для приведения их в действие, как это описано далее более подробно. Альтернативно клапаны 50, 52 и 54, так же как и другие клапаны 46, 56 и 58, могут иметь электронное, пневматическое или гидравлическое управление.
Свеча 72 зажигания также установлена в головке цилиндров и имеет электроды, входящие в камеру сгорания и предназначенные для зажигания зарядов воздух-топливо в точные моменты времени, определяемые схемой управления зажиганием (не показана). Следует иметь в виду, что двигатель может быть выполнен как дизельный двигатель, который может работать без свечи зажигания. Более того, двигатель 10 может быть выполнен с возможностью работы на любом топливе, подходящим для создания возвратно-поступательного движения поршней двигателя, например, на таком топливе, как водород или природный газ.
На фиг.2-6 показаны различные альтернативные варианты двигателя 10, показанного на фиг.1, которые описаны далее более подробно. Ниже описана работа всех шести примерных вариантов.
Обратимся теперь к рассмотрению фиг.2, где показан второй вариант двигателя 74, в котором аналогичные детали (детали, аналогичные деталям двигателя 10. - Прим. переводчика) имеют одинаковые позиционные обозначения. Двигатель 74 в целом аналогичен двигателю 10, но отличается от него тем, что предусмотрен переходный (или газовый) канал 76 небольшого объема, который соединяет впускное отверстие 38 и впускной стопорный клапан 46 на одном конце и выпускное отверстие 40 и выпускной клапан 50 на противоположном конце. Этот переходный канал 76 идет между камерой 27 сжатия во втором цилиндре 16 и камерой 25 сгорания в первом цилиндре 14 и является аналогичным переходному каналу в известных ранее патентах Скудери. В отличие от воздушного резервуара, объем этого переходного канала 76 не позволяет накапливать достаточное количество энергии сжатого воздуха для дальнейшего использования. Скорее этот канал 76 типично проектируют настолько малым, насколько это практически возможно для наиболее эффективной передачи сжатого газа во время ICE режима двигателя 74.
За счет дополнительной модификации отдельный воздушный резервуар 36 соединен при помощи канала 78 резервуара с переходным каналом 76 так, что он соединен с впускным и выпускным отверстиями 38, 40 при помощи переходного канала 76. Выпускной регулирующий клапан 58 с электромагнитным управлением резервуара расположен в канале 76 между выпускным отверстием 40 и каналом 78 резервуара. Клапан 58 открыт во время ICE режима, так что сжатый воздух может протекать по пути наименьшего сопротивления и втекать в первую очередь через канал 76 в камеру 25 сгорания. Клапан 58 может быть закрыт во время АС режима, чтобы нагнетать сжатый воздух в резервуар 36, и может быть открыт во время РАР режима, чтобы отбирать сжатый воздух из резервуара 36.
Обратимся теперь к рассмотрению фиг.3, на котором показан третий вариант двигателя 80, который отличается от двигателя 74, показанного на фиг.2, только добавлением третьего клапана 82 с электромагнитным управлением. Клапан 82 расположен в канале 78 у места его соединения с переходным каналом 76, чтобы разрывать соединение воздушного резервуара 36 с переходным каналом, когда это желательно.
За счет изолирования воздушного резервуара 36 с использованием клапана 82 можно более эффективно оптимизировать функционирование двигателя 80 во время ICE режима работы. Например, во время ICE режима весь сжатый воздух можно пропускать через переходный канал 76. Таким образом, переходный канал 76 может осуществлять наиболее эффективную передачу газа без взаимодействия с воздушным резервуаром. Кроме того, клапан 82 также может быть использован как клапан дросселирования для условий частичной нагрузки во время РАР режима.
На фиг.4 показан четвертый вариант двигателя 84, аналогичного двигателю 80, показанному на фиг.3. Он отличается превращением воздушного резервуара в накопитель 86 давления за счет добавки диафрагмы 87 и пружинного механизм 88. Это позволяет сжимать воздух, находящийся в накопителе 86, и поддерживать содержимое при относительно постоянном давлении между состояниями, когда резервуар является пустым или заполненным до максимального контрольного давления.
На фиг.5 показан пятый вариант многоцилиндрового двигателя 89, имеющего по меньшей мере две пары цилиндров 90, каждая из которых эквивалентна двигателю 80, показанному на фиг.3. Двигатель 89 модифицирован так, что он включает в себя общий питающий резервуар 92, который соединен с переходными каналами 76 всех пар цилиндров при помощи регулирующего клапана 82 с электромагнитным управлением резервуара, управляющего связью каждого канала 78 резервуара с соответствующим переходным каналом 76.
На фиг.6 показан шестой вариант двигателя 94, который наиболее близок двигателю 80, показанному на фиг.3. Двигатель 94 отличается тем, что воздушный резервуар 36 не имеет прямой связи с переходным каналом 76, который остается под управлением стопорного клапана 46, клапана 58 с электромагнитным управлением и выпускного клапана 50. Воздушный резервуар 36 соединен в параллель с переходным каналом 76 при помощи первого и второго каналов 96, 98 резервуара, соответственно соединяющих резервуар непосредственно с камерой 25 сгорания первого цилиндра 14 и с камерой 27 сжатия второго цилиндра 16. Четвертый и пятый регулирующие клапаны 100, 102 с электромагнитным управлением соответственно управляют потоком между каналами 96, 98 и цилиндрами 14, 16.
Далее будет описана работа примерных вариантов воздушных гибридных двигателей с расщепленным циклом в соответствии с настоящим изобретением, причем следует иметь в виду, что это описание приведено для пояснения и не имеет ограничительного характера, так что в него могут быть внесены изменения, не выходящие за рамки настоящего изобретения.
По существу, воздушные гибридные двигатели с расщепленным циклом в соответствии с настоящим изобретением типично работают по меньшей мере в трех режимах, а именно в режиме двигателя внутреннего сгорания (ICE), в режиме воздушного компрессора (АС) и в режиме выработки мощности предварительно сжатого воздуха (PAP). PAP режим преимущественно включает в себя режим выработки мощности за счет сжигания смеси топлива с предварительно сжатым воздухом (РСА), в котором предварительно сжатый воздух и топливо перемешивают вскоре после того, как силовой поршень доходит до положения своей верхней мертвой точки во время рабочего такта, и затем смесь топлива с воздухом сжигают, чтобы направить силовой поршень вниз во время этого же рабочего такта. Альтернативно, PAP режим также может включать в себя различные формы режимов прокрутки воздухом (AM режимов) (как уже было указано здесь выше), при этом предварительно сжатый воздух используют для создания рабочего такта без горения. Как это обсуждается далее более подробно, так как гибридный двигатель с расщепленным циклом в соответствии с настоящим изобретением имеет отдельные специально предназначенные цилиндр сжатия и силовой цилиндр, то три режима, а именно режимы ICE, AC и PAP, могут быть осуществлены по желанию последовательно или параллельно.
ICE режим по существу представляет собой нормальный рабочий режим двигателей, раскрытых в ранее упомянутых здесь патентах Скудери. Такт всасывания, такт сжатия, рабочий такт и такт выпуска цикла обычного поршневого двигателя распределены между цилиндром сжатия и силовым цилиндром двигателя с расщепленным циклом.
Обратимся теперь к рассмотрению варианта, показанного на фиг.1, в котором используют двигатели с расщепленным циклом, описанные в ранее упомянутых здесь патентах Скудери (6543225, 6609371 и 6952923), которые имеют предпочтительные конструктивные параметры по сравнению с известными ранее двигателями с расщепленным циклом. Многие из этих преимуществ будут описаны далее при обсуждении ICE режима двигателя 10. Важно указать, что воздушный резервуар 36, показанный на фиг.1, выполняет объединенные функции отдельного переходного (или газового) канала 76 и воздушного резервуара 36, показанных на фиг.2-6.
В ICE режиме впускные клапаны 56, 58 с электромагнитным управлением остаются открытыми. В такте впуска впускной клапан 52 открывается, когда поршень сжатия движется вниз, всасывая воздух в камеру 27 сжатия. В такте сжатия впускной клапан 52 закрывается и поршень 26 движется вверх, сжимая воздух и принудительно направляя его через стопорный клапан 46 и впускное отверстие 38 в воздушный резервуар 36.
Силовой поршень 24 опережает поршень 26 сжатия на фазовый угол 31, который преимущественно превышает 0° угла поворота коленчатого вала. Фазовый угол 31 определен здесь в градусах угла поворота коленчатого вала (СА) 18 после того, как силовой поршень 24 дошел до положения своей верхней мертвой точки (ВМТ), чтобы поршень 26 сжатия дошел до соответствующего положения своей ВМТ. В конкретном варианте, показанном на фиг.1, величина угла между первым и вторым коленами 28 и 30 равна фазовому углу 31. Преимущественно, этот фазовый угол составляет от 10 до 40° СА (градусов угла поворота коленчатого вала), а предпочтительнее, от 20 до 30° СА. Величина фазового угла 31 выбрана так, что когда поршень 26 сжатия доходит до положения своей ВМТ и силовой поршень опускается из положения своей ВМТ, тогда главным образом одинаковая масса сжатого воздуха поступает в воздушный резервуар 36 и выходит из него (на фиг.2-6, главным образом одинаковая масса сжатого воздуха поступает в газовый канал 76 и выходит из него).
В рабочем такте выпускной (или переходный) клапан 50 типично открыт в ВМТ силового поршня 24. Преимущественно, выпускной клапан 50 открыт в диапазоне от 10 до 0° СА до (ранее) ВМТ силового поршня 24, а предпочтительнее, в диапазоне от 7 до 3° СА до ВМТ силового поршня. Выпускной клапан 50 преимущественно закрыт в диапазоне от 10 до 40° СА после ВМТ силового поршня 24, а предпочтительнее, закрыт в диапазоне от 20 до 30° СА после ВМТ силового поршня.
Силовой поршень 24 опускается из положения своей ВМТ в положение воспламенения, которое типично лежит в диапазоне