Способ гидроразрыва подземного пласта (варианты)

Иллюстрации

Показать все

Изобретение относится к области гидравлического разрыва пласта. Технический результат - образование трещины с высокой проводимостью для пластового флюида за счет образования прочных проппантовых кластеров, препятствующих смыканию трещины, и каналов, обеспечивающих свободный проток пластовых флюидов. Способы гидравлического разрыва подземного пласта включают первую стадию, в процессе которой осуществляют закачивание в ствол скважины жидкости гидроразрыва, содержащей загуститель с образованием трещины в пласте, вторую стадию, в процессе которой вводят проппант в закачиваемую жидкость гидроразрыва для предотвращения закрытия трещины, дополнительно в жидкость гидроразрыва вводят агенты для образования кластеров проппанта, или увеличения прочности кластеров проппанта, или повышения транспортирующей способности жидкости гидроразрыва. 3 н. и 64 з.п. ф-лы, 4 ил.

Реферат

Данное изобретение относится к области гидравлического разрыва пласта, более конкретно к способам оптимизации проводимости трещины.

Углеводороды (нефть, природный газ и пр.) добывают из геологического продуктивного пласта путем бурения скважины, которая проходит через нефтегазоносный пласт. Скважина создает возможность для выхода углеводородов на поверхность. Для добычи углеводородов, то есть для процесса перетока пластового флюида из пласта в ствол скважины и затем на поверхность, должен существовать сравнительно свободный путь проникновения потока.

Гидроразрыв пласта (ГРП) является главным инструментом повышения производительности через создание новых или расширение существующих высокопроводящих трещин из коллектора в ствол скважины. При реализации технологии гидроразрыва пласта при осуществлении первой стадии жидкость гидроразрыва закачивают из скважины в подземный пласт с высокой скоростью подачи и под большим давлением. Скорость закачки жидкости гидроразрыва в пласт должна превышать скорость ее фильтрации в породу, что создает повышение гидравлического давления на стенках скважины в пласте. Если давление превышает некую критическую величину, происходит разрушение и растрескивание пласта и породы. Образовавшиеся трещины имеют большую проницаемость, чем природная пористость пласта.

При реализации следующего этапа в трещину закачивают проппант (расклинивающий агент), который удерживает трещину от смыкания после окончания закачки жидкости. Образующаяся расклиненная трещина обладает высокой проводимостью, что улучшает поток добываемого флюида, т.е. нефти, газа или воды. В качестве проппанта могут быть использованы различные материалы: песок, гравий, стеклянные шарики, размолотая скорлупа орехов, керамические частицы, спеченный боксит и другие материалы.

Жидкости гидроразрыва обычно представляют собой водные растворы, которые содержат загуститель, в качестве которого могут быть использованы (но не исключительно) растворимые полисахариды, обеспечивающий создание достаточной вязкости жидкости для транспортировки проппанта в трещину. Типичными загустителями являются и полимеры, такие как гуар (фитогенный полисахарид) и его производные (гидропропил гуара, гидроксиметилгидропропил гуара). В качестве загустителей жидкости могут использоваться другие полимеры. Вода с гуаром представляет собой линейный гель с вязкостью, пропорциональной концентрации полимера. Для сцепления между полимерными звеньями дополнительно используют сшивающие агенты, что создает довольно прочную связь, и это увеличивает вязкость полимера или создает вязкостно-эластичный эффект. Распространенными сшивающими агентами для гуара являются вещества, содержащие бор, титан, цирконий и алюминий.

На поздних стадиях гидроразрыва часто используют агенты для удержания проппанта, ограничивающие обратный вынос проппанта, уже закаченного в пласт. Например, проппант покрывают отверждаемой смолой, которую активируют в условиях скважины. Для удержания проппанта в трещине также используют различные материалы, такие как пучки волокон, волоконные и деформируемые материалы. Предполагается, что волокна образуют трехмерную сетку в упаковке проппанта, что помогает удержать частицы и ограничить вынос проппанта из трещины в скважину.

Успех операции ГРП зависит от проводимости образованных трещин и от длины трещин. Проводимость трещины есть произведение проницаемости на ширину трещины; обычно проводимость измеряется в единицах миллидарсиметр. Проводимость трещины зависит от несколько известных параметров. Распределение частиц по размеру является основным параметром, который влияет на проводимость трещины. Вторым существенным параметром является концентрация проппанта между стенками трещины (выражается в килограммах проппанта на квадратный метр поверхности), при этом на ширину трещины влияет концентрация проппанта. Можно считать, что средствами для улучшения проводимости трещины являются прочные проппанты, жидкости с хорошими характеристиками по переносу проппанта (в частности, способность свести к минимуму гравитационный компонент осаждения внутри скважины), высокие концентрации проппанта и проппанты с большими размерами. Непрочные материалы, низкая способность переносить проппант и узкие трещины в конце обработки, напротив, снижают последующий дебит скважины. Относительно недорогие материалы с низкой прочностью, например песок, используют в случаях ГРП пласта с небольшим уровнем внутренних нагрузок. Более дорогие материалы, такие как керамика, бокситы и другие материалы, используют в пласте с высокими нагрузками. Химические реакции между добываемыми флюидами и проппантом могут существенно повлиять на характеристики проппанта. Таким образом, следует принимать во внимание долгосрочную сопротивляемость проппанта разрушению, поскольку нефтегазовые скважины обычно работают в течение нескольких лет.

Проппантная упаковка позволяет создать слой с высокой гидравлической проводимостью - выше, чем у окружающей породы. Проппантную упаковку внутри трещины можно смоделировать в виде проницаемой пористой структуры, поток пластовой жидкости через которую в целом соответствует широко известным закону Дарси (1) или уравнению Форсхаймера (2):

1) ∂Р/∂х=-(µu/k);

2) ∂P∂x=-[(µu/k)+βρu2],

где Р - давление флюида в трещине;

х - расстояние в трещине до ствола скважины;

µ - вязкость пластовой жидкости;

u - скорость потока (фильтрационная) пластовой жидкости;

k - проницаемость проппантной упаковки;

β - коэффициент, называемый бета-фактор, который описывает нелинейные поправки к фильтрационному закону Дарси;

ρ - плотность пластовой жидкости (флюида).

Произведение проницаемости трещины на ширину трещины известно как "гидравлическая проводимость". Самым важным аспектом проектирования трещины является оптимизация гидравлической проводимости для конкретных условий пласта. Теория и методология проектирования трещин ГРП приведена в различных научных статьях и монографиях. Издание Reservoir Stimulation. 3rd ed. Economides, Michael J. and Nolte, Kenneth G., John Wiley and Sons (1999), является хорошим примером справочной книги, которая дает читателю удобную методологию разработки параметров трещины ГРП.

Оптимизация ГПР позволяет учесть такие характеристики процесса, как прочность проппанта, проводимость трещины ГРП, распределение проппанта, стоимость материала и стоимость всей операции ГРП для конкретного обрабатываемого коллектора. Случай с проппантом большого диаметра иллюстрирует такой компромисс, который является результатом оптимизации ГРП. Для высокой гидравлической проводимости трещины лучше иметь проппант с большим диаметром. Однако проппант с большим диаметром при данном внутреннем напряжении в пласте более подвержен разрушению при высоких напряжениях смыкания трещины, а это вызывает снижение эффективной гидравлической проводимости проппантной упаковки. Более того, в случае крупных частиц проппанта раньше проявляется тенденция к забивке такими крупными частицами проходного канала и захвата новых частиц на начальном участке трещины, слишком близко к месту инжекции проппантной взвеси.

Выбор конкретного вида проппанта основывают на способности противостоять разрушению при нагрузках и давать достаточную проводимость трещины после ее смыкания; а также это связано с возможностью доставить частицы проппанта в глубь трещины ГРП (причем недорого). После воды проппанты являются вторым по объему и массе компонентом, который применяют в технике гидроразрыва пласта. Керамические проппанты имеют самый лучший бета-фактор и прочность выше, чем у песка. Однако стоимость проппанта из керамики во много раз выше стоимости песка. Таким образом, улучшение проводимости трещины требует существенных затрат при операции ГРП; стоимость проппанта обычно составляет от 20 до 60 процентов общей стоимости операции ГРП.

Кроме указанных моментов, существуют другие характеристики проппанта, которые усложняют картину добычи углеводородов. К примеру, может случиться, что пластовый флюид не может вытеснить закаченную жидкость гидроразрыва. (Вязкая жидкость остается в проппантной упаковке, и это снижает проводимость трещины.) Полевые исследования показали, что возврат жидкости гидроразрыва для случая ГРП газовых скважин в среднем составляет от 20 до 50 процентов закаченного объема при ГРП и может быть еще ниже. Возможно, что пластовый флюид протекает вдоль нескольких каналов в виде "языков", образованных внутри проппантной упаковки, или поток идет только через часть проппантной упаковки, что была очищена от жидкости гидроразрыва на этапе очистки трещины. Та часть трещины, что удерживает остатки вязкого геля, ограничивает поток флюидов, и это уменьшает эффективную гидравлическую проводимость трещины. Понижение вязкости жидкости гидроразрыва после завершения ГРП является эффективным способом удаления этой жидкости из проппантной упаковки. Для уменьшения вязкости геля добавляют вещества, известные как "разрушители геля". Разрушители геля действуют по нескольким механизмам, но обычно они расщепляют полимерные цепи и уменьшают их длину, что приводит к уменьшению вязкости раствора полимера. Различные разрушители гелей характеризуют такими параметрами, как скорость реакции между разрушителем геля и полимером, и температурой активации/дезактивации конкретного агента. Хорошая очистка трещины достигается при высокой концентрации разрушителя геля, но слишком высокая концентрация агента может вызвать преждевременное снижение вязкости полимерного геля, что скажется на качестве операции ГРП и вызовет преждевременное осаждение проппанта в трещине. Для решения этой проблемы были разработаны разрушители с отложенным действием, такие как капсулированные реагенты. Капсулированные разрушители геля - это активные реагенты (например, гранулы окислителя), покрытые защитной оболочкой, которая необходима, чтобы физически отделить окислитель от полимера и тем самым задержать реакцию между ними. Разрушение защитной оболочки и выход из капсулы разрушителя геля осуществляется по различным механизмам, включая механические нагрузки при смыкании трещины. Капсулированные разрушители геля позволяют достичь более высоких концентраций разрушителя в жидкости гидроразрыва, что помогает улучшить очистку трещины.

Другой фактор, снижающий проводимость трещины, - закупорка пор в проппантной упаковке частицами из пласта, освобожденными при операции ГРП, закупорка пор остатками разрушенного проппанта, а также несмешивающимся жидкостями (The Impact of Non-Darcy Flow on Production from Hydraulically Fractured Gas Wells, SPE Production and Operations Symposium, 24-27 March, Oklahoma City, Oklahoma, 2001; A Study of Two-Phase, Non-Darcy Gas Flow Through Proppant Pacs, SPE Production & Facilities, Volume 15, Number 4, November, 2000). Очевидно, что формирование трещины, где поток проходит не через мелкие поры, а через сеть образованных каналов, может существенно улучшить проводимость благодаря различным эффектам: уменьшаются инерционные потери, улучшается очистка от жидкости гидроразрыва, уменьшаются капиллярные силы, которые ответственны за гидравлическое трение двухфазных потоков, уменьшается эффект засорения пор мелкодисперсными частицами и фрагментами разрушенного проппанта.

В последние годы операции ГРП на пластах с низкой проницаемостью на скважинах Северной Америки осуществляют с закачкой жидкостей гидроразрыва низкой вязкости, причем указанные жидкости или совсем не содержат проппанта, или содержат низкую концентрацию проппанта. Этот подход получил несколько названий, но обычно его называют "гидравлический разрыв с применением загущенной воды". Трещины, полученные через гидравлический разрыв с применением загущенной воды, практически не заполнены проппантом. Полагают, что полученные поверхности трещин смещаются относительно друг друга при образовании и росте трещин. Это несовпадение неровных элементов поверхности (выступы шероховатости) не дают сомкнуться двум противоположным поверхностям после снижения давления жидкости в скважине. Также полагают, что добавка небольшого количества проппанта усиливает эффект неровных и смещенных поверхностей новой трещины. Однако из-за низких транспортировочных свойств жидкости гидроразрыва много проппанта осаждается ниже отверстий перфорации в обсадной колонне, как правило, в основании созданной трещины гидроразрыва. Такое накопление имеет место из-за чрезмерно высокой скорости осаждения проппанта в жидкости гидроразрыва вдоль узкой образованной трещины, а также из-за низкой транспортной способности жидкости для взвеси проппанта (оба аспекта вызваны низкой вязкостью жидкости). Когда в конце операции гидроразрыва с применением загущенной воды прекращают инжекцию загущенной воды, то размеры трещины по длине и высоте сокращаются. Это несколько поджимает проппант, который остается в виде "дюны" в основании трещины. Из-за отграниченной длины такой "дюны", ее ширины и обычно прочности песка (если используют песок с низкой прочностью) такая операция создает только короткие трещины с низкой проводимостью (Experimental Study of Hydraulic Fracture Conductivity Demonstrates the Benefits of Using Proppants, SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium and Exhibition, 12-15 March, Denver, Colorado, 2000).

Это обсуждение показывает, что гидроразрыв с применением загущенной воды работает за счет прохождения пластового флюида через сеть канальцев, получающихся в трещине при неполном смыкании трещины (из-за несовершенства поверхностей образованной трещины). То есть гидроразрыв с применением загущенной воды создает трещины с низкой проводимостью. Один из способов улучшения проводимости трещины гидроразрыва - создать в трещине кластеры проппанта вместо сплошной проппантной упаковки. Патент США №6776235 раскрывает способ гидроразрыва пласта, который включает первоначальную стадию закачивания жидкости гидроразрыва в ствол скважины, причем используемая жидкость содержит загустить и создает трещину в пласте; затем идут попеременно стадии закачивания жидкости, несущей проппант, и стадии закачивания жидкости без проппанта, причем порции жидкости имеют различную способность нести проппант. В результате из-за существенно различной скорости осаждения проппанта образуются проппантные кластеры, как опоры, препятствующие полному смыканию трещины. В рамках известного способа чередуют порции жидкости, нагруженные проппантом, и порции жидкости, свободные от проппанта. Количество проппанта, осажденное в трещине, на каждой стадии задано транспортными характеристиками жидкости (такими как вязкость и эластичность), плотностью, размером частиц проппанта, концентрацией проппанта, а также скоростью закачки жидкости гидроразрыва.

Известный способ характеризует создание кластеров проппантов или "островков" в объеме трещины и каналов между островками для протока флюида. При этом периодическое закачивание проппанта для реализации указанного метода применяют для переноса порций проппанта первоначально в нижнюю часть скважины, затем через перфорации в колонне обсадных труб в образованную трещину и далее распределение проппанта по длине трещины. Поскольку порции жидкости гидроразрыва с проппантом и без проппанта имеют разные плотности, то жидкость с проппантом будет перемещаться вниз быстрее, чем жидкость без проппанта. Такая разница в осаждении создает неравномерное распределение проппантных кластеров в трещине.

Термин "проппант" обычно относят к дисперсному материалу, который примешивают в жидкость гидроразрыва и закачивают в скважину во время операции гидроразрыва пласта. Этот проппант создает пористый слой, проницаемый для пластового флюида, причем слой противостоит смыканию трещины и удерживает стороны трещины на расстоянии после завершения операции. При обычных обработках квалифицированные работники могут выбрать несколько типов дисперсного материала для обеспечения нужной проницаемости (и гидравлической проводимости) за лучшую цену при известной нагрузке смыкания пласта. Обычные проппанты - это высококачественный, аккуратно просеянный кварцевый песок, алюмосиликатная керамика, спеченные бокситы, шарики силикатной керамики, а также различные дисперсные материалы, покрытые различными органическими смолами. Можно закачивать проппанты, изготовленные из размолотой скорлупы орехов, стеклянных шариков и органических композитов. Одним из важных факторов в выборе проппанта является распределение частиц по размеру. При остальных равных условиях, проппант с более узким распределением по размерам дает упаковку с более высокой проводимостью, чем такой же проппант с таким же средним размером, но более широким распределением по размеру.

Но эти описанные закономерности по выбору и применению проппанта не работают в настоящем изобретении. В данном изобретении термин "проппант" или "расклинивающий агент" определяет любой твердый материал в виде гранул, волокон или иной, который добавляют к жидкости гидроразрыва для создания надежной и стабильной структуры внутри трещины. При этом все традиционно применяемые проппанты также попадают под категорию проппантов в данном изобретении. Однако другие материалы, такие как различные виды песка, металлические полоски и иглы, диски, абразивные гранулы, органические и неорганические волокна, тоже считаются проппантами (или расклинивающим материалом) в рамках данного изобретения.

В описании и пунктах формулы изобретения часто использовано понятие "волокно". Для целей данного изобретения термин "волокно" относится к любому материалу или физическому телу, у которого отношение длины одного из размеров превышает размеры остальных двух или одного пространственного измерения в пропорции как минимум 5:1. Другими словами, это отношение длины к ширине для частицы больше чем 5:1. Поэтому то, что принято называть волокнами, является волокнами в рамках данного изобретения. Аналогично, то, что обычно считается полоской или пластиной, по определению считается волокном в рамках данного изобретения.

Данное техническое решение обеспечивает экономически эффективный способ проведения гидроразрыва пласта с образованием трещины, характеризуемой высокой гидравлической проводимостью для пластового флюида. При этом образуются прочные проппантные кластеры или островки, которые распределены по поверхности трещины, что препятствует смыканию трещины после окончания операции. Каналы и открытые зоны, оставшиеся между кластерами и островками и удерживаемые такими кластерами, обеспечивают достаточно сечения для свободного протока пластовых флюидов.

Согласно первому варианту изобретения разработан способ гидравлического разрыва подземного пласта, включающий первую стадию, в процессе которой осуществляют закачивание в ствол скважины жидкости гидроразрыва, содержащей загуститель с образованием трещины в пласте, и вторую стадию, в процессе которой периодически добавляют проппант в жидкость гидроразрыва с последующей подачей проппанта в созданную трещину с образованием кластеров проппанта в трещине, препятствующих смыканию трещины и создающих каналы для протекания жидкости между кластерами, причем во время второй стадии постоянно или во время закачивания проппанта дополнительно вводят в жидкость гидроразрыва укрепляющий и/или консолидирующий материал, увеличивающий прочность кластеров проппанта, образованных в трещине гидроразрыва. Укрепляющий и/или консолидирующий материалы предпочтительно вводят или одновременно с закачиванием проппанта с жидкостью гидроразрыва, или одновременно с закачиванием проппанта с жидкостью гидроразрыва и в промежутках между закачиванием проппанта. Преимущественно укрепляющий и/или консолидирующий материал представляет собой органические, неорганические или органически-неорганические волокна с единственным клейким покрытием или с клейким покрытием, защищенным слоем неклейкого вещества, растворимого в жидкости гидроразрыва при прохождении материала по трещине, металлические частицы сферической или удлиненной формы, пластины из органического или неорганического вещества, керамики, металла или металлических сплавов с отношением, по меньшей мере, двух из трех размеров больше чем 5 к 1. При осуществлении второй стадии могут дополнительно вводить в жидкость гидроразрыва агент, повышающий транспортирующую способность жидкости. В качестве агента предпочтительно используют материал, содержащий удлиненные частицы, у которых отношение, по меньшей мере, двух их трех размеров больше чем 5 к 1. Материал, содержащий удлиненные частицы, обычно вводят в жидкость гидроразрыва или в промежутках между введением проппанта, или непрерывно. Чаще всего удлиненные частицы представляют собой волокна, выполненные из природных или искусственных органических материалов или стекла, керамики, углерода, неорганических веществ или металла. Волокна могут быть выполнены на основе полимолочной кислоты, полигликолевой кислоты, полиэтилтерфталата, сополимеров указанных соединений или поливинилового спирта. Используемые волокна могут быть покрыты материалом или выполнены из материала, который становится клейким при температуре породы. Также указанные волокна могут быть выполнены из клейкого материала, который покрыт неклейким веществом, растворяющимся в жидкости гидроразрыва при прохождении волокон по трещине. В предпочтительном варианте реализации весовая концентрация частиц в жидкости гидроразрыва составляет 0,1-10%. Обычно используют частицы, имеющие длину более чем 2 мм и диаметр 3-200 микрон. В преимущественном варианте реализации закачивают объем жидкости с проппантом, меньший, чем объем жидкости без проппанта, с образованием кластеров проппанта меньшего размера с большими размерами каналов между ними для прохождения пластового флюида. Предпочтительно проппант состоит из смеси групп частиц проппанта, имеющих разный диаметр, причем соотношение диаметров частиц проппанта в каждой группе и количество частиц проппанта в каждой группе выбирают так, чтобы минимизировать пористость получаемых кластеров или островков проппанта. Частицы проппанта могут иметь либо смоляное или клейкое покрытие, либо смоляное или клейкое покрытие, сверху защищенное слоем неклейкого вещества, растворимого в жидкости гидроразрыва по мере прохождения частиц по трещине. При реализации способа иногда применяют третью стадию, которая состоит в непрерывном введении проппанта в жидкость гидроразрыва с по существу однородными по размеру частицами. При реализации третьей стадии предпочтительно непрерывно вводят в жидкость гидроразрыва укрепляющий материал и/или консолидирующий материал и/или непрерывно вводят в жидкость гидроразрыва материал, представляющий собой удлиненные частицы, повышающие транспортирующие возможности жидкости по переносу проппанта.

Согласно второму варианту разработанного технического решения используют способ гидравлического разрыва подземного пласта, включающий первую стадию, в процессе которой в ствол скважины закачивают жидкость гидроразрыва, включающую загустители, улучшающие образование трещины в породе, и вторую стадию, в процессе которой вводят проппант в закачиваемую жидкость гидроразрыва для предотвращения закрытия трещины, причем дополнительно осуществляют периодическое введение в жидкость гидроразрыва агента, способствующего образованию в созданной трещине кластеров из частиц проппанта и каналов для протекания пластового флюида. Предпочтительно используют агент, формирующий кластеры проппанта, реагирующий с жидкостью гидроразрыва спустя некоторое время после его введения в жидкость гидроразрыва, при этом время введения в жидкость агента выбирают таким образом, чтобы запустить реакцию агента в различных местах созданной трещины, что приводит к формированию кластеров проппантов в этих местах. Обычно момент срабатывания агента задают путем изменения химического состава агента, помещения агента в капсулы с полупроницаемыми мембранами или с пористой оболочкой с возможностью медленной диффузии сквозь оболочку, помещения агента в оболочку, которая растворяется или вымывается, или помещения агента в капсулы с оболочкой, которая разрушается в течение выбранного интервала времени путем растворения в жидкости гидроразрыва, или путем эрозии при столкновении между частицами или с поверхностью трещины, или путем разрушения капсул при смыкании стенок трещины. Однако возможен вариант, когда момент срабатывания агента задают путем изменения химического состава агента, помещения агента в гранулы из пористого материала, которые разрушаются в течение выбранного интервала времени из-за растворения в жидкости гидроразрыва, или из-за механического разрушения при столкновении гранул между собой или с поверхностью трещины, или из-за разрушения от нагрузок смыкания трещины, или из-за медленного вымывания реагента из гранул. Преимущественно агент выбирают из группы добавок, которые способны значительно изменить локальную вязкость жидкости гидроразрыва и скорость осаждения проппанта. В частности, в качестве агента используют разрушитель геля жидкости гидроразрыва, который реагирует в различных местах трещины, который предпочтительно добавляют в виде частиц с оболочкой, имеющей различную толщину, причем оболочка при растворении в жидкости гидроразрыва пропускает агент для реакции с жидкостью гидроразрыва в различных местах скважины. При этом обычно разрушитель геля выбирают из класса окислителей, способных реагировать с жидкостью гидроразрыва и разрушать полимерные цепи в жидкости гидроразрыва. Одновременно иногда дополнительно вводят катализатор в жидкость гидроразрыва для ускорения действия окислителя, уже растворенного или диспергированного в жидкости гидроразрыва. Иногда используют добавки, которые способны разрушать места действия сшивающих агентов, занимать места действия сшивающих агентов, адсорбировать агенты сшивания в загущенной жидкости гидроразрыва. Однако могут использовать добавки, покрытые оболочками различной толщины, способные растворяться в жидкости гидроразрыва и давать выход добавкам в различных местах трещины. Обычно добавки выбирают из группы, содержащей полимолочную или полигликолевую кислоты, поливиниловые спирты, сорбитол, глюконаты, EDTA, NTA или фосфаты. Добавки могут также выбирать из класса взрывчатых или воспламеняющихся веществ, химически активных металлов или иных реактивных материалов, которые создают эффект локального нагрева жидкости гидроразрыва, при этом добавки помещают в оболочки, которые разрушаются при попадании в трещину и освобождают содержимое в различных местах трещины. В некоторых случаях агент выбирают из группы добавок, способных снижать подвижность частиц проппанта, в частности добавок, представляющих собой пучки волокон, защищенные оболочкой или скрепленные между собой с использованием медленно разрушаемого наполнителя, который при растворении в жидкости гидроразрыва обеспечивает гидратацию и распределение отдельных волокон с повышением их эффективной концентрации в жидкости гидроразрыва, и/или добавок, выполненных из материалов, способных принимать изначальную форму при нагреве до определенной температуры. В последнем случае обычно используют материал в виде отрезков волокон, которые в исходном состоянии свернуты в шарики, а при нагревании распрямляются или увеличиваются в объеме. В некоторых случаях используют добавки, выполненные из материла с высокой абсорбирующей способностью, в частности, используют частицы материала с заблокированной способностью абсорбции путем применения временной оболочки, временной сшивки или временной химической обработки, причем блокировка действует до момента попадания частиц в нужное место в трещине, при этом абсорбент активируется после растворения задерживающего агента, от температуры, от абразии материала или комбинации этих факторов, а также используют добавки в виде гранул, волокон, пластинок, чья поверхность становится клейкой при температуре породы. Указанные гранулы, волокна, пластинки с клейкой поверхностью могут быть покрыты слоем неклейкого вещества, растворимого в жидкости гидроразрыва. При реализации второй стадии обычно осуществляют дальнейшее непрерывное введение материала в жидкость гидроразрыва или непрерывно вместе с агентом, причем материал содержит удлиненные частицы, у которых длина намного превышает их диаметр, что повышает транспортные возможности такой жидкости. При этом обычно используют материал с удлиненными частицами, состоящий их природно-органических, искусственно-органических, стеклянных, керамических, углеродных, неорганических, металлических волокон. Указанные полимерные волокна могут быть выполнены на основе полимеров, способных в водной среде гидролизоваться до олигомеров или мономеров, при этом полимеры выбирают из группы, содержащей полимолочную кислоту, полигликолевую кислоту, полиэтилтерфталат и их сополимеры, или способных медленно растворятся, причем скорость растворения зависит от температуры. Также могут быть использованы волокна, выполненные из или покрытые материалом, который при температуре породы становится клейким, или волокна, выполненные из клейкого материала, покрытого неклейким веществом, способным растворяться в жидкости гидроразрыва. Преимущественно используют концентрацию материала с удлиненными частицами в пределах 0,1-30% от веса жидкости и/или частицы материала, имеющие отношение дины к диаметру больше чем 5:1. Иногда при реализации второй стадии дополнительно вводят укрепляющий и/или консолидирующий материал в жидкость гидроразрыва непрерывно или совместно с упомянутым агентом. Обычно используют укрепляющий материал, выбранный из группы, содержащей органические, неорганические или органически-неорганические волокна с однослойным покрытием или с клейким покрытием, защищенным слоем неклейкого вещества, растворимого в жидкости гидроразрыва при поступлении в трещину, металлические частицы сферической или удлиненной формы, пластины органического или неорганического вещества, керамики, металла или металлических сплавов, причем отношение длины к ширине частиц укрепляющего материала больше чем 5:1. Предпочтительно используют укрепляющий материал, представляющий собой смесь фракций, имеющих различные диаметры частиц, причем отношение диаметров из различных фракций частиц и относительное количество фракций выбирают таким образом, чтобы минимизировать результирующую пористость проппанта. При всех вариантах реализации способа обычно используют частицы материала с клейкой оболочкой или с клейкой оболочкой и слоем неклейкого вещества, способного растворяться в жидкости гидроразрыва при прохождении частиц по трещине. При этом иногда дополнительно используют третью стадию, во время которой осуществляют непрерывную подачу проппанта в жидкость гидроразрыва, причем проппант имеет частицы существенно однородного размера, и/или осуществляют непрерывную подачу укрепляющего материала в жидкость гидроразрыва. Укрепляющий материал предпочтительно содержит удлиненные частицы, которые повышают транспортную способность жидкости.

Согласно третьему варианту реализации изобретения способ гидравлического разрыва подземного пласта включает первую стадию, в процессе которой в ствол скважины закачивают жидкость гидроразрыва, содержащую загуститель для лучшего образования трещины в породе, и вторую стадию, в процессе которой непрерывно вводят проппант в закачиваемую жидкость гидроразрыва для предотвращения закрытия трещины, причем дополнительно проводят третью стадию, в процессе которой закачивают дополнительную жидкость с вязкостью существенно меньше, чем вязкость жидкости гидроразрыва, при этом закачивание осуществляют таким образом, что менее вязкая жидкость проникает в вязкий гель в виде языков, которые разделяют проппант на отдельные кластеры с образованием между кластерами каналов, предназначенных для протекания пластового флюида. Предпочтительно для увеличения транспортных возможностей жидкости гидроразрыва на второй стадии дополнительно вводят в жидкость гидроразрыва непрерывно или совместно с агентом материал, содержащий удлиненные частицы с длиной, превышающей диаметр в отношении боле чем 5:1. При этом обычно используют материал с удлиненными частицами, представляющими собой волокна, выбранные из группы волокон, содержащей природные органические, неорганические, искусственные органические, стеклянные, керамические, углеродные или металлические. Чаще всего используют волокна на основе полимеров, способных гидролизоваться до водорастворимых олигомеров или мономеров, синтезированных на основе полимолочной кислоты, полигликолевой кислоты, полиэтилентерефталат и их сополимеры, и/или используют волокна, выполненные на основе полимеров, способных медленно растворятся или с растворимостью, сильно зависящей от температуры, и/или используют волокна, содержащие покрытие или выполненные из материала, приобретающего клейкие свойства при температуре породы, и/или используют волокна, выполненные из материала, который является клейким, и покрытые неклейким веществом, способным растворяется в жидкости гидроразрыва при попадании волокон в трещину. Предпочтительно используют весовую концентрацию материала в жидкости гидроразрыва в пределе 0,1-30%, используя при этом частицы материала, имеющие отношение длины к ширине больше чем 5:1. Предпочтительно при реализации второй стадии непрерывно или вместе с агентом дополнительно вводят укрепляющий материал в жидкость гидроразрыва, преимущественно используя при этом укрепляющий материал, выбранный из группы, содержащей органические, неорганические или органически-неорганические волокна, имеющие клейкое покрытие или клейкое покрытие со слоем неклейкого покрытия, способное растворяться в жидкости гидроразрыва при попадании в трещину, а также металлические частицы сферической или удлиненной формы, пластины из органического или неорганического вещества, керамики, металлов или сплавов с отношением двух из трех размеров больше чем 5 к 1. При реализации варианта разработанного способа обычно используют проппант, состоящий из смеси фракций, имеющих различные диаметры частиц, причем отношения диаметров из различных фракций частиц и относительное количество фракций выбирают таким образом, чтобы минимизировать результирующую пористость проппанта, и/или используют частицы проппанта, имеющие клейкое покрытие или клейкое покрытие, защищенное дополнительным слоем неклейкого вещества, способного растворяется в жидкости гидроразрыва при попадании волокон в трещину. Иногда при реализации этого варианта способа дополнительно осуществляют четвертую стадию, при реализации которой в жидкость гидроразрыва непрерывно подают проппант, причем частицы проппанта существенно однородны по размеру, и/или непрерывно подают укрепляющий материал, и/или непрерывно подают материал с удлиненными частицами, которые увеличивают транспортную возможность жидкости гидроразрыва.

Обычно операции ГРП выполняют как последовательность двух или более стадий. Во время первой стадии большинства операций ГРП происходит закачивание жидкости разрыва без проппанта, то есть жидкости на основе воды или нефти, которую закачивают при высоком давлении и высокой скорости для создания гидравлической трещины. На практике приготовляют жидкость с повышенной вязкостью, добавляя различные загустители; квалифицированный исполнитель может контролировать вязкость, которая влияет на окончательную конфигурацию трещины. В описанном изобретении применяют такую стадию закачивания жидкости гидроразрыва без проппанта.

Следующая и обычно неразрывно следующая (основная) стадия ГРП известна как стадия расклинивания, или доставки проппанта в трещину. При обычной операции ГРП во время этой стадии закачивают жидкость, имеющую постоянную или возрастающую концентрацию обычного проппанта. Это создает высокопористый слой проппанта в конце операции. Квалифицированный исполнитель знает, как выбирать подходящий проппант для конкретн