Компрессор и способ его изготовления (варианты)

Иллюстрации

Показать все

Изобретение относится к компрессоростроению. Компрессор содержит первый составляющий элемент 23 и первый скользящий элемент 24. Первый составляющий элемент 23 можно подвергать лазерной сварке. Первый скользящий элемент 24 состоит из чугуна, который можно подвергать лазерной сварке и который имеет содержание углерода от 2,0% по весу или больше до 2,7% по весу или меньше. Этот первый скользящий элемент 24 присоединен к первому составляющему элементу 23 посредством лазерной сварки без использования стыковой прокладки. Изобретение направлено на создание компрессора, уменьшенного в размере и доступного по цене. 4 н. и 15 з.п. ф-лы, 25 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к компрессору, и в частности, к компрессору, который имеет уменьшенный размер (уменьшенный в диаметре).

Уровень техники

Ранее был предложен метод, в котором "объединенную поверхность между корпусом и зафиксированной спиральной камерой разделяли на герметизированную поверхность и приваренную поверхность, которые были образованы в ступенчатом образовании, и для соединения вместе кожуха и зафиксированной спиральной камеры лазерную сварку выполняли по всей внешней периферии приваренной поверхности" (см., например, патентный документ №1). В прошлом также был предложен метод выполнения лазерной сварки, в котором "тонкую пленку из чистого никеля прокладывали между чугуном и сталью, и стальную сторону облучали лазерным излучением для выполнения сварки чугуна и стали" (см., например, патентный документ №2).

<Патентный документ №1>

Японская выложенная патентная заявка №2002-195171

<Патентный документ №2>

Японская выложенная патентная заявка №2001-334378

Раскрытие сущности изобретения

Проблемы, которые должно решить изобретение

В последнее время, в частности, в японском обществе, появился спрос на устройства кондиционирования воздуха, водоподогреватели и другие такие устройства, имеющие уменьшенный размер, из-за трудности в обеспечении пространства для их размещения и т.п. Для достижения этого уменьшения размера неизбежно потребуется уменьшить размер компрессора, который принадлежит к классу наиболее крупных из элементных компонентов.

Ввиду этого пример рассматриваемого способа соединения составляющих элементов заключается в переключении от "скрепления болтами", выполнявшегося в прошлом, на "лазерную сварку". Если способ соединения переключается от "скрепления болтами" на "лазерную сварку", участки, обеспечиваемые для цели скрепления болтами, могут быть полностью исключены, и поэтому становится возможным уменьшить размер (уменьшить диаметр) компрессора. Кроме того, поскольку больше нет необходимости в материалах, используемых прежде в участках, обеспечиваемых для цели скрепления болтами, этот способ также имеет положительное качество сокращения затрат на материалы. Однако, когда лазерную сварку выполняют, как в описанном выше методе, если герметизированная поверхность и приваренная поверхность разделены, из-за механической обработки в приваренной поверхности будут неизбежно образовываться промежутки в несколько десятков микрон. Поэтому возникают проблемы, связанные с образованием подрезок и с нестабильным качеством сварки, если стыковая прокладка не используется. Однако, если используется никель или другая такая стыковая прокладка, сам никель является дорогостоящим, и поэтому может оказаться невозможным заметить достаточное уменьшение в затратах на материалы, как описано выше.

В случаях, в которых сваривают углеродистую сталь, обычно выбирают углеродистую сталь, имеющую содержание углерода 0,3% по весу или меньше. Однако, поскольку компрессор имеет много скользящих элементов, существуют обстоятельства, при которых предпочтительными являются материалы, имеющие высокое содержание углерода, чтобы гарантировать скользящую способность. Содержание углерода также предпочтительно настолько высокое, насколько возможно, потому что если содержание углерода низкое, обрабатываемость материалов является недостаточной.

Задачей настоящего изобретения является обеспечение компрессора, который можно изготавливать с уменьшенным размером, который можно делать коммерчески доступным по низкой цене, и который не теряет обычную скользящую способность и обрабатываемость.

Средство для решения проблемы

Компрессор в соответствии с первым объектом содержит первый составляющий элемент и первый скользящий элемент. Первый составляющий элемент можно подвергать лазерной сварке. Первый скользящий элемент состоит из чугуна, который можно подвергать лазерной сварке и который имеет содержание углерода от 2,0% по весу или больше до 2,7% по весу или меньше. Фраза "чугун, который можно подвергать лазерной сварке и который имеет содержание углерода от 2,0% по весу или больше до 2,7% по весу или меньше", как используется в данном описании, относится, например, к чугуну или подобному материалу, который быстро остывает и полностью охлаждается, и затем подвергается термической обработке так, чтобы предел прочности на растяжение составлял от 600 МПа или больше до 900 МПа или меньше, приводя к образованию рафинированной структуры металла. Другими словами, этот первый скользящий элемент эквивалентен компоненту, который образован посредством литья под давлением полурасплавленного металла, литья под давлением полутвердого металла или посредством другого такого способа, и который затем подвергнут термической обработке. Поскольку этот тип первого скользящего элемента демонстрирует высокий предел прочности на растяжение и долговечность, степень свободы в конструировании может быть улучшена, и компрессор может быть уменьшен в диаметре. Если твердость отрегулирована до величины, находящейся в диапазоне от свыше HRB 90 до менее HRB 100, когда компрессор работает, "приработка" может происходить так быстро, как это возможно, и заедание во время неправильной работы может быть предотвращено. Кроме того, поскольку этот тип первого скользящего элемента имеет более высокую прочность по сравнению с материалом FC (медленно охлажденным в печи), менее вероятно образование повреждения в связи со включением постороннего вещества и внезапным увеличением внутреннего давления. Даже если повреждение должно было бы произойти, вряд ли будут производиться небольшие соскабливания, и трубы очищать не потребуется. Термин "рафинированный", используемый в данном описании, относится к структуре металла, являющейся более тонкой, чем структура чугуна с пластинчатым графитом. Этот первый скользящий элемент соединяют с первым составляющим элементом с помощью лазерной сварки без использования стыковой прокладки. Составляющий элемент может быть скользящим элементом, отличающимся от первого скользящего элемента, а также может быть нескользящим элементом. Используемый в данном описании термин "скользящий элемент" относится, например, к зафиксированной спиральной камере или кожуху (опорному участку) компрессора со спиральной камерой, блоку цилиндра ротационного компрессора или к подобному устройству. Во время лазерной сварки лазерное излучение предпочтительно регулируют так, чтобы количество подводимой теплоты на единицу длины в направлении, в котором протекает сварка, составляло от 10 (Дж/мм) или больше до 70 (Дж/мм) или меньше. Это обусловлено тем, что если количество подводимой теплоты меньше, чем 10 (Дж/мм), глубина сплавления является слишком маленькой, чтобы получить достаточное соединение, а если количество подводимой теплоты больше, чем 70 (Дж/мм), сталкиваются с проблемами, состоящими в том, что предел прочности на растяжение чугуна уменьшается примерно на 30-40 процентов, и усталостная прочность также уменьшается. В соответствии с результатами экспериментов изобретателей предел прочности на растяжение чугуна в участках лазерной сварки может поддерживаться на 80 процентах или больше, если количество подводимой теплоты находится в пределах этого диапазона, и при испытании на изгиб плоскости было обнаружено, что может быть достигнуто отношение предела усталости к пределу прочности чугуна, составляющее 0,4-0,5. Лазерное излучение также предпочтительно представляет собой излучение волоконного лазера. Это обусловлено тем, что во время лазерной сварки может быть достигнуто глубокое проплавление, и поэтому возможно получение соединения с низкой подводимой теплотой. Лазерное излучение также предпочтительно имеет диаметр следа луча от 0,2 мм или больше до 0,7 мм или меньше. Это обусловлено тем, что если диаметр следа луча составляет менее 0,2 мм, проплавление, вероятно, будет неудовлетворительным из-за отклонений положений при сварке, а если диаметр следа луча больше 0,7 мм, требуемая глубина проплавления не будет достигнута. Скорость обработки должна быть уменьшена для достижения требуемой глубины проплавления. Однако, если скорость обработки уменьшается, подвергающийся тепловому воздействию участок становится больше, и возникает проблема, заключающаяся в том, что предел прочности на растяжение этого участка снижается.

В этом компрессоре первый скользящий элемент, который состоит из чугуна, способного подвергаться лазерной сварке и имеющего содержание углерода от 2,0% по весу или больше до 2,7% по весу или меньше, соединяют с первым составляющим элементом посредством лазерной сварки. Следовательно, с этим компрессором скрепление болтами не нужно, можно получить уменьшение размера (уменьшение диаметра), и обычные скользящая способность и обрабатываемость не теряются. Затраты на материалы могут быть в достаточной степени уменьшены, потому что участки, обеспечиваемые для цели скрепления болтами, могут быть исключены, и потому что стыковая прокладка, такая как никель, в лазерной сварке не используется. Следовательно, этот компрессор может быть уменьшен в размере, его можно делать коммерчески доступным по низкой цене, и при этом не теряется обычная скользящая способность или обрабатываемость.

Компрессор в соответствии со вторым объектом представляет собой компрессор в соответствии с первым объектом, в котором первый составляющий элемент имеет первую поверхность соединения. Первый скользящий элемент имеет вторую поверхность соединения. Первая поверхность соединения и вторая поверхность соединения предпочтительно имеют шероховатость (Ra) поверхности центровой линии, составляющую 1,2 мкм или меньше, и степень плоскостности, составляющую 0,3 мм или меньше. Это обусловлено тем, что образование промежутков между первой поверхностью соединения и второй поверхностью соединения может быть предотвращено, как и возникновение дефектов сварного соединения. Если поверхности соединения спрессовывают вместе с большой силой, чтобы уменьшить промежутки, возникают проблемы, состоящие в том, что в первом скользящем элементе и первом составляющем элементе возникает деформация, и эксплуатационные параметры и надежность компрессора снижаются. 50% или больше от участка контакта между первой поверхностью соединения и второй поверхностью соединения подвергаются лазерной сварке без использования стыковой прокладки. Более предпочтительным является подвергать лазерной сварке по существу весь участок контакта между первой поверхностью соединения и второй поверхностью соединения. Это обусловлено тем, что точки усталостного разрушения могут быть исключены. Для лазерной сварки предпочтительно использовать лазерное излучение, имеющее диаметр следа луча от 0,2 мм или больше до 0,7 мм или меньше. Это обусловлено тем, что дефекты проплавления, возникающие в результате отклонений положений при сварке, могут быть вследствие этого предотвращены.

В этом компрессоре 50% или больше от участка контакта между первой поверхностью соединения и второй поверхностью соединения подвергаются лазерной сварке. Другими словами, в этом компрессоре приваренная поверхность и герметизированная поверхность являются одной и той же поверхностью. Поэтому компрессор может быть уменьшен в размере (уменьшен в диаметре), и качество сварки между первым составляющим элементом и первым скользящим элементом может быть улучшено. С этим компрессором лазерную сварку выполняют без использования стыковой прокладки. Поэтому этот компрессор может быть сделан коммерчески доступным по низкой цене. Следовательно, этот компрессор может быть уменьшен в размере, качество сварки между кожухом или другими составляющими элементами и зафиксированной спиральной камерой или подобным устройством может быть улучшено, и компрессор может быть сделан коммерчески доступным по низкой цене.

Компрессор в соответствии с третьим объектом представляет собой компрессор в соответствии со вторым объектом, в котором лазерная сварка включает в себя сварку участка контакта между первой поверхностью соединения и второй поверхностью соединения по всей его периферии.

С этим компрессором во время лазерной сварки участок контакта между первой поверхностью соединения и второй поверхностью соединения сваривают по всей его периферии. Поэтому с этим компрессором может быть достигнуто надежное уплотнение по сравнению со скреплением болтами, и может ожидаться улучшение эксплуатационных параметров.

Компрессор в соответствии с четвертым объектом представляет собой компрессор в соответствии со вторым или третьим объектом, в котором первый составляющий элемент подвергнут снятию фасок в концевом участке первой поверхности соединения на стороне, облучаемой лазерным излучением, причем снятие фасок является больше 0 мм и составляет 1/4 или меньше от диаметра следа луча лазерного излучения. Первый скользящий элемент также подвергнут снятию фасок в концевом участке второй поверхности соединения на стороне, облучаемой лазерным излучением, причем снятие фасок является больше 0 мм и составляет 1/4 или меньше от диаметра следа луча лазерного излучения.

В некоторых случаях камерой фотографируется определенная линия, и эта линия используется как начало отсчета, чтобы определять положения, облучаемые лазерным излучением. В этом компрессоре снятие фасок выполняется в концевом участке первой поверхности соединения на стороне, облучаемой лазерным излучением в первом составляющем элементе. В первом скользящем элементе снятие фасок выполняется в концевом участке второй поверхности соединения на стороне, облучаемой лазерным излучением. Поэтому линия на верхней части или на нижней части скошенной поверхности соединения может использоваться в качестве линии начала отсчета. В этом компрессоре степень снятия фасок является больше 0 мм и составляет 1/4 или меньше от диаметра следа луча лазерного излучения. Поэтому в этом компрессоре возможно предотвращать отклонения положений лазерного излучения или отклонения от фокальной точки.

Компрессор в соответствии с пятым объектом представляет собой компрессор в соответствии с любым из второго - четвертого объектов, в котором первый составляющий элемент имеет первую часть пластины и первую часть окружающей стенки. Первая часть окружающей стенки образована вертикально на первой части пластины. Первая поверхность соединения представляет собой торцевую поверхность первой части окружающей стенки на стороне, противоположной стороне первой части пластины. Первый скользящий элемент имеет вторую часть пластины и вторую часть окружающей стенки. Вторая часть окружающей стенки образована вертикально на второй части пластины. Вторая поверхность соединения представляет собой торцевую поверхность второй части окружающей стенки на стороне, противоположной стороне второй части пластины.

В этом компрессоре первая поверхность соединения представляет собой торцевую поверхность первой части окружающей стенки на стороне, противоположной стороне первой части пластины, а вторая поверхность соединения представляет собой торцевую поверхность второй части окружающей стенки на стороне, противоположной стороне второй части пластины. Поэтому компрессор может быть уменьшен в размере (уменьшен в диаметре) без беспокойства относительно крутящего момента прикрепления болтами, пропущенных скреплений болтами, внутреннего загрязнения болтов или подобных ситуаций.

Компрессор в соответствии с шестым объектом представляет собой компрессор в соответствии с пятым объектом, дополнительно содержащий второй скользящий элемент. Второй скользящий элемент размещен в пространстве, образованном первой частью окружающей стенки и второй частью окружающей стенки в состоянии, в котором первая поверхность соединения и вторая поверхность соединения сделаны обращенными друг к другу. Первый составляющий элемент дополнительно имеет третью часть стенки. Третья часть стенки имеет поверхность, которая пересекает направление распространения лазерного излучения во время лазерной сварки. Третья часть стенки также обеспечена между внутренней поверхностью стенки первой части окружающей стенки и вторым скользящим элементом в состоянии, в котором первая поверхность соединения и вторая поверхность соединения сделаны обращенными друг к другу.

В этом компрессоре третья часть стенки обеспечена между внутренней поверхностью стенки первой части окружающей стенки и вторым скользящим элементом в состоянии, в котором первая поверхность соединения и вторая поверхность соединения сделаны обращенными друг к другу. Поэтому в этом компрессоре, когда первый составляющий элемент и первый скользящий элемент подвергаются лазерной сварке, может быть предотвращено распыление капель во внутреннее пространство первой части окружающей стенки и их осаждение на втором скользящем элементе.

Компрессор в соответствии с седьмым объектом представляет собой компрессор в соответствии с пятым объектом, дополнительно содержащий второй скользящий элемент. Второй скользящий элемент размещен в пространстве, образованном первой частью окружающей стенки и второй частью окружающей стенки в состоянии, в котором первая поверхность соединения и вторая поверхность соединения сделаны обращенными друг к другу. Первый скользящий элемент дополнительно имеет четвертую часть стенки. Четвертая часть стенки имеет поверхность, которая пересекает направление распространения лазерного излучения во время лазерной сварки. Четвертая часть стенки также обеспечена между внутренней поверхностью стенки второй части окружающей стенки и вторым скользящим элементом.

В этом компрессоре четвертая часть стенки обеспечена между внутренней поверхностью стенки второй части окружающей стенки и вторым скользящим элементом в состоянии, в котором первая поверхность соединения и вторая поверхность соединения сделаны обращенными друг к другу. Поэтому, в этом компрессоре, когда первый составляющий элемент и первый скользящий элемент подвергаются лазерной сварке, может быть предотвращено распыление капель во внутреннее пространство второй части окружающей стенки и их осаждение на втором скользящем элементе.

Компрессор в соответствии с восьмым объектом представляет собой компрессор в соответствии с первым объектом, дополнительно содержащий коленчатый вал и ролик. Термин "ролик", используемый в данном описании, включает в себя участок ролика поршня в компрессоре с "плавающим" ротором, ролик ротационного компрессора или подобное устройство. Коленчатый вал имеет участок вала эксцентрика. Ролик установлен поверх участка вала эксцентрика. Первый скользящий элемент представляет собой блок цилиндра. Блок цилиндра имеет отверстие цилиндра. Участок вала эксцентрика и ролик размещены в отверстии цилиндра. Первый составляющий элемент представляет собой головную часть. Головная часть закрывает по меньшей мере одну сторону отверстия цилиндра, причем головная часть присоединена к блоку цилиндра посредством лазерной сварки в положениях, соответствующих положениям, разнесенным по направлению наружу на расстояние от 2 мм или больше до 4 мм или меньше от внутренней периферийной поверхности отверстия цилиндра. Термин "головная часть", используемый в данном описании, включает в себя передние головные части, задние головные части, средние пластины и т.п.

В обычных компрессорах с плавающим ротором и ротационных компрессорах блок цилиндра, передняя головная часть, задняя головная часть и другие такие компоненты соединены болтами, чтобы образовывать механизм сжатия (см., например, японскую выложенную патентную заявку №6-307363).

Однако в случаях, в которых скрепление болтами используется таким образом, в механизме сжатия происходит деформирование, если там имеется небольшое количество болтов. В частности, в случаях, в которых в качестве хладагента используется диоксид углерода, который широко применяется в последнее время, или другой такой естественный хладагент, должно быть обеспечено сопротивление нарастанию потока при повышении давления, и поэтому прочность соединения должна быть увеличена, и легко происходит деформирование соединения. Конечно, такие проблемы решаются с помощью большого количества болтов, но это нежелательно, потому что стоимость болтов быстро возрастает.

В последнее время, в частности в японском обществе, появился спрос на устройства кондиционирования воздуха, водоподогреватели и другие такие устройства, которые имеют уменьшенный размер, из-за трудности в обеспечении пространства для их размещения и т.п. Для достижения этого уменьшения размеров неизбежно потребуется уменьшить размер компрессора, который принадлежит к классу наиболее крупных из элементных компонентов.

Для преодоления таких проблем в этом компрессоре головная часть присоединена к блоку цилиндра посредством лазерной сварки в положениях, соответствующих положениям, разнесенным по направлению наружу на расстояние от 2 мм или больше до 4 мм или меньше от внутренней периферийной поверхности отверстия цилиндра. Поэтому в этом компрессоре для создания механизма сжатия головная часть может быть присоединена к блоку цилиндра без использования болтов. Следовательно, первая головная часть может быть присоединена ближе к отверстию цилиндра, чем возможно в тех случаях, в которых используется скрепление болтами. В результате с этим компрессором проявление деформации соединения из-за скрепления болтами может быть предотвращено, и компрессор может быть уменьшен в размере. Следовательно, с этим компрессором, деформация в механизме сжатия может быть исключена, в то время как производственные затраты снижаются, и, кроме того, компрессор может быть уменьшен в диаметре.

Компрессор в соответствии с девятым объектом представляет собой компрессор в соответствии с восьмым объектом, в котором головная часть сделана более тонкой, чтобы обеспечить возможность ее соединения посредством лазерной сварки с проплавлением основного металла в положениях, соответствующих положениям, разнесенным по направлению наружу на расстояние от 2 мм или больше до 4 мм или меньше от внутренней периферийной поверхности отверстия цилиндра. Термин "сделана более тонкой" описывает уменьшение толщины до 3 мм или меньше в случаях, в которых головная часть изготовлена посредством литья под давлением полурасплавленного металла, а выходная мощность лазера во время лазерной сварки с проплавлением основного металла составляет 4-5 кВт.

В этом компрессоре головная часть сделана более тонкой, чтобы обеспечить возможность соединения посредством лазерной сварки с проплавлением основного металла в положениях, соответствующих положениям, разнесенным по направлению наружу на расстояние от 2 мм или больше до 4 мм или меньше от внутренней периферийной поверхности отверстия цилиндра. Поэтому в этом компрессоре головная часть может быть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла.

Компрессор в соответствии с десятым объектом представляет собой компрессор в соответствии с первым объектом, дополнительно содержащим коленчатый вал и ролик. Термин "ролик", используемый в данном описании, включает в себя участок ролика поршня в компрессоре с плавающим ротором, ролик ротационного компрессора или подобное устройство. Коленчатый вал имеет участок вала эксцентрика. Ролик установлен поверх участка вала эксцентрика. Первый скользящий элемент представляет собой блок цилиндра. Блок цилиндра имеет отверстие цилиндра и теплоизоляционное пространство. Отверстие цилиндра вмещает участок вала эксцентрика и ролик. Теплоизоляционное пространство образовано во внешней периферии отверстия цилиндра. Теплоизоляционное пространство предпочтительно образовано в виде выемок в первой поверхности в направлении, проходящем через отверстие цилиндра, в положениях, разнесенных по направлению наружу больше чем на 4 мм от внутренней периферийной поверхности отверстия цилиндра, и образованных так, что образуется соединительная часть во второй стороне поверхности, которая является торцевой поверхностью на стороне, противоположной первой поверхности. Это обусловлено тем, что блок цилиндра таким образом может быть легко присоединен к головной части. В это время блок цилиндра предпочтительно присоединен ко второй головной части посредством лазерной сварки с проплавлением основного металла соединительной части. В таких случаях соединительная часть должна быть сделана более тонкой, чтобы обеспечить возможность соединения посредством лазерной сварки с проплавлением основного металла. Первый составляющий элемент представляет собой головную часть. Головная часть закрывает отверстие цилиндра и теплоизоляционное пространство. Эта головная часть приварена с помощью лазерной сварки к блоку цилиндра в положении, соответствующем областям между отверстием цилиндра и теплоизоляционным пространством. Головная часть предпочтительно также приварена с помощью лазерной сварки к блоку цилиндра в положении, соответствующем положению, которое находится дальше, чем теплоизоляционное пространство. Это обусловлено тем, что тогда теплоизоляционное пространство может быть удовлетворительно герметизировано.

Блок цилиндра и головная часть предпочтительно образованы посредством литья под давлением полурасплавленного металла. Это обусловлено тем, что блоку цилиндра и ролику придаются хорошие характеристики приработки, получают достаточное сопротивление сжатию в блоке цилиндра и головной части, также как другие эксплуатационные параметры; во время образования может быть получена почти чистая форма, и легче образовывать теплоизоляционное пространство, чем с помощью обычного литья в песчаные формы.

Ранее было предложено, чтобы теплоизоляционное пространство было образовано дальше по направлению наружу, чем цилиндрическая камера в компрессоре с плавающим ротором, ротационном компрессоре или в подобном устройстве, для цели сокращения количества теплоты, которого достигает низкотемпературный газ, вводимый через блок цилиндра, от газа хладагента, сжимаемого до высокой температуры в цилиндрической камере; и для улучшения коэффициента подачи компрессора (см., например, японскую выложенную патентную заявку №5-99183).

Однако в случаях, в которых теплоизоляционное пространство образовано таким образом дальше по направлению наружу, чем цилиндрическая камера, среди готовой продукции может встречаться некоторая неоднородность в коэффициенте подачи, в зависимости от степени воздухонепроницаемости между головной частью и блоком цилиндра.

Для преодоления таких проблем в этом компрессоре головную часть с помощью лазерной сварки приваривают к блоку цилиндра в положении, соответствующем областям между отверстием цилиндра и теплоизоляционным пространством. Поэтому в этом компрессоре достигнуто по существу полное уплотнение между отверстием цилиндра и теплоизоляционным пространством. Поскольку лазерная сварка исключает необходимость в болтах, цилиндр может быть сделан меньше, и площадь теплообмена также уменьшается. Поэтому этот компрессор делает возможным уменьшение неоднородности в коэффициенте подачи среди готовой продукции.

Компрессор в соответствии с одиннадцатым объектом представляет собой компрессор в соответствии с десятым объектом, в котором головная часть приварена с помощью лазерной сварки к блоку цилиндра в положении, соответствующем областям между отверстием цилиндра и теплоизоляционным пространством, и в положении, соответствующем областям, находящимся дальше, чем теплоизоляционное пространство.

В этом компрессоре головная часть приварена с помощью лазерной сварки к блоку цилиндра в положении, соответствующем областям между отверстием цилиндра и теплоизоляционным пространством, и в положении, соответствующем областям, находящимся дальше, чем теплоизоляционное пространство. Поэтому в этом компрессоре не только может быть обеспечена герметизация между отверстием цилиндра и теплоизоляционным пространством, но также может быть обеспечена воздухонепроницаемость в теплоизоляционном пространстве.

Компрессор в соответствии с двенадцатым объектом представляет собой компрессор в соответствии с любым из восьмого - одиннадцатого объектов, в котором лазерная сварка проплавляется сквозь головную часть. В таких случаях головная часть должна быть сделана более тонкой, чтобы обеспечить возможность соединения посредством лазерной сварки с проплавлением основного металла в участках, соединенных с блоком цилиндра. Термин "сделана более тонкой" описывает уменьшение толщины до 3 мм или меньше, в случаях, в которых выходная мощность лазера во время лазерной сварки с проплавлением основного металла составляет 4-5 кВт.

В этом компрессоре лазерная сварка проплавляется сквозь головную часть. Поэтому в этом компрессоре между отверстием цилиндра и теплоизоляционным пространством достигается удовлетворительное уплотнение.

Компрессор в соответствии с тринадцатым объектом представляет собой компрессор в соответствии с первым объектом, содержащий коленчатый вал и ролик. Коленчатый вал имеет участок вала эксцентрика. Ролик установлен поверх участка вала эксцентрика. Первый скользящий элемент представляет собой блок цилиндра. Блок цилиндра имеет отверстие цилиндра. Участок вала эксцентрика и ролик размещены в отверстии цилиндра. Первый составляющий элемент представляет собой головную часть. Головная часть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла, и головная часть закрывает по меньшей мере одну сторону отверстия цилиндра.

В этом компрессоре головная часть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла, и головная часть закрывает по меньшей мере одну сторону отверстия цилиндра. Поэтому с этим компрессором головная часть может быть присоединена к блоку цилиндра без использования болтов, и может быть создан механизм сжатия. Следовательно, с этим компрессором, можно предотвращать возникновение деформации соединения, вызываемой скреплениями болтами, и компрессор может быть уменьшен в диаметре. В результате с этим компрессором в механизме сжатия деформация может быть исключена, в то время как производственные затраты уменьшены, и, кроме того, компрессор может быть уменьшен в диаметре.

Компрессор в соответствии с четырнадцатым объектом представляет собой компрессор в соответствии с любым из восьмого - тринадцатого объектов, в котором головная часть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла по осевому направлению коленчатого вала.

В этом компрессоре головная часть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла по осевому направлению коленчатого вала. Поэтому в этом компрессоре первая головная часть может быть легко присоединена к блоку цилиндра.

Компрессор в соответствии с пятнадцатым объектом представляет собой компрессор в соответствии с любым из восьмого - тринадцатого объектов, в котором головная часть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла по направлению, которое пересекает осевое направление коленчатого вала (исключая направление, ортогональное осевому направлению коленчатого вала).

В этом компрессоре головная часть присоединена к блоку цилиндра посредством лазерной сварки с проплавлением основного металла по направлению, которое пересекает осевое направление коленчатого вала (исключая направление, ортогональное осевому направлению коленчатого вала). Поэтому в этом компрессоре головная часть может быть легко присоединена к блоку цилиндра.

Компрессор в соответствии с шестнадцатым объектом представляет собой компрессор в соответствии с любым из первого - пятнадцатого объектов, в котором сжимается диоксид углерода.

В случаях, в которых диоксид углерода или другой такой хладагент высокого давления сжимается в компрессоре, в котором первый составляющий элемент и первый скользящий элемент в обычном объекте скреплены болтами, хладагент или подобное вещество просачивается из соединяющихся частей, потому что прочность соединения недостаточна, и в случаях, в которых компрессор является компрессором со спиральной камерой, происходит неравномерная деформация в участке спиральной камеры в спиральной камере. Однако в компрессоре согласно настоящему изобретению первый составляющий элемент и первый скользящий элемент плотно соединены посредством лазерной сварки. Поэтому с этим компрессором такие проблемы не возникают даже в случаях, в которых в качестве хладагента используется диоксид углерода. Первый составляющий элемент и первый скользящий элемент предпочтительно подвергаются лазерной сварке по всей их периферии.

Способ изготовления компрессора в соответствии с семнадцатым объектом представляет собой способ изготовления компрессора, имеющего коленчатый вал, который имеет участок вала эксцентрика; ролик, установленный поверх участка вала эксцентрика; блок цилиндра, который имеет отверстие цилиндра для вмещения участка вала эксцентрика и ролика; и головную часть для закрывания отверстия цилиндра; причем способ содержит этап приведения в контакт и этап лазерной сварки. На этапе приведения в контакт головную часть приводят в контакт с блоком цилиндра таким образом, чтобы закрыть отверстие цилиндра. На этапе лазерной сварки головную часть приваривают с помощью лазерной сварки к блоку цилиндра в положениях, соответствующих положениям, разнесенным по направлению наружу на расстояние от 2 мм или больше до 4 мм или меньше от внутренней периферийной поверхности отверстия цилиндра.

В этом способе изготовления компрессора на этапе лазерной сварки головную часть приваривают с помощью лазерной сварки к блоку цилиндра в положениях, соответствующих положениям, разнесенным по направлению наружу на расстояние от 2 мм или больше до 4 мм или меньше от внутренней периферийной поверхности отверстия цилиндра. Поэтому, когда реализуют этот способ изготовления компрессора, для создания механизма сжатия первая головная часть может быть присоединена к блоку цилиндра без использования болтов. Следовательно, когда реализуют этот способ изготовления компрессора, может быть предотвращено проявление деформации соединения, вызываемое скреплением болтами, и компрессор может быть уменьшен в диаметре. В результате, когда реализуют этот способ изготовления компрессора, деформация в механизме сжатия может быть исключена, в то время как производственные затраты снижаются, и, кроме того, компрессор может быть уменьшен в диаметре.

Способ изготовления компрессора в соответствии с восемнадцатым объектом представляет собой способ изготовления компрессора, имеющего коленчатый вал, который имеет участок вала эксцентрика, ролик, установленный поверх участка вала эксцентрика, блок цилиндра, имеющий отверстие цилиндра для вмещения участка вала эксцентрика и ролика, и головную часть для закрывания отверстия цилиндра; причем способ содержит этап приведения в контакт и этап лазерной сварки с проплавлением основного металла. На этапе приведения в контакт головную часть приводят в контакт с блоком цилиндра таким образом, чтобы закрыть отверстие цилиндра. На этапе лазерной сварки с проплавлением основного металла головную часть присоединяют посредством лазерной сварки с проплавлением основного металла к блоку цилиндра.

В этом способе изготовления компрессора на этапе лазерной сварки с проплавлением основного металла головную часть присоединяют к блоку цилиндра посредством лазерной сварки с проплавлением основного металла. Поэтому, когда реализуют этот способ изготовления компрессора, первая головная часть может быть присоединена к блоку цилиндра без использования болтов для создания мех