Взвешенное справедливое совместное использование беспроводного канала с помощью масок использования ресурсов

Иллюстрации

Показать все

Изобретение относится к системам связи. Описаны системы и способы, облегчающие передачу данных в среде беспроводной связи, что является техническим результатом. В соответствии с различными аспектами узел, такой как пункт доступа или терминал доступа, может определять количество каналов, по которым он будет осуществлять передачу связного сигнала. Узел может затем делать выбор каналов, основываясь на том, доступны ли каналы или недоступны, причем при этом выборе доступные каналы выбираются с предпочтением перед недоступными каналами. Узел может затем передавать сигнал, по меньшей мере, по одному из выбранных каналов. 5 н. и 33 з.п. ф-лы, 1 табл., 8 ил.

Реферат

Настоящая патентная заявка представляет выгоды предварительной заявки США № 60/730631, озаглавленной "ВЗВЕШЕННОЕ СПРАВЕДЛИВОЕ СОВМЕСТНОЕ ИСПОЛЬЗОВАНИЕ БЕСПРОВОДНОГО КАНАЛА С ПОМОЩЬЮ МАСОК ИСПОЛЬЗОВАНИЯ РЕСУРСОВ", зарегистрированной 26 октября 2005 г., и предварительной заявки США № 60/730727, озаглавленной "УПРАВЛЕНИЕ ПОМЕХАМИ, ИСПОЛЬЗУЮЩЕЕ МАСКИ ИСПОЛЬЗОВАНИЯ РЕСУРСОВ, ПОСЫЛАЕМЫЕ С ПОСТОЯННОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТЬЮ МОЩНОСТИ (PSD)", зарегистрированной 26 октября 2005 г., которые обе включаются сюда путем ссылки.

УРОВЕНЬ ТЕХНИКИ

I. Область техники, к которой относится изобретение

Нижеследующее описание в целом относится к беспроводной связи и, более конкретно, к снижению помех и повышению пропускной способности и качества канала в среде беспроводной связи.

II. Уровень техники

Системы беспроводной связи стали распространенным средством, посредством которого большинство людей осуществляют связь по всему миру. Устройства беспроводной связи стали меньше по размерам и более мощными, чтобы удовлетворять запросы потребителей и улучшать транспортабельность и удобство. Увеличение мощности обработки мобильных устройств, таких как телефоны сотовой связи, привело к увеличению спроса на системы передачи беспроводных сетей. Такие системы обычно не могут обновляться так легко, как сотовые устройства, которые осуществляют через них связь. По мере расширения возможностей мобильных устройств может оказаться трудно поддерживать более старую систему беспроводной сети способом, облегчающим эксплуатацию совершенно новых беспроводных устройств с улучшенными возможностями.

Типичная сеть беспроводной связи (например, использующая частотные, временные и кодовые способы разделения каналов) содержит одну или более базовых станций, обеспечивающих зону охвата, и один или более мобильный (например, беспроводной) терминал, который может передавать и принимать данные в пределах зоны охвата. Типичная базовая станция может одновременно передавать многочисленные потоки данных для радиовещательных, широковещательных и/или однонаправленных служб, в которых поток данных является потоком данных, в приеме которого могут быть независимо заинтересованы на мобильном терминале. Мобильный терминал внутри зоны охвата этой базовой станции может быть заинтересован в приеме одного, более чем одного или всех потоков данных, которые переносит общий поток. Аналогично, мобильный терминал может передавать данные на базовую станцию или другому мобильному терминалу. Такая связь между базовой станцией и мобильным терминалом или между мобильными терминалами может ухудшаться из-за изменений в каналах и/или изменений мощности из-за интерференционных помех. Соответственно, в технике существует необходимость в системах и/или способах, которые облегчают снижение помех и повышают производительность в среде беспроводной связи.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Ниже представлено упрощенное изложение сущности одного или более аспектов, позволяющих обеспечить основное понимание таких аспектов. Это изложение сущности не является всесторонним кратким обзором всех рассматриваемых аспектов и не предназначено ни для того, чтобы идентифицировать ключевые или критические элементы всех аспектов, ни для того, чтобы описать объем любого или всех аспектов. Его единственной целью является представление некоторых концепций одного или более аспектов в упрощенной форме как прелюдии к более подробному описанию, которое приводится позже.

В соответствии с различными аспектами, новизна предмета изобретения относится к системам и/или способам, обеспечивающим унифицированную технологию для глобальных и локальных сетей беспроводной связи для облегчения достижения выгод, связанных как с сотовыми, так и с Wi-Fi-технологиями при уменьшении недостатков, связанных с ними. Например, сотовые сети связи могут организовываться в соответствии с запланированным развертыванием, которое может повышать эффективность при проектировании или строительстве сети, в то время как Wi-Fi-сети обычно развертываются более удобным, специализированным способом. Wi-Fi-сети могут дополнительно облегчать обеспечение канала симметричного управления доступом к среде (MAC) для точек доступа и терминалов доступа, а также поддержку обратной передачи с возможностью передачи данных по беспроводной сети, которая не обеспечивается сотовыми системами связи.

Унифицированные технологии, описанные здесь, облегчают обеспечение симметричного MAC и поддержку обратной передачи с возможностью передачи данных по беспроводной сети. Кроме того, новизна предмета изобретения облегчает развертывание сети гибким способом. Способы, описанные в настоящем изобретении, позволяют выполнение адаптации в соответствии с развертыванием, обеспечивая, таким образом, хорошую эффективность, если развертывание запланировано или полузапланировано, и обеспечение адекватной надежности, если развертывание сети не запланировано. То есть, различные аспекты, описанные здесь, позволяют развертывать сети, используя запланированное развертывание, (например, как в сценарии развертывания сотовой сети), специализированное развертывание (например, такое, которое может использоваться для развертывания Wi-Fi-сети) или их комбинацию. Помимо этого другие аспекты относятся к поддержке узлов с меняющимися уровнями мощности передачи и достижению внутрисетевой справедливости в отношении распределения ресурсов, таких аспектов, которые адекватно не поддерживаются Wi-Fi- или сотовыми системами связи.

Например, в соответствии с некоторыми аспектами, взвешенное справедливое совместное использование беспроводного канала может быть облегчено общим планированием передачи с помощью как передатчика, так и приемника, используя сообщение использования ресурсов (RUM), посредством которого передатчик запрашивает набор ресурсов, основываясь на знании их наличия в его окружении, а приемник предоставляет поднабор запрошенных каналов, основываясь на их доступности в его окружении. Передатчик изучает доступность на основе прослушивания приемников вблизи него, а приемник изучает потенциальные помехи, прослушивая передатчики вблизи него. В соответствии с сопутствующими аспектами, сообщения RUM могут взвешиваться, чтобы указать не только на то, что узел невыгоден (в качестве приемника передач данных из-за помех, что видно во время приема) и желает иметь режим предотвращения конфликтов при передаче, но также и на степень, в которой узел является невыгодным. Принимающий сообщение RUM узел может использовать тот факт, что он принял сообщение RUM, а также его вес, для определения соответствующей реакции. Как пример, такое объявление весов позволяет предотвратить конфликт справедливым способом. Изобретение описывает такую методику.

Согласно другим аспектам для облегчения определения, нужно ли реагировать на принятый RUM, может использоваться порог отклонения сообщения RUM (RRT). Например, используя различные параметры и/или информацию, содержащиеся в принятом сообщении RUM, может быть вычислена метрика, и эта метрика может быть сравнена с RRT для определения, гарантирован ли ответ узлу, посылающему сообщение RUM. В соответствии с сопутствующим аспектом узел, посылающий сообщение RUM, может указать свою степень невыгодности, указав количество каналов, для которых сообщение RUM применяется, так что количество каналов (вообще, они могут быть ресурсами, частотами поднесущих и/или временными интервалами) является показателем степени невыгодности. Если степень невыгодности уменьшается в ответе на сообщение RUM, то количество каналов, для которых посылается сообщение RUM, при последующей передаче сообщения RUM может быть уменьшено. Если степень невыгодности не уменьшается, то количество каналов, для которого RUM применяется, может быть увеличено при последующей передаче сообщения RUM.

Сообщение RUM может быть послано с постоянной спектральной плотностью мощности (PSD) и принимающий узел может использовать принятую спектральную плотность мощности и/или принятую мощность сообщения RUM, чтобы оценить усиление радиочастотного (RF) канала между ним самим и узлом, посылающим сообщение RUM, чтобы определить, вызовет ли это помеху на посылающем узле (например, выше заранее определенного приемлемого порогового уровня), если он ведет передачу. Таким образом, могут быть ситуации, в которых узел, принимающий RUM, способен декодировать RUM от узла, посылающего RUM, но определяет, что это не будет вызывать помеху. Когда узел, принимающий RUM, определяет, что он должен подчиниться RUM, он может это сделать, выбрав отказ от этого ресурса полностью или путем выбора использования достаточно пониженной мощности передачи, сделать свой вычисленный уровень потенциальной помехи ниже заранее определенного приемлемого порогового уровня. Таким образом, "жесткое" предотвращение помех (полный отказ) и "мягкое" предотвращение помех (регулирование мощности) одинаково поддерживаются унифицированным способом. В соответствии с сопутствующим аспектом сообщение RUM может использоваться принимающим узлом для определения усиления в канале между принимающим узлом и узлом, посылающим сообщение RUM, чтобы облегчить определение того, вести ли передачу, основываясь на оцененной помехе, создаваемой посылающим узлом.

В соответствии с аспектом способ беспроводной передачи данных может содержать определение некоторого количества каналов, желательных для передачи от узла, выбор каналов, причем доступные каналы выбираются до недоступных каналов, и посылку запроса набора, по меньшей мере, из одного выбранного канала.

В соответствии с другим аспектом устройство, облегчающее беспроводную передачу данных, может содержать модуль определения, который определяет количество каналов, желательных для передачи от узла, модуль выбора, который выбирает каналы, причем доступные каналы выбираются до недоступных каналов, и модуль передачи, который посылает запрос набора, по меньшей мере, из одного выбранного канала.

Другой аспект относится к устройству, которое облегчает беспроводную передачу данных, содержащему средство определения количества каналов, желательных для передачи от узла, средство выбора каналов, причем доступные каналы выбираются до недоступных каналов, и средство посылки запроса набора, по меньшей мере, из одного выбранного канала.

Еще один другой аспект относится к машиночитаемому носителю, содержащему команды для передачи данных, в котором команды при их выполнении заставляют машину определять количество каналов, желательных для передачи от узла, делать выбор каналов, при котором доступные каналы выбираются до недоступных каналов, и посылать запрос набора, по меньшей мере, из одного выбранного канала.

И еще один другой аспект относится к процессору, облегчающему передачу данных, который выполнен с возможностью определения количества каналов, желательных для передачи от узла, проведения выбора каналов, при котором доступные каналы выбираются до недоступных каналов, и посылки запроса набора, по меньшей мере, из одного выбранного канала.

Для завершения вышесказанного один или более аспектов содержат признаки, полностью описанные в дальнейшем и конкретно указанные в формуле изобретения. Нижеследующее описание и прилагаемые чертежи в подробностях излагают некоторые иллюстративные аспекты одного или более аспектов. Эти аспекты являются иллюстративными, но с несколькими различными путями, которыми принципы различных аспектов могут быть использованы, и описанные аспекты предназначены для того, чтобы содержать все такие аспекты и их эквиваленты.

Краткое описание чертежей

Фиг. 1 - система беспроводной связи с многочисленными базовыми станциями и многочисленными терминалами, которая может использоваться в сочетании с одним или более аспектами.

Фиг. 2 - методология выполнения взвешенного справедливого совместного использования беспроводного канала, используя маски/сообщения использования ресурсов (RUM) в соответствии с одним или более аспектами, описанными здесь.

Фиг. 3 - последовательность событий предоставления запроса, которая может облегчить распределение ресурсов в соответствии с одним или более аспектами, описанными здесь.

Фиг. 4 - несколько топологий, облегчающих понимание схем предоставления запроса в соответствии с различными аспектами.

Фиг. 5 - методология управления помехами путем использования сообщения использования ресурсов (RUM), которое передается с постоянной спектральной плотностью мощности (PSD) в соответствии с одним или более аспектами, представленными здесь.

Фиг. 6 - методология создания сообщений TxRUM и запросов для облегчения обеспечения гибкого управления доступом к среде (MAC) в специализированной развернутой беспроводной сети в соответствии с один или более аспектами.

Фиг. 7 - методология создания предоставления запроса передачи в соответствии с одним или более аспектами.

Фиг. 8 - методология достижения справедливости среди конкурирующих узлов путем регулирования числа поднесущих, используемых для передачи сообщения RUM согласно уровню невыгодности, связанному с данным узлам, в соответствии с одним или более аспектами.

Фиг. 9 - передача сообщения RxRUM между двумя узлами при постоянной спектральной плотности мощности (PSD) в соответствии с одним или более аспектами.

Фиг. 10 - методология использования постоянной PSD для передачи сообщения RUM, чтобы облегчить оценку количества помех, которые будут вызваны первым узлам во втором узле в соответствии с одним или более аспектами.

Фиг. 11 - методология ответа на пакеты управления помехами в запланированной и/или специализированной среде беспроводной связи в соответствии с различными аспектами.

Фиг. 12 - методология, применяемая для создания RxRUM в соответствии с различными аспектами, описанными выше.

Фиг. 13 - методология ответа на одно или более принятое сообщение RxRUM в соответствии с одним или более аспектами.

Фиг. 14 - среда беспроводной сети, которая может использоваться в сочетании с различными системами и способами, описанными здесь.

Фиг. 15 - устройство, облегчающее беспроводную передачу данных в соответствии с различными аспектами.

Фиг. 16 - устройство, облегчающее беспроводную связь, используя сообщения использования ресурсов (RUM) в соответствии с одним или более аспектами.

Фиг. 17 - устройство, облегчающее создание сообщения использования ресурсов (RUM) и взвешивание RUM, чтобы указать уровень невыгодности в соответствии с различными аспектами.

Фиг. 18 - устройство, облегчающее сравнение относительных условий в узлах в среде беспроводной связи для определения, какие узлы наиболее невыгодны в соответствии с одним или более аспектами.

ПОДРОБНОЕ ОПИСАНИЕ

Различные аспекты далее описываются со ссылкой на чертежи, на которых подобные ссылочные номера используются для ссылки на подобные элементы по всему описанию. В последующем описании для цели объяснения многочисленные конкретные подробности, излагаются в порядке, обеспечивающем всестороннее понимание одного или более аспектов. Может быть очевидным, однако, что такой аспект(-ы) может осуществляться без этих конкретных деталей. В других случаях известные структуры и устройства показываются в форме блок-схем, чтобы облегчить описание одного или более аспектов.

Используемые в этой заявке термины "компонент", "система", и т.п. предназначены для ссылки на связанный с компьютером элемент, устройство, аппаратурное обеспечение или программное обеспечение, выполняемое программное обеспечение, программируемое оборудование, микропрограммное обеспечение, микрокоманду и/или любую их комбинацию. Например, компонент может быть, в частности, процессом, идущим на процессоре, процессором, объектом, исполнимыми файлами, потоком управления, программой и/или компьютером. Один или более компонентов могут постоянно присутствовать внутри процесса и/или потока управления, и компонент может располагаться на одном компьютере и/или быть распределен между двумя или более компьютерами. Также, эти компоненты могут выполняться с различных читаемых компьютером носителей информации, имеющих различные структуры хранящихся на них данных. Компоненты могут связываться посредством местных и/или удаленных процессов, таких как сигнал с одним или более пакетами данных (например, данные от одного компонента, взаимодействующего с другим компонентом в локальной системе, распределенной системе и/или через сеть типа Интернет с другими системами посредством сигнала). Кроме того, компоненты систем, описанные здесь, могут перестраиваться в другом порядке и/или дополняться дополнительными компонентами, чтобы облегчить достижение различных аспектов, целей, преимуществ и т.д., описанных в отношении них, и не ограничиваются точными конфигурациями, приведенными на конкретном чертеже, как будет понятно специалисту в данной области техники.

Дополнительно, различные аспекты описываются здесь в связи с абонентским пунктом. Абонентский пункт может также называться системой, абонентским блоком, мобильной станцией, мобильным устройством, удаленной станцией, удаленным терминалом, терминалом доступа, терминалом пользователя, агентом пользователя, устройством пользователя или оборудованием пользователя. Абонентский пункт может быть телефоном сотовой связи, радиотелефоном, телефоном по Протоколу инициирования сеанса связи (SIP), станцией местной линией беспроводной связи (WLL), персональным цифровым секретарем (PDA), карманным устройством с возможностью беспроводного подключения или другим устройством обработки, соединенным с беспроводным модемом.

Кроме того, различные аспекты или признаки, описанные здесь, могут осуществляться как способ, устройство, производственное изделие, используя стандартное программирование и/или технические способы. Термин "производственное изделие", как он здесь используется, предназначен охватывать компьютерную программу, доступную с любого читаемого компьютером устройства, переносчика или носителя информации. Например, читаемый компьютер носитель может содержать, в частности, магнитное запоминающее устройство (например, жесткий диск, дискета, магнитные полосы...), оптические диски (например, компакт-диск (CD), цифровой универсальный диск (DVD)...), смарт-карты и устройства флэш-памяти (например, плата, карта памяти, портативное запоминающее устройство,...). Дополнительно, различные запоминающие устройства, описанные здесь, могут представлять одно или более устройств и/или других читаемых компьютером носителей для хранения информации. Термин "машиночитаемый носитель" может содержать, в частности, беспроводные каналы и различные другие носители информации, способные хранить, содержать и/или переносить команду(-ы) и/или данные. Следует понимать, что слово "примерный" используется здесь, чтобы означать "служащий в качестве примера, конкретного случая или иллюстрации". Любой аспект или конструкция, описанные здесь как "пример", не обязательно должны рассматриваться как предпочтительные или обладающие преимуществами перед другими аспектами или конструкциями.

Следует понимать, что термин "узел", как он используется здесь, может быть терминалом доступа или пунктом доступа и что каждый узел может быть узлом приема, а также узлом передачи. Например, каждый узел может содержать, по меньшей мере, одну приемную антенну и сопутствующую цепь приемника, а также, по меньшей мере, одну передающую антенну и сопутствующую цепь передачи. Кроме того, каждый узел может содержать один или более процессоров, чтобы исполнять команду программного обеспечения для выполнения любого и всех способов и/или протоколов, описанных здесь, а также запоминающее устройство для хранения данных и/или выполняемых компьютером инструкций, связанных с различными способами и/или протоколами, описанными здесь.

Обратимся теперь к фиг. 1, где беспроводная сетевая система 100 связи показана в соответствии с различными аспектами, представленными здесь. Система 100 может содержать множество узлов, таких как одна или более базовых станций 102 (например, сотовой связи, Wi-Fi или специализированная,...) в одном или более секторов, которые принимают, передают, ретранслируют и т.д. сигналы беспроводной связи друг другу и/или на один или более других узлов, таких как терминал 104 доступа. Каждая базовая станция 102 может содержать цепь передатчика и цепь приемника, каждая из которых может, в свою очередь, содержать множество компонент, связанных с передачей и приемом сигналов (например, процессоры, модуляторы, мультиплексоры, демодуляторы, демультиплексоры, антенны и т.д.), как должен понимать любой специалист в данной области техники. Терминалы 104 доступа могут быть, например, сотовыми телефонами, смартфонами, переносными компьютерами, карманными устройствами связи, карманными компьютерными устройствами, спутниковыми радиоприемниками, глобальными системами определения местоположения, персональными цифровыми секретарями и/или любым другим подходящим устройством для осуществления связи по беспроводной сети.

Последующее обсуждение предоставляется для облегчения понимания описанных здесь различных систем и/или методологий. В соответствии с различными аспектами узлам могут назначаться веса (например, передающему и/или приемному узлам), где вес каждого узла является функцией количества потоков, поддерживаемых узлом. Термин "поток", как используется здесь, представляет передачу, входящую в узел или выходящую из узла. Общий вес узла может определяться путем суммирования весов всех потоков, проходящих через узел. Например, постоянные потоки данных (CBR) могут иметь заранее определенные веса, потоки данных могут иметь веса, пропорциональные их типу (например, HTTP, FTP,...) и т.д. Кроме того, каждому узлу может назначаться заранее определенный статический вес, который может добавляться к весу потока каждого узла, чтобы обеспечить каждому узлу дополнительный приоритет. Вес узла может также быть динамическим и отражать текущие состояния потоков, которые переносит узел. Например, вес может соответствовать самой худшей производительностью переносимого (принимаемого) потока в этом узле. В сущности вес представляет собой степень неудобства, которое испытывает узел, и используется для выполнения справедливого доступа к каналам канала среди набора взаимодействующих узлов, конкурирующих за общие ресурсы.

Сообщения запроса, сообщения разрешения и передачи данных могут быть управляемыми по мощности, однако узел может, тем не менее, испытывать чрезмерную помеху, которая делает его уровни отношения сигнал/помеха плюс шум (SINR) неприемлемыми. Чтобы уменьшить действие нежелательно низкого отношения SINR, могут использоваться сообщения использования ресурса (RUM), которые могут быть на стороне приемника (RxRUM) и/или на стороне передатчика (TxRUM). Сообщение RxRUM может широковещательно приниматься приемником, когда уровни помех по желательным каналам приемника превышают заранее определенный пороговый уровень. Сообщение RxRUM может содержать список предоставленных каналов, по которым приемник желает уменьшить помеху, а также информацию о весе узла. Дополнительно, сообщение RxRUM может передаваться с постоянной спектральной плотностью мощности (PSD) или с постоянной мощностью. Узлы, которые декодируют сообщение RxRUM (например, передатчики, борющиеся с приемником, излучающим сообщение RxRUM,...), могут реагировать на сообщение RxRUM. Например, узлы, принимающие сообщение RxRUM, могут вычислить их соответствующие коэффициенты усиления по каналам от приемника (например, измеряя полученную PSD и зная постоянную PSD, с которой посылалось сообщение RxRUM) и уменьшить их соответствующие уровни мощности передачи, чтобы снизить помехи. Получатели сообщения RxRUM могут даже выбрать полный отказ от каналов, указанных в сообщении RxRUM. Чтобы гарантировать, что устранение помехи происходит справедливым способом, то есть, гарантировать, что все узлы получают справедливую долю возможностей для передачи, веса могут включаться в сообщение RxRUM. Вес данного узла может использоваться для вычисления справедливой доли ресурсов, выделяемой узлу. В соответствии с примером пороги, используемые для посылки и/или реакции на сообщение RUM, могут определяться на основе поведения системы. Например, в системе типа чистого предотвращения конфликтов сообщение RUM может посылаться для каждой передачи и любой узел, принимающий сообщение RUM, может реагировать, не ведя передачу по соответствующему каналу.

Если битовая маска канала, указывающая к каким каналам обращается сообщение RUM, содержится в сообщении RUM, то может быть реализована дополнительная размерность для предотвращения конфликта, которая может быть полезна, когда приемник нуждается в планировании передачи малых объемов данных по части канала и не хочет, чтобы передатчик полностью отказался от всего канала. Этот аспект может обеспечивать более тонкую степень детализации в механизме предотвращения столкновения, которая может быть важна для пульсирующего трафика.

Сообщение TxRUM может широковещательно передаваться передатчиком, когда передатчик неспособен запросить адекватные ресурсы (например, когда передатчик принимает одно или более сообщений RxRUM, которые вынуждают его отказаться от большинства каналов). Сообщение TxRUM может быть широковещательным до фактической передачи, чтобы информировать соседние приемники о предстоящей помехе. Сообщение TxRUM может сообщить всем приемникам внутри диапазона приема, что на основе сообщения RxRUM, которые принял передатчик, передатчик полагает, что он имеет наиболее законное требование на ширину полосы. Сообщение TxRUM может нести информацию о весе узла передатчика, который может использоваться соседними узлами, чтобы вычислить их соответствующие доли ресурсов. Дополнительно, сообщение TxRUM может посылаться с PSD или мощностью передачи, которая пропорциональна уровню мощности, с которым передаются данные. Следует понимать, что сообщение TxRUM не должны передаваться с постоянной (например, высокой) PSD, поскольку только потенциально затрагиваемые узлы необходимо уведомить о состоянии передатчика.

Сообщение RxRUM несет информацию о весе, которая предназначена для передачи всем передатчикам внутри диапазона "прослушивания" (например, посылают ли они данные на приемник или нет) ту степень, в которой приемник нуждается в ширине полосы из-за помехи от других передач. Вес может представлять степень неудобства и может быть больше, когда приемник был более неудобен, и меньше, когда он был менее неудобен. Как пример, если производительность используется для измерения степени неудобства, то возможное соотношение может быть представлено следующим образом:

где R target представляет желательную производительность, R actual - фактически достижимую производительность, и Q(x) представляет оцифрованное значение x. Когда в приемнике существует единственный поток, то тогда R target может представлять минимальную желательную производительность для этого потока, а R actual может представлять среднюю производительность, которая была достигнута для этого потока. Заметим, что большее значение веса, представляющие большую степень неудобства, является вопросом договоренности. Подобным образом, договоренность, что веса большего значения представляют более низкую степень неудобства, может использоваться, если логика разрешающей способности веса соответственно модифицирована. Например, чтобы вычислять веса, можно было использовать отношение фактической производительности к желательной производительности (обратное для примера, показанного выше).

Когда в приемнике присутствуют многочисленные потоки с потенциально различными значениями R target, приемник может выбирать установку веса, основываясь на наиболее неудобном потоке. Например:

где j - индекс потока в приемнике. Также могут выполняться другие варианты, такие как назначение веса на основе суммы производительности потока. Заметим, что функциональные формы, используемые для веса в приведенном выше описании, служат исключительно для иллюстрации. Вес может быть вычислен множеством различных способов и используя другие метрики, отличные от производительности. В соответствии с сопутствующим аспектом, приемник может определять, имеет ли он данные, направленные от отправителя (например, передатчика). Это действительно, если он принял запрос или если он принял предыдущий запрос, который не был разрешен. В этом случае приемник может послать сообщение RxRUM, когда R actual ниже, чем R target.

Сообщение TxRUM может нести одиночный бит информации, сообщающий, присутствует он или нет. Передатчик может установить бит TxRUM, выполняя заранее определенный ряд действий. Например, передатчик может собрать сообщения RxRUM, которые он недавно принял, включая сообщение RxRUM своего собственного приемника, если приемник послал такое сообщение. Если передатчик не принял никаких сообщений RxRUM, он может послать запрос на свой приемник без посылки сообщения TxRUM. Если единственное сообщение RxRUM принято от его собственного приемника, то передатчик может послать запрос и сообщение TxRUM.

Альтернативно, если передатчик принял сообщения RxRUM, включая сообщение от своего собственного приемника, передатчик может сортировать сообщения RxRUM, основываясь на весах RxRUM. Если собственный приемник передатчика имеет самый высокий вес, то тогда передатчик может послать сообщение TxRUM и запрос. Однако если собственный приемник передатчика не имеет самый высокий вес, то передатчику нет необходимости посылать запрос или TxRUM. В случае, если сообщение собственного приемника передатчика является одним из нескольких RxRUM, которые все имеют самый высокий вес, то тогда передатчик посылает сообщение TxRUM и запрос с вероятностью, определяемой как: 1/(все сообщения RxRUM с самым высоким весом). В соответствии с другим аспектом, если приемник принял сообщения RxRUM, которые не содержат сообщения от своего собственного приемника, то тогда передатчик может не посылать запрос. Заметим, что вся последовательность обработки сообщений RxRUM, описанная выше, может применяться даже в случае без сообщений TxRUM. В таком случае узлом передатчика применяется логика, позволяющая определить, послать ли запрос на свой приемник или нет, и если да, то для каких каналов.

На основе запросов и сообщений TxRUM, которые приемник принял, приемник может принять решение предоставлять требуемый запрос. Когда передатчик не сделал запрос, приемнику нет необходимости посылать разрешение. Если приемник принял сообщения TxRUM, но ни одно из них не было от передатчика, который он обслуживает, то тогда приемник не посылает разрешение. Если приемник принимает сообщение TxRUM только от передатчика, который он обслуживает, то он может принять решение предоставить разрешение. Если приемник принял сообщения TxRUM от своего собственного передатчика, а также от передатчика, который он не обслуживает, то возможны два результата. Например, если текущее среднее значение скорости передачи равно, по меньшей мере, R target, то приемник не предоставляет разрешение (например, заставляет свой передатчик молчать). В противном случае приемник дает разрешение с вероятностью, определяемой как 1,0/(сумма принятых сообщений TxRUM). Если передатчику дано разрешение, передатчик передает кадр данных, который может быть принят приемником. После успешной передачи и передатчик и приемник обновляют среднюю скорость для соединения.

В соответствии с другими аспектами действия по планированию могут программироваться, чтобы осуществлять схему равного качества обслуживания (EGOS) или другие схемы управления справедливостью и качеством обслуживания многочисленных передатчиков и/или потоков на приемник. Планировщик использует свое знание скоростей, принимаемых узлами его партнеров, чтобы решить, какие узлы планировать. Однако планировщик может подчиняться помеховым правилам, налагаемым каналом доступа на среду, в которой он работает. Конкретно, планировщик может подчиняться сообщениям RUM, которые он принимает от своих соседей. Например, в звене связи со следующим элементом планировщик в пункте доступа (AP) может посылать запросы на все терминалы доступа (AT), для которых он имеет трафик, если он не заблокирован сообщениями RxRUM. AP может принимать обратно разрешения одного или более этих AT. AT может не посылать разрешение, если оно заменяется конкурирующим сообщением TxRUM. AP может затем спланировать AT, который имеет самый высокий приоритет, в соответствии с алгоритмом планирования, и может вести передачу.

В звене связи с предыдущим элементом каждый AT, который имеет для посылки трафик, может запросить AP. AT не будет посылать запрос, если он блокирован сообщением RxRUM. AP планирует AT, имеющий самый высокий приоритет, в соответствии с алгоритмом планирования, в то же время подчиняясь любым сообщениям TxRUM, которые он принимал в предыдущем временном интервале. AP затем посылает разрешение на AT. После приема разрешения, AT осуществляет передачу.

На фиг. 2 показана методология 200 выполнения взвешенного справедливого совместного использования беспроводного канала, используя маски/сообщения использования ресурсов (RUM) в соответствии с одним или более аспектами, описанными здесь. На этапе 202 может быть сделано определение в отношении количества каналов, через которые узел (например, пункт доступа, терминал доступа и т.д.) может предпочесть осуществлять передачу. Такое определение может быть основано, например, на необходимости, связанной с заданным объемом данных, которые должны быть переданы, помехе, воздействующей на узел, или на любом другом подходящем параметре (например, времени ожидания, скорости передачи данных, спектральной эффективности и т.д.). На этапе 204 может быть выбран один или более каналов, чтобы достигнуть желательного количества каналов. Выбор канала может выполняться с предпочтением для доступных каналов. Например, каналы, о которых известно, что они были доступны в предшествующем периоде передачи, могут быть выбраны с предпочтением перед каналами, которые были заняты в предшествующем периоде передачи. На этапе 206 может быть передан запрос выбранного канала(-ов). Запрос может содержать битовую маску предпочтенных каналов, по которым передатчик (например, передающий узел,...) намерен передавать данные, и может быть послан от передатчика на приемник (например, на приемный узел, сотовый телефон, смартфон, устройство беспроводной связи, пункт доступа,...). Запрос может быть запросом первого множества каналов, которые не были заблокированы в самом последнем временном интервале, запросом второго множества каналов, если первое множество каналов недостаточно для передачи данных, и т.д. Сообщение запроса, посланное на этапе 206, может дополнительно управляться по мощности, чтобы гарантировать желательный уровень надежности в приемнике.

В соответствии с другими аспектами определение количества каналов, желательных для данной передачи, может быть функцией веса, связанного с узлом, весов, связанных с другими узлами, дающими запрос на каналы, функцией количества каналов, доступных для передачи, или любой комбинацией предшествующих факторов. Например, вес может быть функцией количества потоков через узел, уровня помехи, воздействующей на узел и т.д. В соответствии с другими признаками выбор канала может содержать разделение каналов на один или более наборов и может основываться частично на принятом сообщении использования ресурсов (RUM), которое указывает, что один или более каналов в наборе каналов недоступен. Сообщение RUM может оцениваться, чтобы определить, доступен ли требуемый канал (например, не идентифицированный сообщением RUM). Например, может быть определено, что требуемый канал доступен если он не внесен в список в сообщении RUM. Другой пример - когда канал считается доступным, даже если сообщение RUM было принято для этого канала, но объявленный вес для этого канала был ниже, чем вес, объявленный в сообщении RUM, посланном приемником у