Тонкопленочная многоячеистая структура, изготовленная из коллагена, элемент для регенерации ткани, содержащий ее, и способ ее получения
Иллюстрации
Показать всеИзобретение относится к медицине. Описана новая структура, изготовленная из коллагена, для повышения стимуляции регенерации нервной ткани, заживления и регенерации имеющей дефект части мягкой биологической ткани и т.д. без использования ламинина или фактора роста нервов (NGF), и элемент для регенерации ткани, включающий ее. Структура, изготовленная из коллагена, имеет тонкопленочное многоячеистое образование и используется в качестве элемента для регенерации ткани, при этом можно усилить стимуляцию регенерации, укоротить период лечения, ускорить функциональное восстановление и достичь подобных эффектов в отношении тканей тела, таких как нервная ткань, субдермальная ткань, подслизистая ткань, мембранозная ткань, жировая ткань, мышечная ткань, кожная ткань и ткань десен. Кроме того, когда структура используется у пациента, имеющего нейропатическую боль, этот элемент оказывает эффект в виде исчезновения боли. 4 н. и 8 з.п. ф-лы, 24 ил.
Реферат
Область техники
Изобретение относится к тонкопленочной многоячеистой структуре, изготовленной из коллагена, элементу для регенерации ткани, содержащему ее, различным опорам, используемым для этого элемента для регенерации ткани, и к способу ее получения. Конкретнее, настоящее изобретение относится к элементу для регенерации нервной ткани, содержащему тонкопленочную многоячеистую структуру, изготовленную из коллагена, и к способу ее получения, включающему лиофилизацию раствора коллагена.
Предшествующий уровень техники
В США уже имеется в продаже трубка для соединения нервных тканей путем использования коллагена в виде направляющего элемента для регенерации нервов NeuraGen (торговое название) от компании Integra NeuroCare LLC, США, и трубка для соединения нервных тканей путем использования полигликолевой кислоты (PGA) имеется в продаже в виде GEM Neurotube (торговое название) от компании Synovis Micro companies Alliance, США. Эти трубки для соединения нейронов представляют собой ничем не заполненные внутри полые трубки, и их можно использовать для регенерации периферического сенсорного нерва, в котором длина имеющей дефект части ткани нерва составляет до 2 см. Когда полые трубки имплантируются в имеющие дефект части ткани нервов, в имеющих дефект частях ткани регенерируются нервные волокна.
Однако, когда имеющая дефект часть ткани длиннее чем 2 см, использование трубки для соединения нервов ограничено. Это связано с тем, что полая трубка имеет низкий потенциал содействия регенерации нервов, она быстро разрушается и поэтому имеются проблемы, поскольку полую трубку нельзя использовать для более длинных имеющих дефект частей ткани. Кроме того, с имеющимися в США полыми трубками существует проблема, состоящая в том, что если имеется несоответствие между отверстием конца полой трубки и отверстием конца нервного ствола, то между обоими отверстиями создается зазор, и поэтому в зазор внедряется окружающая ткань, ингибирующая продвижение нервной ткани, что тормозит развитие регенерации нервов. Кроме того, существует проблема, состоящая в том, что когда имеющая дефект часть ткани периферического нерва разветвляется, то нельзя использовать одну полую трубку и операция имплантации становится проблематичной. Существует еще одна проблема, заключающаяся в том, что возможность сохранения просвета полой трубки недостаточна. Поэтому нельзя восстановить длинную часть нерва, имеющую дефект ткани, нерв не может удлиняться, и регенерация прекращается. Кроме того, имеется проблема, зависящая от области использования трубки, когда оба конца нерва невозможно вставить в трубку для нерва.
Недавно была изготовлена искусственная нервная трубка из биологически разлагаемого, абсорбируемого материала (такого как полимолочная кислота и полигликолевая кислота), содержащая в трубке подобный губке или подобный гелю коллаген. Например, в патентом документе 1 (WO 98/22155) раскрыта искусственная нервная трубка, содержащая гель, состоящий из коллагена и ламинина, в трубке, изготовленной из биологически разлагаемого, абсорбируемого материала (такого как полимолочная кислота и полигликолевая кислота).
В патентном документе 2 (заявка на патент Японии (Kokai) № 2003-019196, экспертиза не проводилась) раскрывается трубка для регенерации нерва, которая изготовлена из наружного слоя из биологически абсорбируемого материала (такого как полимолочная кислота) и внутреннего слоя, изготовленного из подобной губке субстанции коллагена и сополимера молочной кислоты/ε-капролактона.
В патентном документе 3 (заявка на патент Японии (Kokai) № 2004-208808, экспертиза не проводилась) раскрывается индуктивная трубка для регенерации нервов, содержащая подобный губке коллаген внутри трубчатого корпуса, изготовленного из биологически разлагаемого материала или биологически абсорбируемого материала (такого как белок, полисахарид, полимолочная кислота и полигликолевая кислота).
В патентном документе 4 (заявка на патент Японии (Kokai) № 2005-143979, экспертиза не проводилась) раскрывается трубка для регенерации нервов, в которой подобный волокну синтетический биологически абсорбируемый полимер (такой как полимолочная кислота и полигликолевая кислота), покрытый коллагеном, заполняется внутрь трубчатого корпуса, изготовленного из биологически абсорбируемый полимерного материала (такого как полимолочная кислота и полигликолевая кислота).
В непатентном документе 1 (Lee D.Y. et al., Journal of Cranio-Maxillofacial Surgery (2006) 34, 50-56, “Nerve regeneration with the use of a poly-L-lactide-co-glycolic acid-coated collagen tube filled with collagen gel”) раскрывается искусственная нервная трубка, содержащая подобный гелю коллаген, в трубчатом корпусе, изготовленном из полимолочной кислоты и полигликолевой кислоты.
В патентных документах 1-4 и непатентном документе 1 коллаген, имеющий подобную губке, подобную гелю или подобную волокну структуру, включен внутрь биологически разлагаемого материала трубчатого корпуса и поэтому, по сравнению с полым корпусом, не содержащим коллаген, коллаген служит в качестве так называемого клеточного каркаса для регенерации нервной ткани, и, посредством этого, имеется преимущество, состоящее в том, что в большей степени стимулируется регенерация нервной ткани.
Однако имеется все большая потребность не только в стимуляции регенерации нервной ткани и содействии регенерации ткани, но также в улучшении клинической функции путем ускорения восстановления физиологических функций нервной ткани. Кроме того, имеются проблемы, заключающиеся в том, что клиническое применение невозможно, потому что используется ламинин, который представляет собой физиологически активное вещество, безопасность которого еще предстоит установить; что трубки нельзя использовать для более длинных дефектных частей ввиду быстрого разрушения трубок; что создается зазор, если имеется различие отверстий между искусственным нервом и отсеченным концом нерва; что трубку нельзя использовать, если существует разветвление; что возможность сохранения просвета полой трубки недостаточна; что в ряде случаев оба конца нельзя вставить в нервную трубку.
Описание изобретения
Настоящее изобретение было создано для разрешения указанных выше проблем, и задачей настоящего изобретения является предоставление новой структуры, изготовленной из коллагена, для повышения стимуляции регенерации нервной ткани, заживления и регенерации имеющей дефект части мягкой биологической ткани и так далее без использования ламинина или фактора роста нервов (NGF).
Кроме того, задачей настоящего изобретения является предоставление элемента для регенерации ткани с целью облегчения или, предпочтительно, по существу устранения, по меньшей мере, одной из проблем, заключающихся в том, что: трубки нельзя использовать для более длинных дефектных частей ввиду быстрого разрушения трубок; создается зазор, если имеется различие отверстий между искусственным нервом и отсеченным концом нерва; трубку нельзя использовать, если существует разветвление; возможность сохранения просвета полой трубки недостаточна; в ряде случаев оба конца нельзя вставить в нервную трубку.
Другой задачей настоящего изобретения является предоставление опоры, используемой для такого элемента для регенерации ткани, и к способу ее получения.
Кроме того, еще одной задачей настоящего изобретения является предоставление новой структуры, изготовленной из коллагена, элемента для регенерации ткани, содержащей ее, опоры, используемой для элемента для регенерации ткани, и способа получения описанного выше элемента для регенерации ткани.
Заявители выполнили обширные исследования для решения указанных проблем и, в результате, к удивлению обнаружили, что коллаген, имеющий специфическую форму, можно использовать для улучшения стимуляции регенерации, укорочения периода выздоровления, функционального восстановления или подобных эффектов в отношении тканей организма, таких как нервная ткань, субдермальная ткань, подслизистая ткань, мембранозная ткань, жировая ткань, мышечная ткань, ткань кожи и ткань десен, и указанные выше проблемы можно решить использованием коллагена, имеющего такую специфическую форму, и, таким образом, было создано настоящее изобретение.
То есть в одном аспекте настоящее изобретение предоставляет новую структуру, изготовленную из коллагена, и эта структура представляет собой тонкопленочную, многоячеистую структуру, изготовленную из коллагена.
В другом аспекте настоящего изобретения предоставляется элемент для регенерации ткани, содержащий описанную выше тонкопленочную, многоячеистую структуру.
В одном варианте осуществления настоящего изобретения предоставляется элемент для регенерации ткани, кроме того, включающий биологически разлагаемую опору.
В предпочтительном варианте осуществления настоящего изобретения предоставляется элемент для регенерации ткани, имеющий описанную выше тонкопленочную, многоячеистую структуру внутри трубчатой биологически разлагаемой опоры.
Кроме того, заявители выполнили обширные исследования и, в результате, обнаружили, что путем использования биологически разлагаемой опоры, имеющей в разрезе U-образную или C-образную форму (а именно, в целом форму желоба), трубчатая структура не требуется для регенерации нервной ткани на фасции или на покрытии органа или в тому подобных участках, и облегчается операция с наложением швов, и укорачивается время операции.
То есть в другом предпочтительном варианте осуществления настоящего изобретения предоставляется элемент для регенерации ткани, имеющий описанную выше тонкопленочную, многоячеистую структуру внутри трубчатой биологически разлагаемой опоры, имеющий форму желоба с U-образной или C-образной формой в разрезе.
Кроме того, заявители выполнили обширные исследования и, в результате, обнаружили, что путем использования биологически разлагаемой опоры, имеющей разветвление в дефектной части периферического нерва, для дефектной части достаточна одна полая трубка.
То есть в еще одном варианте осуществления настоящего изобретения предоставляется описанный выше элемент для регенерации ткани, в котором биологически разлагаемая опора имеет разветвление.
Кроме того, заявители выполнили обширные исследования и, в результате, обнаружили, что при использовании трубчатой или имеющей форму желоба опоры, имеющей различие отверстий между отверстием одного конца биологически разлагаемой опоры и отверстием ее другого конца, образуется зазор между элементом для регенерации ткани, в котором используется опора, и нервная ткань не генерируется.
То есть в еще одном варианте осуществления настоящего изобретения предоставляется описанный выше элемент для регенерации ткани, имеющий различие отверстий между отверстием одного конца биологически разлагаемой опоры и отверстием ее другого конца.
Кроме того, заявители выполнили обширные исследования и, в результате, обнаружили, что при использовании биологически разлагаемой опоры, в которой скорость разложения биологически разлагаемой опоры, имеющей трубчатую или желобовидную форму, изменяется так, что скорость разрушения концов выше, чем скорость разрушения центральной части, наружная стенка вокруг части, в которой произошла регенерация нервной ткани, последовательно разлагается, и поэтому питательные вещества поступают в регенерированный нерв из окружающей среды, и удаление элемента повторной операцией не требуется.
То есть в еще одном варианте осуществления настоящего изобретения предоставляется описанный выше элемент для регенерации ткани, в котором скорость разложения биологически разлагаемой опоры, имеющей трубчатую или желобовидную форму, изменяется так, что скорость разрушения концов выше, чем скорость разрушения центральной части.
Кроме того, заявители выполнили обширные исследования и, в результате, обнаружили, что при использовании биологически разлагаемой опоры, в которой структура, имеющая полое внутреннее пространство, сохраняется смешиванием сырьевого материала, который медленно разлагается in vivo, с сырьевым материалом, который быстро разлагается in vivo, для задержки его разложения in vivo, скорость разложения биологически разлагаемой опоры становится медленной (или неактивной), и структура, имеющая полое внутреннее пространство, сохраняется в течение длительного периода, если дефект части ткани длинный.
То есть в предпочтительном варианте осуществления настоящего изобретения предоставляется элемент для регенерации ткани, включающий биологически разлагаемую опору, в которой структура, имеющая полое внутреннее пространство, с трубчатой или желобовидной формой, поддерживается смешиванием сырьевого материала, который медленно разлагается in vivo, с сырьевым материалом, который быстро разлагается in vivo, для задержки его разложения in vivo.
Предпочтительнее, чтобы биологически разлагаемая опора, в которой структура, имеющая полое внутреннее пространство, сохраняемая путем задержки разложения in vivo, использовалась в комбинации с описанной выше биологически разлагаемой опорой, скорость разложения которой выше, чем скорость разложения материала, находящегося ближе к обоим концам от центральной части. То есть более предпочтителен элемент для регенерации ткани, включающий биологически разлагаемую опору, в котором скорость разложения биологически разлагаемой опоры тем выше, чем ближе к обеим концевым частям от центральной части, и в котором структура, имеющая полое внутреннее пространство, поддерживается смешиванием сырьевого материала, который медленно разлагается in vivo, с сырьевым материалом, который быстро разлагается in vivo, для задержки его разложения in vivo. Таким образом, предоставляется элемент для регенерации ткани, включающий биологически разлагаемую опору, в которой структура, имеющая полое внутреннее пространство, сохраняется в центральной части с разложением элемента для регенерации ткани с концов in vivo.
То есть в еще одном предпочтительном варианте осуществления настоящего изобретения предоставляется описанный выше элемент для регенерации ткани, в котором скорость разложения биологически разлагаемой опоры, имеющей трубчатую или желобовидную форму, изменена так, чтобы скорость разложения концов была выше, чем скорость разложения центральной части in vivo, и в котором структура, имеющая полое внутреннее пространство внутри трубчатой или желобовидной формы, поддерживается смешиванием сырьевого материала, который медленно разлагается in vivo, с сырьевым материалом, который быстро разлагается in vivo для задержки его разложения in vivo.
Элемент для регенерации ткани в соответствии с настоящим изобретением конкретно не ограничен в отношении подлежащей использованию ткани, пока элемент можно использовать для ткани организма и может способствовать регенерации ткани. Более предпочтительно его использование для регенерации нервной ткани.
В другом аспекте настоящего изобретения предоставляется способ получения описанной выше тонкопленочной многоячеистой структуры, предусматривающий лиофилизацию раствора коллагена.
В другом предпочтительном аспекте настоящего изобретения способ получения элемента для регенерации ткани включает погружение биологически разлагаемой опоры, сохраняющей описанную выше тонкопленочную многоячеистую структуру, в раствор коллагена и затем лиофилизацию раствора коллагена.
Структура, изготовленная из коллагена, в соответствии с настоящим изобретением имеет тонкопленочную многоячеистую формацию (строение или форму) и поэтому новую структуру, отличную от формы коллоида, формы геля и формы волокна. Поэтому, когда новая структура, изготовленная из коллагена в соответствии с настоящим изобретением, используется в качестве элемента для регенерации ткани, то, к удивлению, может улучшиться стимуляция регенерации, укоротиться период лечения, ускориться функциональное восстановление или могут возникнуть другие подобные эффекты в отношении тканей организма, таких как нервная ткань, субдермальная ткань, подслизистая ткань, мембранозная ткань, жировая ткань, мышечная ткань, кожная ткань и ткань десен.
Кроме того, когда описанный выше элемент для регенерации ткани включает биологически разлагаемую опору, то можно защитить подлежащую регенерации ткань.
Когда элемент для регенерации в соответствии с настоящим изобретением имеет описанную выше тонкопленочную многоячеистую структуру внутри трубчатой биологически разлагаемой опоры, то более эффективно может регенерироваться волокнистая и длинная линейная ткань.
Когда элемент для регенерации в соответствии с настоящим изобретением имеет описанную выше тонкопленочную многоячеистую структуру внутри биологически разлагаемой опоры, имеющей форму желоба с U-образным или C-образным поперечным сечением, легко осуществляется регенерация ткани, имеющейся на плоских частях, таких как на мышечной фасции или на капсуле органа.
Когда биологически разлагаемая опора имеет разветвление в элементе для регенерации ткани в соответствии с настоящим изобретением, то ткань, имеющая разветвление, может регенерироваться одним элементом для регенерации ткани.
Если имеется разница отверстий между отверстием одного конца биологически разлагаемой опоры и отверстием ее другого конца в элементе для регенерации ткани в соответствии с настоящим изобретением, можно избежать образования зазора между отверстием элемента для регенерации ткани и отверстием дефектной части ткани.
Когда элемент для регенерации ткани в соответствии с настоящим изобретением включает биологически разлагаемую опору, имеющую трубчатую или желобовидную форму, в которой скорость разложения биологически разлагаемой опоры изменяется так, что скорость разрушения концов выше, чем скорость разрушения центральной части, то регенерация ткани улучшается и не требуется удаление элемента повторной операцией.
Предпочтительно, чтобы для регенерации ткани, имеющей длинную дефектную часть, элемент для регенерации ткани в соответствии с настоящим изобретением включал биологически разлагаемую опору, в которой структура, имеющая полое внутреннее пространство внутри трубчатой или желобовидной формы, сохранялась смешиванием сырьевого материала, который медленно разлагается in vivo, с сырьевым материалом, который быстро разлагается in vivo, для задержки разложения in vivo, потому что структура, имеющая полое внутреннее пространство, сохраняется в течение длительного периода.
Элемент для регенерации ткани в соответствии с настоящим изобретением можно использовать для нервной ткани, субдермальной ткани, подслизистой ткани, мембранозной ткани, жировой ткани, мышечной ткани, кожной ткани, ткани десен и т.д. и, в частности, предпочтительно использовать элемент для регенерации нервной ткани.
Кроме того, в соответствии со способом получения описанной выше новой структуры коллагена в соответствии с настоящим изобретением, структуру можно получить лиофилизацией раствора коллагена и поэтому очень просто и легко можно получить новую структуру коллагена.
Кроме того, в способе получения нового элемента для регенерации ткани в соответствии с настоящим изобретением получение можно очень просто и легко осуществить лиофилизацией раствора коллагена в состоянии, при котором описанная выше опора погружается в раствор коллагена.
Краткое описание чертежей
На фиг. 1(а) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при небольшом увеличении (примерно ×80), тонкопленочной многоячеистой структуры, изготовленной из коллагена, в соответствии с настоящим изобретением.
На фиг. 1(b) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×250), тонкопленочной многоячеистой структуры, изготовленной из коллагена, в соответствии с настоящим изобретением.
На фиг. 1(с) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при большом увеличении (примерно ×5000), тонкопленочной многоячеистой структуры, изготовленной из коллагена, в соответствии с настоящим изобретением.
На фиг. 1(d) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×400), тонкопленочной многоячеистой структуры, изготовленной из коллагена, в соответствии с настоящим изобретением.
На фиг. 1(e) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×300), тонкопленочной многоячеистой структуры, изготовленной из коллагена, в соответствии с настоящим изобретением.
На фиг. 2(а) показана микрофотография, полученная при помощи сканирующего электронного микроскопа (при увеличении примерно ×20), в поперечном разрезе одного примера трубчатого элемента для регенерации ткани, включающего тонкопленочную многоячеистую структуру, изготовленную из коллагена, в соответствии с настоящим изобретением.
На фиг. 2(b) показана микрофотография, полученная при помощи сканирующего электронного микроскопа (при увеличении примерно ×100), в продольном разрезе одного примера трубчатого элемента для регенерации ткани, включающего тонкопленочную многоячеистую структуру, изготовленную из коллагена, в соответствии с настоящим изобретением.
На фиг. 3 показан один пример элемента для регенерации ткани желобовидной формы, имеющего U-образное поперечное сечение.
На фиг. 4 показан один пример соединения имеющей дефект части (или дефекта) длиной 1 см седалищного нерва крысы с использованием элемента для регенерации ткани, имеющего U-образное поперечное сечение.
На фиг. 5 показан один пример трубчатого элемента для регенерации ткани, имеющего Y-образное разветвление.
На фиг. 6 показан сужающийся трубчатый элемент для регенерации ткани в качестве одного примера элемента для регенерации ткани, имеющего разницу между отверстием одного конца и отверстием другого конца.
На фиг. 7 схематически показан вид трубчатого элемента для регенерации ткани, который быстро разлагается на обоих концах и медленно в центральной части, и схематически иллюстрирует регенерацию ткани путем использования элемента.
На фиг. 8 показана зависимость прочности (средней) от деформации элемента из PGA-PLA для регенерации ткани (включающего 50% PLA).
На фиг. 9 показана зависимость прочности (средней) от деформации элемента из PGA для регенерации ткани.
Фиг. 10 представляет собой схематический вид для объяснения деформации и прочности, как изображено на фиг. 8 и 9.
На фиг. 11(а) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при небольшом увеличении (примерно ×80), одного примера коллагена в форме губки.
На фиг. 11(b) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×150), одного примера коллагена в форме губки.
На фиг. 11(c) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при большом увеличении (примерно ×3000), одного примера коллагена в форме губки.
На фиг. 12(а) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×400), одного примера коллагена в форме губки.
На фиг. 12(b) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при большом увеличении (примерно ×1000), одного примера коллагена в форме губки.
На фиг. 13(а) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×125), одного примера мелковолокнистого коллагена.
На фиг. 13(b) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×400), одного примера мелковолокнистого коллагена.
На фиг.14(а) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при небольшом увеличении (примерно ×30), одного примера мелковолокнистого коллагена.
На фиг.14(b) показана микрофотография, полученная при помощи сканирующего электронного микроскопа при среднем увеличении (примерно ×300), одного примера мелковолокнистого коллагена.
Лучший способ осуществления изобретения
Далее, настоящее изобретение будет конкретнее и детальнее объяснено со ссылкой на прилагаемые чертежи. Эти описания предназначены лишь для объяснения настоящего изобретения, и следует понимать, что эти описания не имеют намерения ограничить настоящее изобретение.
Настоящее изобретение предоставляет структуру, изготовленную из коллагена, и она представляет собой тонкопленочную, многоячеистую структуру.
В настоящем изобретении «коллаген» в целом называется «коллагеном» и конкретно не ограничивается, пока можно получить «тонкопленочную, многоячеистую структуру», желаемую в соответствии с настоящим изобретением. Такой «коллаген» включает коллагены, полученные у коров, свиней и людей, но особенно предпочтителен ателоколлаген, имеющий низкую антигенность.
В настоящем изобретении «тонкопленочная, многоячеистая структура» по существу состоит из тонкого коллагена в форме пленки и имеет структуру, включающую множество ячеек<или камер) между тонкими пленками. На фиг. 1(а)-1(е) показаны полученные при помощи сканирующего электронного микроскопа микрофотографии тонкопленочной, многоячеистой структуры, изготовленной из коллагена, в соответствии с настоящим изобретением. Для фиг. 1(а)-1(с) ускоряющее напряжение сканирующей электронной микроскопии составляет 20 кВ. На фиг. 1(а) показано изображение с небольшим увеличением (примерно х80), на фиг. 1(b) показано изображение со средним увеличением (примерно ×250), и на фиг. 1(с) показано изображение с большим увеличением (примерно ×5000). Кроме того, для фиг. 1(d)-1(e) ускоряющее напряжение сканирующей электронной микроскопии составляет 18 кВ. На фиг. 1(d) показано изображение со средним увеличением (примерно ×400), и на фиг. 1(e) показано изображение со средним увеличением (примерно ×300). «Тонкопленочная, многоячеистая структура», изготовленная из коллагена, изготовлена из множества тонких пленок, поверхности которых являются плоскими, такими как «пирог из западной кондитерской», и следует понимать, что в нее не включен коллаген, сформированный в виде волокон.
Толщина пленки у «тонкой пленки» составляет предпочтительно от 0,01 до 200 мкм, а предпочтительнее от 0,1 до 50 мкм и особенно предпочтительно от 0,5 до 5 мкм. Кроме того, интервалы между пленками «тонкопленочной, многоячеистой структуры» составляют, например, от примерно 50 мкм до примерно 3 мм, а предпочтительно от 300 мкм до 2000 мкм. Гроздевидное пространство, образованное тонкими пленками, может быть непрерывным или закрытым.
В уровне техники в качестве «структуры, изготовленной из коллагена» известна структура в форме губки, структура в форме геля и структура в форме волокна, но описанная выше «тонкопленочная, многоячеистая структура» вообще неизвестна и была впервые обнаружена заявителями.
Примеры структуры в форме губки и структуры в форме нитевидных волокон коллагена, которые известны из уровня техники, показаны на фиг. 11-14. Ускоряющее напряжение сканирующей электронной микроскопии для иллюстраций фиг. 11(а)-11(с) составляет 20 кВ, ускоряющее напряжение сканирующей электронной микроскопии для иллюстраций фиг. 12(а) составляет 8 кВ, ускоряющее напряжение сканирующей электронной микроскопии для иллюстраций фиг. 12(b) составляет 9 кВ, ускоряющее напряжение сканирующей электронной микроскопии для иллюстраций фиг. 14(b) составляет 18 кВ, и ускоряющее напряжение сканирующей электронной микроскопии для иллюстраций фиг. 13(а), 13(b) и 14(а) составляет 25 кВ.
Фиг. 11(а)-11(с) представляют собой полученные при помощи сканирующего электронного микроскопа микрофотографии коллагена в форме губки, который используется клинически в настоящее время в качестве искусственной дермы (PELNAC (товарный знак), изготавливаемая Gunze Co., Ltd. и продаваемая Johnson & Johnson Inc.). Фиг. 11(а) представляет собой изображение при небольшом увеличении (примерно ×80), фиг. 11(b) представляет собой изображение при среднем увеличении (примерно ×150), и фиг. 11(с) представляет собой изображение при большом увеличении (примерно ×3000).
Кроме того, фиг. 12(а) и 12(b) представляют собой полученные при помощи сканирующего электронного микроскопа микрофотографии коллагена в форме губки. Фиг. 12(а) представляет собой изображение при среднем увеличении (примерно ×400), и фиг. 12(b) представляет собой изображение при большом увеличении (примерно ×1000). Коллаген в форме губки получали следующим образом. Ацелоколлаген (коллаген с нормальной температурой плавления PSN (торговое название), изготавливаемый Nippon Meat Packers, Inc., полученный из свиной дермы) смешивали с водой (рН примерно 7,0) с тем, чтобы его содержание составляло 1 мас.% и перемешивали в течение примерно 30 минут при 12000 оборотах в минуту и затем инжектировали в рамку и замораживали при -196°С и сушили в течение 24-48 часов при -80°С лиофилизатором для выпаривания влаги, и затем подвергали обработке перекрестной сшивкой нагреванием в течение 24 часов при 140°С в условиях вакуума, и посредством этого был получен коллаген в форме губки.
Понятно, что коллаген имеет губчатую полую структуру благодаря нитчатым волокнам коллагена. Поэтому основной единицей, составляющей губчатый коллаген, является волокно.
Фиг. 13(а) и 13(b) представляют собой полученные при помощи сканирующего электронного микроскопа микрофотографии имеющегося в продаже волокнистого коллагена в качестве местного гемостатического средства (Aviten (торговое название), изготавливаемое Alcon (Puerto Rico) Inc., Humacal, Puerto Rico, и импортируемое и продаваемое Zeria Pharmaceutical Co., Ltd.). Фиг. 13(а) представляет собой изображение при среднем увеличении (примерно ×125), и фиг. 13(b) представляет собой изображение при среднем увеличении (примерно ×400).
Фиг. 14(а) и 14(b) представляют собой полученные при помощи сканирующего электронного микроскопа микрофотографии имеющегося в продаже волокнистого коллагена в качестве абсорбируемого местного гемостатического средства (Integran (торговое название), изготавливаемое Koken Co., Ltd., и продаваемое Nippon Zoki Pharmaceutical Co., Ltd.). Фиг. 14(а) представляет собой изображение при небольшом увеличении (примерно ×30), и фиг. 14(b) представляет собой изображение при среднем увеличении (примерно ×300).
В обоих случаях мелкие коллагеновые волокна образуют структуру, подобную нетканому материалу. Понятно, что структура образована из пучков коллагеновых волокон и их беспорядочного расположения. Основная единица, составляющая мелковолокнистый коллаген, представляет собой волокно.
При сравнении фиг. 1(а) с фиг. 1(е), 11(а) с 14(b) можно понять, что «тонкопленочная многоячеистая структура», изготовленная из коллагена в соответствии с настоящим изобретением, очевидным образом отличается от коллагена, образованного гелем, и коллагена, образованного волокнами.
Тонкопленочную многоячеистую структуру, изготовленную из коллагена в соответствии с настоящим изобретением, можно использовать для регенерации ткани. В данном случае ткань представляет собой ткань организма животного, такого как человек, крыса, собака, кошка, обезьяна, лошадь, корова и овца, и, в частности, она подходит для использования для тканей человека. Ткани от животных могут включать нервную ткань, субдермальную ткань, подслизистую ткань, мембранозную ткань, жировую ткань, мышечную ткань, ткань кожи и ткань десен, и, в частности, их можно использовать для регенерации нервной ткани. Поэтому настоящее изобретение предоставляет элемент для регенерации ткани, включающий тонкопленочную многоячеистую структуру, изготовленную из коллагена. В данном случае в качестве тканей организма можно проиллюстрировать следующие ткани: нервную ткань (такую как центральный нерв, периферический нерв, седалищный нерв, срединный нерв, лицевой нерв, черепной нерв, плечевое сплетение, локтевой нерв, лучевой нерв, бедренный нерв, промежностный нерв и икроножный нерв); субдермальную ткань; подслизистую ткань, подслизистую ткань ротовой полости, подслизистую ткань пищеварительного тракта, подслизистую ткань половых органов, мембранозную ткань (такую как твердая мозговая оболочка, брюшина, плевральная мембрана, фасция, капсула органа); жировую ткань (такую как так называемый жир); мышечную ткань (такую как так называемая мышца); кожную ткань (такую как так называемая кожа); ткань десен (такую как ткань периодонта, альвеолярная кость, ткань зубных альвеол); ткани жизненно важных органов (таких как печень, почки, поджелудочная железа, щитовидная железа); и другие ткани (такие как кровеносные сосуды, сухожилия, связки, хрящ и кость).
Кроме того, настоящее изобретение предоставляет элемент для регенерации ткани, кроме того, включающий биологически разлагаемую опору. В настоящем изобретении «биологически разлагаемая опора» имеет свойство разлагаться in vivo и может образовывать каркасную структуру элемента для регенерации ткани, и конкретно не ограничивается, пока она способна прикрепляться и удерживать тонкопленочную многоячеистую структуру, изготовленную из коллагена, и можно получить элемент для регенерации ткани в соответствии с настоящим изобретением. Материалы для изготовления такой биологически разлагаемой опоры включают полигликолевую кислоту (PGA), полимолочную кислоту (PLA), сополимер лактида и гликолида (такой как полиглактин 910), поли-ε-капролактон и сополимер молочной кислоты и ε-капролактона.
На фиг. 2(а) и 2(b) показаны микрофотографии, полученные при помощи сканирующего электронного микроскопа в поперечном разрезе (при увеличении примерно ×20) и в продольном разрезе (при увеличении примерно ×100), одного примера трубчатого элемента для регенерации ткани, включающего тонкопленочную многоячеистую структуру, изготовленную из коллагена, в соответствии с настоящим изобретением. Ускоряющее напряжение сканирующего электронного микроскопа составляет 20 кВ. Это также один пример элемента для регенерации ткани, имеющего описанную выше тонкопленочную многоячеистую структуру, изготовленную из коллагена, внутри трубчатой биологически разлагаемой опоры. Путем использования трубчатой биологически разлагаемой опоры можно получить элемент для регенерации ткани, имеющий трубчатую форму. В случае, показанном на фиг. 2(а) и 2(b), понятно, что внутри трубчатой биологически разлагаемой опоры, изготовленной из PGA, структура, имеющая множество ячеек (или камер) формируется тонкой пленкой, изготовленной из коллагена. Как описано выше, предпочтительнее, чтобы тонкопленочная многоячеистая структура, изготовленная из коллагена, была включена внутрь трубчатой биологически разлагаемой опоры, и в этом случае элемент можно подходящим образом использовать для регенерации нервной ткани, субдермальной ткани, подслизистой ткани, мембранозной ткани, жировой ткани, мышечной ткани, кожной ткани и ткани десен.
Обычно использовалась трубка для соединения нервов, имеющая трубчатую форму. Заявители обнаружили, что элементы для регенерации ткани, имеющие различные формы, можно использовать в соответствии с тканью, и что такие элементы для регенерации ткани, имеющие различные формы, имеют соответствующие характерные преимущества. Такие формы включают формы, имеющие в разрезе U-образную или C-образную форму (а именно, в целом желобовидную форму), форму пластины, разветвленную форму и форму, имеющую разные отверстия на одном и другом конце (сужающуюся форму).
Когда используется биологически разлагаемая опора, имеющая в разрезе U-образную или C-образную форму, то можно получить элемент для регенерации ткани, имеющий в разрезе U-образную или C-образную форму (а именно, в целом желобовидную форму). На фиг. 3 показан один пример такого элемента для регенерации ткани, имеющего в разрезе U-образную или C-образную форму. На фиг. 4 показан один пример соединения частей седалищного нерва крысы при дефекте размером 1 см с использованием таких элементов для регенерации ткани, имеющих в разрезе U-образную или C-образную форму. Оба элемента, показанные на фиг. 3 и фиг. 4, имеют в разрезе в целом желобови