Способ очистки загрязненной среды от органических веществ
Иллюстрации
Показать всеИзобретение относится к области очистки сточных вод, илистых отложений от органических загрязнителей, от нефти и нефтепродуктов на поверхности земли или воды. Способ очистки включает приготовление исходной смеси, введение в загрязненную среду и выдерживание в течение семи суток при естественном освещении. Исходную смесь выбирают из: нанокомпозиции №1, представляющей собой смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, нанокомпозиции №2, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в фенилцеллозольве, нанокомпозиции №3, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 10-20% мицеллярного раствора меди в изооктановом растворителе с размером частиц меди 3-12 нм, растворенную в хлорбензоле, нанокомпозиции №4, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в бензонитриле, нанокомпозиции №5, представляющей собой смесь порошка наночастиц кварца с размером частиц 50-100 нм и 10-20% мицеллярного раствора серебра в изооктановом растворителе, растворенную в бензилформиате. Способ обеспечивает повышение эффективности очистки воды и илистых отложений от любых видов как органических, так и неорганических загрязнителей. 1 ил., 2 табл.
Реферат
Изобретение относится к области очистки сточных вод, илистых отложений от органических загрязнителей, а также разливов нефти и нефтепродуктов с поверхности земли или воды.
В настоящее время известно множество способов очистки сред от органических соединений.
Так, из описания к патенту РФ №2008267 (МПК 5: C02F 1/24, опубликован 28.02.1994).
Способ включает реагентную напорную флотацию и адсорбцию порошкообразным активным углем, при этом с целью сокращения количества реагентов и порошкообразного активного угля при сохранении высокой степени очистки, а также уменьшения потерь активного угля и исключения образования шлама, флотацию ведут в присутствии флокулянта полидиметилдиаллиламмонийхлорида, после чего очищаемую воду пропускают через каркасно-засыпной фильтр, в который одновременно вводят флокулянт - полидиметилдиаллиламмонийхлорид, адсорбцию ведут порошкообразным активным углем в присутствии воздуха, подаваемого эрлифтом при расходе, обеспечивающем восходящую циркуляцию пульпы через эрлифтные каналы со скоростью 80-100 м/ч, а после адсорбции пульпу фильтруют через гранулированный активный уголь.
Наиболее близким аналогом к патентуемому способу является способ удаления органических соединений, заключающийся в приготовлении исходной смеси, размещение исходной смеси в загрязненной среде, которое осуществляют путем диспергирования на поверхность и/или в жидкость, и/или размещения на поверхности, и/или пропускания загрязненной среды через фильтр. В качестве исходной смеси используют смесь расширенного графита и углеродных нанокристаллов, причем содержание нанокристаллов (нанотрубок) в смеси составляет не менее 10% (патент РФ №2184086, МПК 7: C02F 1/28, опубликован 27.06.2002).
Основой известного способа является процесс адсорбции. Однако процесс адсорбции характеризуется избирательностью, то есть данный адсорбент поглощает только определенные компоненты.
Кроме этого, недостатком использования адсорбента является его горючесть, непрочность и сложность его регенерации.
Технический результат заключается в повышении эффективности очистки воды и илистых отложений от любых видов как органических, так и неорганических загрязнителей.
Технический результат достигается за счет осуществления способа очистки загрязненной среды от органических веществ, заключающийся в приготовлении исходной смеси, введении исходной смеси в загрязненную среду. При этом исходную смесь готовят из, по меньшей мере, одной композиции наноструктурированных материалов, выбранной из: нанокомпозиции №1, представляющей собой смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, нанокомпозиции №2, представляющую собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в фенилцеллозольве, нанокомпозиции №3, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 10-20% мицеллярного раствора меди в изооктановом растворителе с размером частиц меди 3-12 нм, растворенную в хлорбензоле, нанокомпозиции №4, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100нм, растворенную в бензонитриле, нанокомпозиции №5, представляющей собой смесь порошка наночастиц кварца с размером частиц 50-100 нм и 10-20% мицеллярного раствора серебра в изооктановом растворителе, растворенную в бензилформиате, при этом после введения нанокомпозиции или смеси нанокомпозиции в загрязненную среду полученную смесь выдерживают в течение семи - двадцати суток при естественном освещении.
При этом соотношение смешиваемых материалов в каждой нанокомпозиции может варьироваться в пределах 0,1-1.
В частности, соотношение порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм для нанокомпозиции №1 может быть выбрано равным 1:1, соотношение смеси порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм нанокомпозиции №2, равным 1:1, соотношение смеси порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 10-20% мицилярного раствора меди в изооктановом растворителе с размером частиц меди 3-12 нм нанокомпозиции №3 - 1:1, в свою очередь, соотношение смеси порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм нанокомпозиции №4 - 1:1, а соотношение смеси порошка наночастиц кварца с размером частиц 50-100 нм и 10-20% мицеллярного раствора серебра в изооктановом растворителе нанокомпозиции №5 - 1:1. Все наноматериалы смешиваются в пропорции 1:1 и распределяются в органических растворителях для получения ультрадисперсной нескоагулированной суспензии. Каждую из нанокомпозиции получают путем смешения порошков наночастиц и растворения их в соответствующем растворителе с последующей выдержкой нанокомпозиции в течение 24 часов. При этом подачу исходной смеси в загрязненную среду могут осуществлять:
- введением в загрязненную среду, по меньшей мере, двух предварительно приготовленных композиций наноструктурированных материалов;
- введением каждой композиции наноструктурированных материалов в загрязненную среду последовательно;
- подачей каждой композиции через отдельные распределительные трубки;
- введением одной из композиций наноструктурированных материалов в загрязненную среду.
Как показали проведенные испытания, композицию предпочтительно вводить из расчета не менее 0,5 мл 10% раствора наночастиц в органическом растворителе на 1 м3 загрязненной среды.
После введения нанокомпозиции либо смеси нанокомпозиции в загрязненную среду полученную смесь выдерживают в течение 7 суток при наличии естественного освещения и температуре 15-25°С.
В результате протекают процессы фотокаталитического разложения углеводородов до углекислого газа и воды, разрыва углерод-углеродных связей и дегидрирования органических соединений.
Процесс фотокаталитического разложения протекает при наличии молекулярного кислорода в приповерхностном водном слое
Совместно с этим происходит образование углеводородов с более низкой молекулярной массой. Процесс протекает при наличии в объеме органического вещества катализаторов высокой активности. При этом наблюдаются процессы расщепления углеводородов, дегидрирования и коксования.
2. Разрыв цепи по связи С-С
3. Дегидрирование (разрыв связей С-Н):
4. Полная деструкция углеводородов без доступа кислорода - коксование
Затем отбирали пробы и производили определение основных показателей загрязнения. Далее патентуемое решение поясняется с помощью примеров.
Пример 1
Осуществляли способ очистки пяти иловых площадок объемом 25000 м3 от органических веществ, а именно от нефтепродуктов, нефрастов, талового масла, этилцеллозольва, фенола, нафталина, анилина, нитробензола и т.д. Отбирали пробы перед введением в загрязненную среду нанокомпозиции и определяли химическое потребление кислорода (ХПК), рН среды, а также содержание хлоридов, сульфатов, фенолов (полученные значения этих показателей приведены в таблице №1).
ХПК определяли с помощью прибора для определения химического потребления кислорода Эксперт-001-ХПК.
Определение содержания хлоридов проводили прибавлением раствора нитрата серебра к анализируемой воде с образованием трудно растворимого осадка хлорида серебра. После полного осаждения хлоридов избыток ионов серебра реагирует с индикатором - хроматом калия- с образованием красновато-оранжевого осадка хромата серебра. Тестирование проводили в нейтральной или слабо щелочной среде (рН 7-10).
Содержание сульфатов определяли осаждением в кислой среде ионов хлористым барием в виде сернокислого бария.
Содержание фенолов определяли хромато-масс-спектрометрическим методом.
1. Далее готовили композиции наноструктурированных материалов. При этом для каждой площадки использовали различные исходные смеси.
1.1. Для первой площадки использовали исходную смесь, полученную из смеси нанокомпозиции №1 и нанокомпозиции №2. При этом нанокомпозиция №1 содержала смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, соотношение материалов было выбрано равным 1:1 (порошок наночастиц железа был взят в количестве 2,8 г, порошок наночастиц сплава никеля с хромом - 2,8 г), оба материала были растворены в 47 мл нитробензола. Нанокомпозиция №2 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 мм, растворенную в фенилцеллозольве. Соотношение материалов было выбрано 0,5:1 (порошок наночастиц сплава никеля с хромом - 1,7 г, порошок наночастиц кварца - 2,4 г), оба материала были растворены в 48 мл фенилцеллозольва. Исходная смесь содержала 50 мл нанокомпозиции №1 и 50 мл нанокомпозиции №2. 0,5 мл исходной смеси вводили на 1 м3 загрязненной среды.
1.2. Для второй площадки использовали исходную смесь, состоящую из смеси нанокомпозиции №1, нанокомпозиции №3 и нанокомпозициии №4. При этом нанокомпозиция №1 содержала смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, соотношение материалов было выбрано равным 1:1 (порошок наночастиц железа был взят в количестве 1,5 г, порошок наночастиц сплава никеля с хромом - 1,5 г), оба материала были растворены в 28,5 мл нитробензола. Нанокомпозиция №3 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 20% мицеллярного раствора меди в октановом растворителе с размером частиц меди 3-12 нм, растворенную в хлорбензоле, соотношение материалов было выбрано равным 0,2:1 (порошок сплава никеля с хромом - 0,5 г, мицеллярный раствор меди в октановом растворителе - 2,5 г). Оба материала были растворены в 28,8 мл хлорбензола. Нанокомпозиция №4 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-100 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в бензонитриле. Соотношение материалов композиции было выбрано 0,9:1 (порошок наночастиц сплава никеля с хромом - 1,4 г, порошок наночастиц кварца - 1,6 г), оба материала были растворены в 28 мл бензонитрила.
Исходная смесь содержала 30 мл нанокомпозиции №1, 30 мл нанокомпозиции №3 и 30 мл нанокомпозиции №4. На 1 м3 загрязненной среды вводили 10 мл исходной смеси.
1.3. Для третьей площадки использовали нанокомпозицию №1, которая содержала смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, соотношение материалов было выбрано равным 0,5:1 (порошок наночастиц железа был взят в количестве 3,4 г, порошок наночастиц сплава никеля с хромом - 6,6 г), оба материала были растворены в 94,7 мл нитробензола. Исходная смесь содержала 100 мл нанокомпозиции №1. На 1 м3 загрязненной среды вводили 1 мл исходной смеси.
1.4. Для четвертой площадки использовали смесь из нанокомпозиции №1 и нанокомпозиции №2. При этом нанокомпозиция №1 содержала смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, соотношение материалов было выбрано равным 0,1:1 (порошок наночастиц железа был взят в количестве 0,5 г, порошок наночастиц сплава никеля с хромом - 5 г), оба материала были растворены в 52,4 мл нитробензола. Нанокомпозиция №2 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 мм, растворенную в фенилцеллозольве. Соотношение материалов было выбрано 0,1:1 (порошок наночастиц сплава никеля с хромом - 1 г, порошок наночастиц кварца - 10 г), оба материала были растворены в 96,7 мл фенилцеллозольва. Исходная смесь содержала 100 мл нанокомпозиции №1 и 100 мл нанокомпозиции №2. 0,5 мл исходной смеси вводили на 1 м3 загрязненной среды.
1.5. Для пятой площадки использовали смесь, состоящую из нанокомпозиции №1, №2, №3, №4 и №5. При этом нанокомпозиция №1 содержала смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, соотношение материалов было выбрано равным 0,1:1 (порошок наночастиц железа был взят в количестве 0,5 г, порошок наночастиц сплава никеля с хромом - 5 г), оба материала были растворены в 52,4 мл нитробензола. Нанокомпозиция №2 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 мм, растворенную в фенилцеллозольве. Соотношение материалов было выбрано 0,1:1 (порошок наночастиц сплава никеля с хромом - 1 г, порошок наночастиц кварца - 10 г), оба материала были растворены в 105,2 мл фенилцеллозольва. Нанокомпозиция №3 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 20% мицеллярного раствора меди в октановом растворителе с размером частиц меди 3-12 нм, растворенную в хлорбензоле, соотношение материалов было выбрано равным 0,2:1 (порошок сплава никеля с хромом - 2 г, мицеллярный раствор меди в октановом растворителе - 10 г). Оба материала были растворены в 98,2 мл хлорбензола. Нанокомпозиция №4 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-100 нм и порошка наночастиц кварца с размером частиц 50-100нм, растворенную в бензонитриле. Соотношение материалов композиции было выбрано 0,9:1 (порошок наночастиц сплава никеля с хромом - 4,5 г, порошок наночастиц кварца - 5 г), оба материала были растворены в 90,3 мл бензонитрила. Нанокомпозиция №5 содержала смесь порошка наночастиц кварца с размером частиц 50-100нм и 15% мицеллярного раствора серебра в изооктановом растворителе, растворенную в бензилформиате. Соотношение материалов было выбрано 1:1 (порошок наночастиц кварца - 50 г, мицеллярный раствор серебра в изооктановом растворителе - 50 г). Исходная смесь содержала по 100 мл каждой нанокомпозиции. На 1 м3 загрязненной среды вводили 100 мл исходной смеси.
2. Исходную смесь в загрязненную среду вводили в донный слой с помощью распределительных трубок, расположенных с шагом 3м вдоль всей площадки (см. чертеж).
3. Далее смесь выдерживали в течение 7 суток при естественном освещении при температуре 15°С.
4. Далее отбирали пробы и определяли основные показатели очищенного ила методами, описанными выше.
Значения этих показателей для рассмотренного примера приведены в таблице 1.
Таблица 1 | ||||
Проба 1 | ||||
№ | Показатели | Ед. изм. | Исходная проба | После очистки |
1. | рН | 2,95 | 3,0 | |
2. | ХПК | мг/кг | 18683 | 6000 |
3. | Фенол | мг/кг | 2700 | 780 |
4. | Хлориды | мг/кг | 150 | 78 |
5. | Сульфаты | мг/кг | 127 | 65 |
Проба 2 | ||||
№ | Показатели | Ед.изм. | Исходная проба | После очистки |
1. | РН | 2,95 | 3,5 | |
2. | ХПК | мг/кг | 18683 | 4780 |
3. | Фенол | мг/кг | 2700 | 670 |
4. | Хлориды | мг/кг | 150 | 54 |
5. | Сульфаты | мг/кг | 127 | 59 |
Проба 3 | ||||
№ | Показатели | Ед.изм. | Исходная проба | После очистки |
1. | РН | 2,95 | 3,0 | |
2. | ХПК | мг/кг | 18683 | 6800 |
3. | Фенол | мг/кг | 2700 | 1700 |
4. | Хлориды | мг/кг | 150 | 94 |
5. | Сульфаты | мг/кг | 127 | 72 |
Проба 4 | ||||
№ | Показатели | Ед.изм. | Исходная проба | После очистки |
1. | РН | 2,95 | 3,0 | |
2. | ХПК | мг/кг | 18683 | 6000 |
3. | Фенол | мг/кг | 2700 | 780 |
4. | Хлориды | мг/кг | 150 | 78 |
5. | Сульфаты | мг/кг | 127 | 65 |
Проба 5 | ||||
№ | Показатели | Ед.изм. | Исходная проба | После очистки |
1. | РН | 2,95 | 4,5 | |
2. | ХПК | мг/кг | 18683 | 1580 |
3. | Фенол | мг/кг | 2700 | 150 |
4. | Хлориды | мг/кг | 150 | 34 |
5. | Сульфаты | мг/кг | 127 | 19 |
Пример 2.
Осуществляли способ очистки воды из трех прудов-отстойников объемом 18000 м3 от органических веществ. Вода содержала следующие компоненты: нефтепродукты - 45 мг/л, нефраст - 120 мг/л, таловое масло - 41 мг/л, этилцеллозольв - 75 мг/л, фенол - 78 мг/л, нафталин - 27 мг/л, анилин - 15 мг/л, нитробензол - 11 мг/л и т.д. Предварительно, перед введением в загрязненную среду исходной смеси, отбирали пробы нанокомпозиции и определяли химическое потребление кислорода (ХПК), рН среды, а также содержание хлоридов, сульфатов, фенолов методами, описанными в примере 1. Кроме этого, определяли цветность и минерализацию воды. Полученные значения этих показателей приведены в таблице 2.
При этом минерализацию определяли дистилляционно-экстракционным методом, а цветность определяли фотометрическим методом, сравнивая окраску пробы с окраской условной 1000-градусной шкалы цветности воды, приготавливаемой из смеси бихромата калия К2Сr2O7 и сульфата кобальта CoSO4.
1. Для каждого пруда использовали различные исходные смеси.
1.1. Для первого использовали исходную смесь, полученную из смеси нанокомпозиции №2 и нанокомпозиции №3. При этом нанокомпозиция №2 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 мм, растворенную в фенилцеллозольве. Соотношение материалов было выбрано 0,1:1 (порошок наночастиц сплава никеля с хромом - 1 г, порошок наночастиц кварца - 10 г), оба материала были растворены в 94,8 мл фенилцеллозольва. Нанокомпозиция №3 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 20% мицеллярного раствора меди в октановом растворителе с размером частиц меди 3-12 нм, растворенную в хлорбензоле, соотношение материалов было выбрано равным 0,2:1 (порошок сплава никеля с хромом - 2 г, мицеллярный раствор меди в октановом растворителе - 10 г). Оба материала были растворены в 113,4 мл хлорбензола. Исходная смесь содержала по 50 мл каждой нанокомпозиции.
Смесь вводили через распределительные трубки, расположенные с шагом 3 м вдоль поверхности пруда.
1.2. Для второго - исходную смесь, состоящую из нанокомпозиции №1 и нанокомпозициии №4. Нанокомпозиции вводили с помощью распределительных трубок, подавая последовательно сначала нанокомпозицию №1, а затем нанокомпозицию №4. При этом нанокомпозиция №1 содержала смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, соотношение материалов было выбрано равным 0,1:1 (порошок наночастиц железа был взят в количестве 0,5 г, порошок наночастиц сплава никеля с хромом - 5 г), оба материала были растворены в 52,4 мл нитробензола. Нанокомпозиция №4 содержала смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-100 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в бензонитриле. Соотношение материалов композиции было выбрано 0,9:1 (порошок наночастиц сплава никеля с хромом - 4,5 г, порошок наночастиц кварца - 5 г), оба материала были растворены в 90,3 мл бензонитрила. Исходная смесь содержала по 100 мл каждой нанокомпозиции.
1.3. Для третьего - нанокомпозицию №5, которая содержала смесь порошка наночастиц кварца с размером частиц 50-100 нм и 20% мицеллярного раствора серебра в изооктановом растворителе, растворенную в бензилформиате. Соотношение материалов было выбрано 0,1:1 (порошок наночастиц кварца - 10 г, мицеллярный раствор серебра в изооктановом растворителе - 100 г). Исходная смесь содержала 100 мл нанокомпозиции №5.
2. Исходную смесь в загрязненную среду вводили в донный слой с помощью распределительных трубок, расположенных с шагом 3 м вдоль всей площадки (см. чертеж). Исходную смесь вводили из расчета 0,5 мл на 1 м3 загрязненной среды.
3. Далее смесь выдерживали в течение 7 суток при естественном освещении при температуре 15°С.
4. Далее отбирали пробы и определяли основные показатели очищенной среды аналогично методам, приведенным в примере 1. Значения этих показателей для рассмотренного примера приведены в таблице 2.
Таблица 2 | ||||
Проба 1 | ||||
№ | Наименование показателя | Ед. изм. | Исходная проба | После очистки |
1. | pН | 2,1 | 3,0 | |
2. | Минерализация | г/л | 4,87 | 2,5 |
3. | Цветность | ° | 575 | 520 |
4. | ХПК | мг/л | 1200 | 629 |
5. | Хлориды | мг/л | 843,48 | 210 |
6. | Сульфаты | мг/л | 2200 | 1400 |
7. | Фенол | мг/л | 78 | 36 |
Проба 2 | ||||
№ | Наименование показателя | Ед.изм. | Исходная проба | После очистки |
1. | pН | 2,1 | 2,8 | |
2. | Минерализация | г/л | 4,87 | 3,4 |
3. | Цветность | ° | 575 | 543 |
4. | ХПК | мг/л | 1200 | 825 |
5. | Хлориды | мг/л | 843,48 | 420 |
6. | Сульфаты | мг/л | 2200 | 1570 |
7. | Фенол | мг/л | 78 | 43 |
Проба 3 | ||||
№ | Наименование показателя | Ед. изм. | Исходная проба | После очистки |
1. | pН | 2,1 | 4,7 | |
2. | Минерализация | г/л | 4,87 | 2,5 |
3. | Цветность | ° | 575 | 495 |
4. | ХПК | мг/л | 1200 | 610 |
5. | Хлориды | мг/л | 843,48 | 200 |
6. | Сульфаты | мг/л | 2200 | 121 |
7. | Фенол | мг/л | 78 | 28 |
Таким образом, в результате осуществления патентуемого способа содержание органических веществ в сточных водах снижается, как минимум, на 60%, в илистых отложениях, как минимум, на 50%, ХПК воды - на 15%, ила - на 30%, содержание сухого остатка - на 32%.
Способ очистки загрязненной среды от органических веществ, заключающийся в приготовлении исходной смеси, введении исходной смеси в загрязненную среду, отличающийся тем, что исходную смесь готовят из, по меньшей мере, одной композиции наноструктурированных материалов, выбранной из: нанокомпозиции №1, представляющей собой смесь порошка наночастиц железа с размером частиц 15-50 нм и порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм, растворенную в нитробензоле, нанокомпозиции №2, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в фенилцеллозольве, нанокомпозиции №3, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и 10-20%-ного мицеллярного раствора меди в изооктановом растворителе с размером частиц меди 3-12 нм, растворенную в хлорбензоле, нанокомпозиции №4, представляющей собой смесь порошка наночастиц сплава никеля с хромом с размером частиц 15-50 нм и порошка наночастиц кварца с размером частиц 50-100 нм, растворенную в бензонитриле, нанокомпозиции №5, представляющей собой смесь порошка наночастиц кварца с размером частиц 50-100 нм и 10-20%-ного мицеллярного раствора серебра в изооктановом растворителе, растворенную в бензилформиате, при этом после введения нанокомпозиции или смеси нанокомпозиций в загрязненную среду полученную смесь выдерживают в течение семи суток при естественном освещении.