Базовое масло

Иллюстрации

Показать все

Изобретение относится к базовому маслу, характеризующемуся тем, что базовое масло содержит разветвленные насыщенные углеводороды, имеющие число атомов углерода, по меньшей мере, С18, содержание изотопов 14С от общего числа атомов углерода в базовом масле составляет, по меньшей мере, 50% в расчете на содержание радиоактивного углерода в атмосфере в 1950 году согласно ASTM D 6866, причем базовое масло состоит из, по меньшей мере, 90% по массе насыщенных углеводородов, и в указанном базовом масле содержание линейных парафинов составляет меньше, чем 10% по массе, содержание конденсированных полинафтенов составляет не более 0,1% по FIMS, и содержание мононафтенов составляет 5-50% по FIMS, и, по меньшей мере, 50% по массе насыщенных углеводородов, имеют ширину интервала числа атомов углерода не более 9 атомов углерода, причем кинематическую вязкость базового масла при 100°С составляет от 3 сСтокс до 8 сСтокс, и базовое масло имеет вязкость CCS-30, не превышающую 29,797*(KV100)2,7848 сП, и вязкость CCS-35, не превышающую 36,108*(KV100)3,069 сП. Настоящее масло имеет биологическое происхождение и отвечает требованиям по качеству для базовых масел API группы II+, причем действие данного масла или его компонентов на окружающую среду более благоприятны в сравнении с обычными базовыми маслами на основе сырой нефти. 15 з.п. ф-лы, 7 табл., 1 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к новому материалу базового материала. В частности, изобретение относится к композиции на основе разветвленных насыщенных углеводородов и, особенно, к композиции на основе биологических сырьевых материалов, подходящих для использования в качестве высококачественного базового масла или предназначенных для использования в качестве компонента в производстве базового масла, имеющего высокий индекс вязкости и хорошие низкотемпературные свойства. Композиция содержит разветвленные насыщенные углеводороды и имеет узкий интервал числа атомов углерода.

Уровень техники

Базовые масла обычно используют для производства смазок, таких как смазочные масла для автомобилей, промышленные смазки и смазывающие пасты. Их также используют как технологические масла, белые масла и смазочно-охлаждающие жидкости. Конечные смазки состоят из двух основных частей - базовых смазочных масел и добавок. Базовые масла представляют собой основные компоненты в конечных смазках и в значительной степени определяют свойства конечной смазки. В общем, используют несколько базовых масел для производства широкого ряда конечных смазок путем варьирования состава смесей отдельных базовых масел и отдельных добавок. Классификация базовых масел согласно Американскому институту нефти (API) показана в таблице 1. В настоящее время в высококачественных смазках используются базовые масла API группы III или IV.

Таблица 1 Классификация основ смазочных масел согласно API
Группа Насыщенные углеводороды, мас. % (ASTM D 2007) Сера, мас. % (ASTM D 1552/D2622/ D3120/D4294/D4927 Индекс вязкости (VI) (ASTM D 2270)
I <90 и/или >0,03 80≤VI<120
II ≥90 ≤0,03 80≤VI<120
III ≥90 ≤0,03 ≥120
IV Все полиальфаолефины (PAO)
V Все остальные базовые масла, не принадлежащие к группам I-V

Масла группы III представляют собой базовые масла с очень высокими индексами вязкости (VHVI), полученные современными способами из сырой нефти путем гидрокрекинга с последующей изомеризацией восков на основе линейных парафинов с получением разветвленных парафинов. Масла группы III также включают базовые масла, полученные из парафинов парафинового гача (Slack Wax) (SW) из минеральных масел. Будущие продукты, еще не доступные, полученные из восков (GLT, воски) синтезом Фишера-Тропша (FT), например, из угля или природного газа, при использовании соответствующих методов изомеризации, в будущем также могут принадлежать к данной группе. Масла группы IV представляют собой синтетические полиальфаолефины (РАО). Базовые масла на основе сложных эфиров, принадлежащие к группе V, получают из жирных кислот и спиртов. Указанные жирные кислоты являются либо природными, либо синтетическими моно- или дикарбоновыми кислотами. В зависимости от получаемого сложного эфира спиртом является полиол или одноатомный спирт. Базовые масла на основе сложных эфиров обычно представляют собой сложные моноэфиры, сложные диэфиры, сложные эфиры полиолов или димерные сложные эфиры. Аналогичная классификация используется ATIEL (Association Technique de I'Industrie Europėenne des Lubrifiants, or Technical Association of the European Lubricant Industry), указанная классификация также включает группу VI: Полиолефины на основе внутренних олефинов (PIO). Помимо официальной классификации в данной области также обычно используют группу II+, данная группа включает насыщенные и бессерные базовые масла, имеющие индексы вязкости больше, чем 110, но ниже 120. В данных классификациях насыщенные углеводороды включают парафиновые и нафтеновые соединения, но не ароматические.

Существуют также определение базовых масел (базового компонента) согласно API 1509: «Базовый компонент представляет собой компонент смазки, который произведен одним производителем по тем же спецификациям (независимо от источника сырья или места нахождения производителя); который отвечает спецификации того же производителя; и который идентифицирован уникальной формулой, идентификационным номером продукта или обоими параметрами. Базовые компоненты могут быть произведены при использовании многих различных способов». Базовое масло представляет собой базовый компонент или смесь базовых компонентов, используемую в одобренном API масле. Типы базовых компонентов представляют собой 1) минеральное масло (парафиновое, нафтеновое, ароматическое), 2)синтетическое (полиальфаолефины, алкилированная ароматика, сложные диэфиры, сложные эфиры полиолов, полиалкиленгликоли, сложные фосфатные эфиры, силиконы) и 3)растительное масло.

Уже в течение длительного времени, особенно в автомобильной промышленности, существует потребность в смазках и, следовательно, базовых маслах с улучшенными техническими свойствами. Во все возрастающих объемах спецификации на конечные смазки высокого качества требуют продуктов с отличными низкотемпературными свойствами и низкой летучестью, наряду с правильным уровнем вязкости. В общем, высококачественные базовые масла для смазок представляют собой базовые масла, обладающие кинематической вязкостью примерно 3 сСт или больше при 100°С (KV100); температурой потери текучести (РР) примерно -12°С или меньше и индексом вязкости (VI) примерно 120 или больше. Помимо низких температур потери текучести (РР) необходима также текучесть при низких температурах моторных масел многих типов, чтобы гарантировать легкий запуск двигателя в условиях низкой температуры. Низкотемпературная текучесть определяется как кажущаяся вязкость в опытах на проворачивание модельного коленчатого вала непрогретого двигателя при температуре от -5 до -40°С. Современные качественные базовые масла, имеющие KV100 примерно 4 сСт, должны обычно иметь CCS вязкость при -30°С (CCS-30) ниже, чем 1800сП, а масла, имеющие KV100, примерно 5 сСт, должны иметь CCS-30 ниже, чем 2700 сП; чем ниже данная величина, тем лучше. В общем, базовые масла должны иметь летучесть по Noack не больше, чем легкие нейтральные масла существующей обычной группы I или группы II. В настоящее время только незначительная доля производимых базовых масел может быть использована в составах, обеспечивающих соответствие самым последним, наиболее жестким требованиям спецификаций к смазкам.

Уже невозможно производить смазки, отвечающие наиболее жестким требованиям спецификаций автомобилестроителей, из обычных минеральных базовых масел (API группа I, также группа II в некоторых случаях). Обычно указанные масла часто имеют слишком высокую концентрацию ароматических, серосодержащих и азотсодержащих соединений и дополнительно они также обладают высокой летучестью и плохим индексом вязкости. Кроме того, отклик минеральных масел к добавкам антиоксидантов часто является умеренным.

Синтетические (PAO; API группа IV) и так называемые полусинтетические базовые масла (VHVI; API группа III) играют все возрастающую роль, особенно в автомобильных смазках, таких как моторное и трансмиссионное масла. Срок службы смазок желательно должен быть как можно более продолжительным, что позволит избежать частой замены масла пользователем, а также позволит продлить промежутки для технического осмотра средств передвижения, например, в коммерческих транспортных средствах. За последнее десятилетие интервалы между заменами моторного масла для пассажирских автомобилей повысились в пять раз и в наилучшем случае составляют 50000 км. Для тяжелых грузовых автомобилей интервалы между заменой моторного масла в настоящее время уже достигают уровня 100000 км. Аналогичные направления развития в направлении «более длительного срока службы» просматриваются для промышленных смазок.

Синтетические базовые масла типа РАО получают олигомеризацией альфа-олефиновых мономеров с последующим гидрированием для получения полностью насыщенного парафинового базового масла. РАО базовые масла имеют относительно высокие величины VI и, в то же время, отличные низкотемпературные свойства, РР составляет даже ниже -60°С. Вследствие точной перегонки продукта летучести продуктов являются низкими, а точки вспышки высокими. Производство и использование РАО базовых масел является достаточно ограниченным из-за ограниченной доступности дорогостоящего исходного материала - альфа-олефинов.

Сильно рафинированные базовые масла типа VHVI получают из сырой нефти путем удаления нежелательных соединений. Наиболее важной стадией является депарафинизация, означающая удаление твердых длинноцепочечных парафинов или, согласно современной технологии, конверсии указанных н-парафинов в жидкие изопарафины. GTL базовые масла получают каталитической изомеризацией синтетического FT воска. По сравнению с минеральными маслами, VHVI базовые масла являются более парафиновыми и имеют более узкий интервал перегонки, обеспечивая, таким образом, значительно более высокий VI, более низкую летучесть и заметно лучшие низкотемпературные свойства. Содержание ароматики в указанных маслах чрезвычайно низкое и, кроме того, они в основном не содержат серу и азот.

Помимо технических требований к технологии производства двигателей, также жесткие требования к защите окружающей среды заставляют промышленность разрабатывать более сложные базовые масла. Бессерные топлива и базовые масла требуются, чтобы достичь полного эффекта от новых каталитических технологий в современных транспортных средствах и сократить выбросы оксидов азота, летучих углеводородов и частиц, а также достичь прямого снижения содержания диоксида серы в выхлопных газах. Традиционные минеральные масла содержат серу, азот, ароматические соединения и обычно являются более летучими и, таким образом, более опасными для окружающей среды, чем более новые, не содержащие серу базовые масла. Кроме того, минеральные масла не подходят для более новых двигателей с чувствительными каталитическими материалами.

На производство базовых масел также влияет находящий все более широкое признание подход по «оценке цикла работоспособности» (“Life Cycle Assessment” (LCA)). Задачей LCA является увидеть нагрузку от продукта на окружающую среду «от колыбели до могилы». LCA является средством установления наиболее критических точек и обеспечения изменений в направлении продления срока службы продукта и минимизации недостатков для окружающей среды, связанных с производством, использованием, обращением и утилизацией продукта. Более продолжительные интервалы между заменой масла из высококачественных базовых масел приводят к снижению потребления невозобновляемых запасов сырой нефти и более низким количествам опасных отработанных масел.

В наши дни повторное использование масел и возобновляемых сырьевых материалов в производстве смазок часто является предметом интереса. Желательным является использование возобновляемых сырьевых материалов биологического происхождения вместо невозобновляемых природных сырьевых материалов для получения углеводородных компонентов, потому что природные ископаемые сырьевые материалы истощаются, и их влияние на усиление парникового эффекта (GHO) является вредным. Проблемы, связанные с повторно используемыми маслами, включают стадии сложной очистки и повторной переработки с получением базовых масел высокого качества. Кроме того, разработка действующей и экстенсивной логистической системы повторного использования является дорогостоящей.

До настоящего времени только сложные эфиры были единственным типом базовых масел на основе возобновляемых источников биологического происхождения, используемых в смазках. Использование сложных эфиров ограничено несколькими конкретными областями применения, такими как масла для цепных пил, биогидравлические масла и смазочно-охлаждающие жидкости. В нормальных автомобильных и промышленных смазках сложные эфиры используют главным образом как добавки. Использование сложных эфиров также ограничивает высокая цена. Кроме того, сложные эфиры, использованные в составах моторных масел, нельзя заменить другими сложными эфирами без повторного проведения дорогостоящих испытаний мотора, даже в случаях, где химический состав замещающего сложного эфира, в принципе, является полностью аналогичным. Вместо этого, базовые масла, имеющие чисто углеводородную структуру, частично являются взаимозаменяемыми друг другом. Существуют также некоторые технические проблемы, связанные со сложными эфирами. Как полярные соединения, сложные эфиры имеют более высокую тенденцию к набуханию в них уплотнений, чем чистые углеводороды. Это создало ряд проблем, касающихся использования эластомеров в гидравлических областях применения. Кроме того, базовые масла на основе сложных эфиров более легко гидролизуются, образуя кислоты, которые, в свою очередь, вызывают коррозию систем смазки. Далее, даже более существенным недостатком сложных эфиров является то, что добавки, разработанные для неполярных углеводородных базовых масел, не эффективны для базовых масел на основе сложных эфиров.

FI 100248 предлагает способ из двух стадий, где средний дистиллят образуется из растительного масла при гидрогенизации карбоновых кислот или триглицеридов растительного масла с образованием линейных нормальных парафинов и последующей изомеризации указанных н-парафинов с образованием разветвленных парафинов. Гидрирование проводят при температуре в интервале от 330 до 450°С, под давлением, превышающем 30 бар, и объемной часовой скорости жидкости (LHSV) от 0,5 до 5 л/ч. Стадию изомеризации проводят при температуре от 200 до 500°С под повышенным давлением и LHSV от 0,1 до 10 л/ч.

Европейский патент 774451 предлагает способ изомеризации жирных кислот или сложных алкиловых эфиров жирных кислот. Изомеризацию ненасыщенных жирных кислот или сложных алкиловых эфиров жирных кислот проводят с использованием каолина или другого катионного катализатора. Помимо основного продукта образуются также димеры исходного сырья. После перегонки в качестве продукта получают ненасыщенные разветвленные жирные кислоты или сложные алкиловые эфиры жирных кислот.

Патент Великобритании 1524781 раскрывает способ получения углеводородов из растительного масла. В данном способе растительное масло, являющееся сырьем, подвергают пиролизу в трех зонах в присутствии катализатора, при температуре 300-700°С. В способе образуются углеводороды классов газа, бензина и дизельного топлива. Их разделяют и очищают.

Европейский патент 209997 раскрывает способ получения базовых масел, включающий изомеризацию углеводородов воска на основе сырой нефти, дающую лишь незначительные количества легких фракций. Данный способ используется, например, для получения базовых масел, принадлежащих к группе III, из кубовых восков процесса гидрокрекинга.

Способы на основе РАО описаны во многих патентах. Патент США 6703356 предлагает способ, предусматривающий использование пористого кристаллического катализатора для производства РАО базового масла из 1-алкеновых мономеров, которые обычно образуются из этилена на основе сырой нефти. Данный патент описывает использование более высоких α-олефиовых мономеров, предпочтительно С14-С18, вместо обычно используемых С10 (1-децен) или смеси С8-С12 α-олефинов в качестве исходного материала. После олигомеризации α-олефинов проводят перегонку продукта на фракции желательной вязкости, а затем гидрогенизацию с получением насыщенных «звездообразных» парафинов.

Патент США 2005/0133408 раскрывает композицию базового масла, содержащую более 10% по массе циклопарафинов, имеющую отношение моноциклопарафинов к полициклопарафинам примерно 15, дополнительно содержащую менее 0,3% по массе ароматических соединений. Композицию получают депарафинизацией выделенных парафинов, полученных при синтезе Фишера-Тропша, путем гидроизомеризации и окончательно гидрированием.

FI 66899 описывает использование триглицеридов жирных кислот и их полимеров в качестве базового масла для смазок. Двойные и сложноэфирные связи конечного продукта являются нестабильными вследствие окисления и гидролитического расщепления. Базовые масла согласно указанной публикации содержат ненасыщенные сложные эфиры.

Европейский патент 03396078 предлагает композицию дизельного топлива, содержащую биокомпоненты, указанная композиция включает, по меньшей мере, один компонент, полученный из биологического исходного материала растительного, животного или рыбьего происхождения, дизельные компоненты основаны на сырой нефти и/или фракциях из процесса Фишера-Тропша, и необязательно компоненты, содержащие кислород.

Патент Японии 01056792 раскрывает смазки на основе переработки пищевых материалов, включающие сквален, который представляет собой разветвленный углеводород с молекулярной формулой С30Н62, имеющий высоко разветвленную структуру, в комбинации с высокомолекулярным полибутадиеном или полиизобутиленом. Документ S.T. Gui, P.T. Cummings, H.D. Cochran, J.D. Moore, S.A. Gupta: “Nonequilibrium Molecular Dynamics Simulation of the Rheology of Linear and Branched Alkanes” (Неравновесное молекулярно-динамическое моделирование реологии линейных и разветвленных алканов), International Journal of Thermophysics, pages 449-459, относится к NEMD моделированию реологии линейных и разветвленных углеводородов. В частности, были изучены С10 (н-декан, температура плавления Tm=-30°C), С16 (н-гексадекан, Tm=18°С), С24 (н-тетракозан Tm=52°С), С25 (10-нгексилнонадекан) и С30 сквален. Патент США 4026960 раскрывает углеводородное соединение 2,7,10,15,18,23-гексаметилтетракозан, которое используется как смазка для высокоточных приборов (хронометров) и имеет свойства, очень похожие на свойства сквалена.

Патентная публикация США 2004/230085 относится к получению углеводородов дизельного интервала из сырья биологического происхождения, такого как жирные кислоты или сложные эфиры жирных кислот, которые подвергают гидродезоксигенированию с последующей гидроизометризацией.

Патент США 4317948 предлагает способ получения смазочных масле из альфа- и внутренних олефинов по реакции метатезиса.

До сих пор не описано использование содержащих гетероатомы исходных материалов биологического происхождения для получения высококачественных насыщенных базовых масел или компонентов базовых масел.

На основе изложенных выше положений можно видеть, что существует очевидная потребность в базовом масле и компоненте базового масла, указанное масло, содержит разветвленные насыщенные парафины и дополнительно отвечает самым жестким требованиям к высокому качеству базовых масел, влияние указанного масла на окружающую среду, на конечного пользователя и экономию невозобновляемых сырьевых материалов более благоприятное в сравнении с обычными минеральными базовыми маслами, указанное базовое масло технически превосходит существующие в уровне продукты.

Задачи изобретения

Задачей настоящего изобретения является создание нового типа насыщенного базового масла или компонента базового масла.

Другой задачей настоящего изобретения является создание базового масла или компонента на основе сырьевых материалов биологического происхождения.

Другой задачей настоящего изобретения является создание базового масла или компонента базового масла на основе сырьевых материалов биологического происхождения, указанные базовые масла или компоненты отвечают требованиям по качеству для базовых масел АРI группы II+, предпочтительно группы III.

Другой задачей настоящего изобретения является создание насыщенного базового масла или компонента базового масла на основе исходных материалов биологического происхождения, причем действие указанных масел или их компонентов на окружающую среду, для конечных пользователей, и экономия невозобновляемых сырьевых материалов более благоприятны в сравнении с обычными базовыми маслами на основе сырой нефти.

Отличительные признаки базового масла или компонента базового масла на основе сырьевых материалов биологического происхождения согласно изобретению представлены в прилагаемой формуле изобретения.

Общее описание изобретения

Базовое масло или компонент базового масла на основе сырьевых материалов биологического происхождения согласно изобретению включает главным образом насыщенные разветвленные углеводороды с интервалом числа атомов углерода более узким, чем интервал для продуктов перегонки, полученных традиционными способами. Указанное базовое масло или компонент базового масла отвечает требованиям по качеству для API группы II+, предпочтительно группы III.

Термин «насыщенный углеводород», использованный в настоящем документе, относится к парафинам и нафтеновым соединениям, а не к ароматическим соединениям. Парафиновые соединения могут быть либо разветвленными, либо линейными. Нафтеновые соединения представляют собой циклические насыщенные углеводороды, т.е. циклопарафины. Данный углеводород с циклической структурой обычно образован циклопентаном или циклогексаном. Нафтеновое соединение может включать одноядерную структуру (мононафтен) или структуры из двух отдельных ядер (изолированные динафтены), или структуры из двух конденсированных ядер (конденсированные динафтены) или структуры из трех или нескольких конденсированных ядер (полициклические нафтены или полинафтены).

В данном контексте термин «полиол» относится к спиртам, содержащим две или несколько гидроксильных групп.

В данном контексте ширина интервала числа атомов углерода в конечном продукте относится к разнице числа атомов углерода в самых больших и самых маленьких молекулах плюс один.

В данном контексте жирные кислоты относятся к карбоновым кислотам биологического происхождения, содержащим количество атомов углерода больше, чем С1.

В данном контексте давления представляют собой манометрические давления относительно нормального атмосферного давления.

Авторами изобретения неожиданно установлено, что насыщенное высококачественное базовое масло или компонент базового масла, включающее разветвленные насыщенные углеводороды с числом атомов углерода, по меньшей мере, С18 и имеющие узкий интервал числа атомов углерода, может быть получено из исходных материалов биологического происхождения, указанные масла или компоненты качественно соответствуют базовым маслам API группы II+, предпочтительно группы III. Интервал перегонки (ASTM D 2887) базового масла или компонента базового масла биологического происхождения согласно изобретению начинается при температуре выше 250°С, интервал числа атомов углерода и интервал температур кипения являются чрезвычайно узкими и, кроме того, индекс вязкости является чрезвычайно высоким и, в то же время, низкотемпературные свойства являются хорошими. Базовое масло или компонент базового масла биологического происхождения согласно изобретению содержит, по меньшей мере, 90% по массе насыщенных углеводородов, доля линейных парафинов составляет меньше, чем 10% по массе.

Ширина интервала числа атомов углерода базового масла или компонента базового масла согласно изобретению обычно составляет меньше, чем девять атомов углерода. Типичные интервалы числа атомов углерода и типичные структуры базовых масел настоящего изобретения представлены ниже в таблице 2, наиболее типичные значения числа атомов углерода выделены жирным шрифтом.

Число атомов углерода и интервалы числа атомов углерода базовых масел или компонентов базовых масел согласно изобретению зависят от использованного в качестве сырья биологического исходного материала и, кроме того, от способа производства. В структурных примерах таблицы 2 интервалы числа атомов углерода компонентов базовых масел 1 и 2, полученных из С16/С18 сырья путем кетонизации, обычно составляют от С31 до С35, а интервал числа атомов углерода компонента базового масла 3, полученного из С16/С18 сырья путем конденсации, обычно составляет от С32 до С36. Оба они представляют собой наиболее широко встречающееся распределение числа атомов углерода из пяти атомов углерода. Сырье, содержащее жирные кислоты в одной длиной цепи, дают чрезвычайно узкий интервал по числу атомов углерода.

Биологические компоненты базовых масел согласно изобретению, представленные в таблице 2, получены описанными ниже способами.

1. Изомеризация жирной кислоты таллового масла с образованием разветвленного продукта с последующей кетонизацией и конечным гидрированием.

2. Кетонизация кислотной фракции пальмового масла с последующим гидрированием и окончательной изомеризацией.

3. Конденсация дистиллята жирной кислоты С16 пальмового масла с последующим гидрированием и окончательной изомеризацией.

Таблица 2 Структуры базовых масел/компонентов биологического происхождения
Базовое масло Атомов углерода, %, FIMS Структура
1 C31/C33/C35 ациклический компонент примерно 25%мононафтены примерно 50%динафтены примерно 25%
2 C31/C33/C35 ациклический компонент примерно 90%мононафтены примерно 10%
3 C32/C34/C36ациклический компонент примерно 90%мононафтены примерно 10%

В таблице 3 показаны числа атомов углерода и предполагаемые типичные структуры известных типичных углеводородных базовых масел на минеральной основе, имеющих аналогичный уровень вязкости. Интервал числа атомов углерода определен методом FIMS анализа. Структуры нафтенов представляют собой типичные примеры группы соединений.

Таблица 3 Типичные структуры известных базовых масел
Базовое масло Атомов углерода, %, по методу FIMS Структура
1PAO C10 C30 Примерно 80%+С40Примерно 80%
2SLACK (SW) С25-С35ациклических примерно 70%мононафтенов примерно 25%динафтенов примерно 5%
3VHVI C25-C35ациклических примерно 40%мононафтенов примерно 35%С25-С35дугих нафтенов примерно 10%

Продукты таблицы 3 обычно получают следующим образом.

1. РАО С10 получают из 1-децена олигомеризацией с использованием гомогенного катализатора.

2. SW представляет собой продукт изомеризации фракции парафинового гача основы минерального масла.

3. VHVI представляет собой базовое масло, полученное из минерального масла гидрокрекингом и изомеризацией.

Насыщенные углеводороды классифицируют следующим образом, с использованием метода FIMS (масс-спектрометрии в ионизирующем поле), в соответствии с числом атомов углерода и водорода:

1 С(n)H(2n+2) парафины
2 С(n)H(2n) мононафтены
3 С(n)H(2n-2) динафтены
4 С(n)H(2n-4) тринафтены
5 С(n)H(2n-6) тетранафтены
6 С(n)H(2n-8) пентанафтены

В таблицах 2 и 3 проценты (%, определенные методом FIMS) относятся к группе соединений и определены указанным методом.

Что касается молекулярных структур, то базовые масла или компоненты базовых масел согласно изобретению отличаются от продуктов согласно известному уровню, как показано в таблицах 2 и 3. РАО базовое масло известного уровня включает главным образом длинные (>4 атомов углерода) алкильные разветвления (структура 1 в таблице 3). В продуктах SW изомеризации известного уровня (структура 2 в таблице 3) короткие разветвления обычно расположены на конце углеводородной структуры. Базовые масла или компоненты базовых масел согласно изобретению показаны как структуры 2 и 3 в таблице 2 и очень похожи на SW базовые масла, но SW базовые масла содержат значительно более высокое количество мононафтенов, а также конденсированных динафтенов.

Когда изомеризацию проводят по двойным связям жирной кислоты (структура 1 в таблице 2), то обычно образуются алкильные разветвления, содержащие от 1 до 4 атомов углерода внутри углеводородной цепи продукта. Разветвленные компоненты представляют собой смеси изомеров, отличающихся местами разветвления.

Разветвления внутри углеводородной цепи снижают температуру потери текучести в значительно большей степени, чем разветвления, расположенные на концах цепей. Помимо места расположения разветвлений на температуру потери текучести влияет их число. Температура потери текучести снижается с увеличением числа боковых цепей, одновременно вызывая снижение индекса вязкости. В продуктах согласно изобретению относительно высокая доля изомеризованных молекул содержит более 10 атомов углерода. Данные высокомолекулярные соединения обычно также имеют высокий VI, даже если температура потери текучести (РР) снижена до температуры ниже -20°С.

Как результат расщепления и гидрирования многоядернах ароматических соединений, содержатся также конденсированные полинафтены с 3-5 кольцами (структура 3 в таблице 3) в VHVI продуктах известного уровня, однако не содержатся в продуктах согласно изобретению. Конденсированные нафтены делают отношение РР-VI хуже, чем алкильные разветвления. Наилучшее соотношение РР-VI может быть достигнуто за счет оптимального числа разветвлений в положениях кольца.

Продукт согласно изобретению, полученный изомеризацией парафинового воска из гидроксидезоксигенированного кетона (структура 2 в таблице 2), представляет собой разветвленный продукт с более низким количеством метильных разветвлений на концах углеводородной цепи и более высоким количеством метильных и этильных разветвлений в углеводородном скелете. Указанное базовое масло обычно содержит некоторое количество мононафтенов, но никаких конденсированных динафтенов или полинафтенов. Указанные мононафтены образуются в результате реакций двойных связей углеродной цепи жирной кислоты или реакции изомеризации, отличаясь, таким образом, своей структурой от нафтенов, полученных гидрированием ароматики и крекингом полинафтенов в минеральном масле.

Продукт, полученный реакцией конденсации либо по типу альдольной конденсации, конденсации спирта (реакция Guerbet) или радикальным способом, включает метильное разветвление в середине основной углеводородной цепи (структура 3 в таблице 2). Продукт отличается от продуктов изомеризации VHVI и SW известного уровня (структуры 3 и 2 в таблице 3), указанные масла обычно содержат разветвления главным образом на концах цепей.

Базовое масло или компонент базового масла согласно изобретению включает продукт, полученный из исходных материалов биологического происхождения, указанный продукт содержит меньше 10% по массе, предпочтительно меньше 5% по массе и особенно предпочтительно меньше 1% по массе линейных парафинов; по меньшей мере, 90% по массе, предпочтительно, по меньшей мере, 95% по массе и особенно предпочтительно, по меньшей мере, 97% по массе, самое лучшее, по меньшей мере, 99% по массе насыщенных углеводородов, как определено методом газовой хроматографии (GC).

Продукт согласно изобретению содержит 5-50, предпочтительно 5-10, особенно предпочтительно 5-15 и самое лучшее 5-10% по FIMS мононафтенов; и менее 0,1% по FIMS полинафтенов, как определено методом FIMS.

Для указанного базового масла или компонента базового масла VI составляет более 115, предпочтительно более 130, особенно предпочтительно больше 140 и самое лучшее больше 150, как определено методом ASTM D 2270, вместе с температурой потери текучести, составляющей не больше -9°С, предпочтительно не больше -12°С и особенно предпочтительно не больше -15°С (ASTM D 5950).

Низкотемпературная динамическая вязкость, ССS-30, для указанного базового масла или компонента базового масла составляет не более 29,797*(KV100)2,7848 cП, предпочтительно не больше 34,066*(KV100)2,3967 cП, CCS-35 составляет не более 36,108*(KV100)3,069 cП, предпочтительно не более 50,501*(KV100)2,4918 сП, измеренную методом ASTM D5293; температура потери текучести составляет ниже -9°С, предпочтительно ниже -12°С и особенно предпочтительно ниже -15°С (ASTM D5950).

Для указанного базового масла или компонента базового масла летучесть продукта, имеющего KV100 от 3 сСт до 8 сСт, составляет не более чем 2271,2*(KV100)-3,5373% по массе, как определено методом DIN 51581-2 (математический метод Noack, основанный на ASTM D 2887, GC дистилляция).

Интервал числа атомов углерода базовых масел или компонентов базовых масел согласно изобретению составляет не больше чем 9 атомов углерода, предпочтительно не больше чем 7 атомов углерода, особенно предпочтительно не больше чем 5 атомов углерода и самое лучшее не больше чем 3 атома углерода, как определено методом FIMS. Более примерно 50%, предпочтительно более примерно 75% и особенно предпочтительно более примерно 90% по массе базового масла составляют углеводороды, принадлежащие к данному узкому распределению атомов углерода.

Интервал перегонки базовых масел или компонентов базовых масел согласно изобретению составляет не более чем 150°С, предпочтительно не более чем 100°С, особенно предпочтительно не более чем 70°С и самое лучшее не более чем 50°С (определенный методом ASTM D2887, точки перегонки D10 и D90).

Содержание серы указанного базового масла или компонента базового масла составляет менее 300 млн ч., предпочтительно менее чем 50 млн ч., особенно предпочтительно менее чем 10 млн ч. и самое лучшее меньше чем 1 млн ч., определенное методом ASTM D 3120.

Содержание азота указанного базового масла или компонента базового масла составляет меньше чем 100 млн ч., предпочтительно меньше чем 10 млн ч. и особенно предпочтительно меньше чем 1 млн ч., определенное методом ASTM D 4629.

Указанное базовое масло или компонент базового масла содержит изотоп углерода 14С, который можно рассматривать как указание на использование возобновляемых сырьевых материалов. Типичное содержание изотопа 14С от общего содержания углерода в продукте, который является полностью биологического происхождения, составляет, по меньшей мере, 100%. Содержание изотопа углерода 14С (доля) определяют на основе содержания радиоактивного углерода (изотоп углерода 14С) в атмосфере в 1950 (ASTM D 6866). Содержание изотопа 14С в базовом масле согласно изобретению оказывается ниже в тех случаях, когда, помимо биологических компонентов, при переработке продукта использованы другие компоненты, указанное содержание, однако, составляет больше, чем 50%, предпочтительно больше чем 90%, особенно предпочтительно больше, чем 99%. Таким путем даже низкие количества базового масла биологического происхождения могут быть определены в других типах углеводородных базовых масел.

Базовое масло или компонент базового масла согласно изобретению может быть получено из сырья, образованного исходным материалом биологического происхождения, называемым в настоящем описании биологическим исходным материалом. Биологический исходный материал выбран из группы, включающей

а) растительные жиры, масла, воски; животные жиры, масла, воски; рыбьи жиры, масла, воски, и

b) жирные кислоты или свободные жирные кислоты, полученные из растительных жиров, растительных масел, растительных восков; животных жиров, животных масел, животных восков; рыбьих жиров, рыбьих масел, рыбьих восков, и их смесей, гидролизом трансэтерификацией или пиролизом; и

с) сложные эфиры, полученные трансэтерификацией из растительных жиров, растительных масел, растительных восков; животных жиров, животных масел, животных восков; рыбьих жиров, рыбьих масел, рыбьих восков, и их смесей; и

d) соли металлов жирных кислот, полученные из растительных жиров, растительных масел, растительных восков; животных жиров, животных масел, животных восков; рыбьих жиров, рыбьих масел, рыбьих восков и их смесей омылением, и

е) ангидриды жирных кислот из растительных жиров, растительных масел, растительных восков; животных жиров, животных масел, животных восков; рыбьих жиров, рыбьих масел, рыбьих восков и их смесей; и

f) сложные эфиры, полученные э