Дрейфующая буйковая гидроакустическая станция для определения предвестников сильных землетрясений и цунами

Иллюстрации

Показать все

Изобретение относится к области сейсмологии и может быть использовано для определения предвестников сильных землетрясений и цунами. Сущность: станция включает аппаратурный модуль, блок спутниковой системы связи и навигации, блок анализа, блок управления, источники питания. Станция оснащена вертикальной гирляндой гидрофонов. Блок анализа выполнен с возможностью обнаружения и сверхнизкочастотных амплитудных модуляций гидроакустических сигналов - предвестников сильных землетрясений; с возможностью отбора импульсных сигналов по амплитуде, частоте повторений, длительности и скорости нарастания фронта сейсмических волн и Т-волн сильных землетрясений - предвестников цунами. Технический результат: повышение достоверности определения предвестников. 4 ил.

Реферат

Изобретение относится к области сейсмологии и может найти применение в национальных системах наблюдения геофизических измерений для прогнозирования землетрясений и цунами.

С появлением спутниковой системы связи (ССС), особенно низкоорбитальных ССС «Гонец» в составе автономных гидрофизических станций [1], спутниковой системы навигации «Глонасс» сегодня широкое распространение будут находить дрейфующие на поверхности моря буйковые станции [2].

В настоящее время опубликовано множество работ, посвященных прогнозированию землетрясений. Рассмотрим некоторые из них, выбранные в качестве аналогов.

В работе [3] рассматривается способ прогнозирования землетрясений, основанный на измерениях не менее трех прогностических станций, оснащенных сейсмоприемниками, с помощью которых измеряют амплитуду и частоту повторений импульсных сигналов, скорость нарастания фронта и длительность импульсных сигналов и по полученным данным проводят отбор аномальных сигналов. После чего измеряют продолжительность стадии увеличения, уменьшения и замирания интенсивности аномального сигнала на каждой прогностической станции.

В работе [4] рассматривается способ контроля землетрясений, включающий регистрацию сейсмических сигналов, соответствующих сейсмическим событиям определенных энергетических классов, на поверхности и внутри нее в забое скважины предполагаемой очаговой области. Определяют для каждого энергетического класса статистический параметр S=Nk×ln(N/Nk), где Nk - число сейсмических событий определенного энергетического класса k, N - общее число наблюдаемых сейсмических событий. Диапазон измерений делят на четыре частотных поддиапазона измерений: 100-500, 500-1000, 1000-1500 и 1500-2000 Гц. Аномальное поведение отслеживаемых факторов, как предвестник наступающего события, определяют как соответствующее увеличение регистрируемых амплитудных уровней сейсмического сигнала в два раза по сравнению с фоновыми значениями сейсмического поля при одновременном понижении параметра S.

В работе [5] рассматривается способ определения предвестников землетрясения, включающий регистрацию сейсмоколебаний, использование цифровых записей сейсмоколебаний в реальном масштабе времени, которые преобразуют в статистические диагностические параметры. Диагностические параметры R=Авн, где Ан, Ав соответственно амплитуды виброскоростей сейсмоколебаний в низкочастотных и высокочастотных областях амплитудно-частотных спектров. При достижении диагностических параметров значений, превышающих предельно-допустимые значения, выдается сигнал оповещения о возможности сейсмического события.

В работе [6] рассматривается прогноз, построенный на данных сейсмодатчиков и геофонов. В фазе возникновения максимум активизации наблюдается за 4-6 месяцев до главного толчка (для акустического излучения, измеренного в скважине с помощью геофона в полосе частот 500-1000 Гц) и для высокочастотного сейсмического шума (измеренного с помощью сейсмоприемников в полосе частот 30-50 Гц). В фазе кульминации (за 2-3 месяца до главного события) одновременно с уменьшением высокочастотного сейсмического шума и акустического излучения наблюдается рост числа микроземлетрясений.

В работе [7] рассматривается способ предсказания землетрясений, основанный на регистрации сверхнизких сейсмических волн периодом порядка несколько тысяч секунд, на прямоугольном полигоне, состоящем из N2 сейсмоприемников, отстоящих друг от друга на расстоянии λ/4, измеряют амплитуду сигнала, со скважностью менее 1 с, где λ - длина сейсмической волны.

В работе [8] предполагается, что сверхнизкие сейсмические волны с периодом несколько тысяч секунд соизмеримы с длиной экватора земли, т.е. сферой досягаемости является вся земная поверхность. В пространстве распространения таких волн можно выделить участки сжатия, разрежения, а также участок непрерывного, почти линейного изменения плотности среды. Дисперсия плотности породы приводит к дисперсии скоростей распространения литосферных волн, а последняя к изменению формы колебательного процесса. На частотном языке рассмотренный процесс эквивалентен параметрической модуляции сейсмического фона. В способе предсказания землетрясений [8], основанном на регистрации волны сейсмического фона в виде непрерывной последовательности дискретных отсчетов амплитуды сигнала, вычисляют спектр, автокорреляционные функции, определяют интервалы корреляции с помощью двух разнесенных по пространству станций. При обнаружении сверхнизкочастотных модуляционных сигналов определяется направление на очаг и дается предсказание на землетрясение. Данное явление наблюдается за 5-7 часов до землетрясения.

Все вышерассмотренные аналоги строят свои предсказания, основываясь только на данных, полученных с помощью сейсмических станций, во-первых, основываясь на статистических свойствах слабых землетрясений как предвестников сильных землетрясений, во-вторых, основываясь на сверхнизкочастотном модуляционном эффекте сейсмического фона. Здесь гидроакустические данные не используются. Данный факт является существенным недостатком допущенных авторами рассмотренных выше аналогов.

Использование гидроакустической компоненты сейсмического сигнала дополняют и заметно усиливают по эффективности различные способы прогнозирования землетрясений, предложенные в работах [3-8]. Можно сказать, что гидроакустические способы прогнозирования землетрясений можно внедрить, особенно при работе в регионах, омываемых океанами и морями. Особенно актуальны для Охотоморской акватории, окруженной сейсмоактивными регионами Камчатки, Курильских островов, о.Хоккайдо и о.Сахалин.

Отметим, что в Охотском море подводный звуковой канал (ПЗК) располагается в зависимости от сезона на небольших глубинах 60-80 м. Генерируемые на подводных склонах островов Курило-Камчасткого желоба, Сахалин, Хоккайдо и Камчатского полуострова акустические Т-волны практически с самого начала захватываются ПЗК. Поэтому Т-волны в основном распространяются в ПЗК до момента достижения приемников. При этом если гидрофон расположен также в ПЗК, то потери сигнала при распространении будут минимальными. В таких условиях Т-волны слабых землетрясений могут быть зарегистрированы даже при отсутствии сейсмических Р-, S-волн. В качестве примера на фиг.1 приведены сигналограмма и огибающая Т-волны, где практически отсутствуют сейсмические Р-, S-волны (Р-волна превышает фоновые уровни на 3-4 дБ). При разработке прогностических параметров по технологии, предложенной в [3-6], сейсмической компонентой (Р-S-волны) землетрясения данного землетрясения применить здесь нельзя, так как они скрыты на фоне помех. Для таких случаев можно и необходимо использовать гидроакустические компоненты. Использование в прогностических задачах акустической компоненты позволяет осуществлять телеметрический контроль (на предмет прогнозирования землетрясений) с помощью гидроакустических станций, установленных на шельфе о.Сахалин за регионом, охватывающим сейсмоактивные районы: Камчатка, Курильские острова, о.Хоккайдо.

Таким образом, применение Т-волны в задачах прогнозирования сильных землетрясений по технологиям, предложенным в аналогах [3-8], не только возможны, но необходимы. Во-первых, имеется возможность применения гидроакустических антенн для обнаружения слабых сигналов (для землетрясений с М≤2 балла); во-вторых, имеется возможность исследования гидроакустических фоновых характеристик по обнаружению сверхнизкочастотных амплитудных модуляций, что позволит использовать технологии, изложенные в работах [3-8].

Сильные землетрясения определенным образом связаны с волнами-цунами. Подводные землетрясения с магнитудой М≥7 и эпицентром, расположенным вблизи морского дна, считают потенциально цунамигенными [9]. Цунамигенные землетрясения могут вызвать как упругие колебания морского дна, так и его разрывные подвижки, имеющие вертикальную компоненту смещения. Наличие вертикальной компоненты смещения обуславливает генерацию волн цунами, а также эффективную генерацию гидроакустических Т-волн в водной слой за счет образования акустического конуса Маха разрывом, движущимся со скоростью, превышающей фазовую скорость звука в воде. Факт регистрации в водной среде звуковых волн высокочастотного диапазона в силу большого затухания этих частот в грунте может свидетельствовать о процессах, развивающихся в самой верхней части разреза морского дна. Высокочастотные гидроакустические сигналы [9] (с частотами 100-400 Гц), захваченные подводным звуковым каналом (ПЗК), могут проходить расстояние несколько тысяч километров без значительного затухания, образуя высокочастотную часть Т-фазы. Совокупность указанных свойств (сильное затухание в породах, слагающих ложе океана, и способность распространяться на значительные расстояния в ПЗК) приводит к тому, что гидроакустические волны с частотами 100-400 Гц являются независимым источником информации о цунамигенности происшедшего подводного землетрясения.

Критерием принятия решения о цунамигенности происшедшего подводного землетрясения может служить сам факт регистрации колебаний в указанном интервале частот, понимаемый как превышение отношения интенсивности сигнала Т-фазы в диапазоне частот 100-400 Гц к средней интенсивности фоновых шумов данного района определенного порогового значения [9].

Известен другой способ определения предвестника цунами [10], включающий размещение групп устройств регистрации гидроакустических сигналов на глубинных горизонтах наблюдений в прибрежной зоне, размещенных на глубинных горизонтах, кратных 25 м, при максимальном горизонте наблюдений, равном 100 м, регистрацию гидроакустических сигналов выполняют с выделением фаз типа Р, S и Т. Рекомендуемый частотный диапазон 30-100 Гц.

Чем мощнее землетрясение с эпицентром вблизи морского дна, тем обширнее область генерации Т-волны, т.е. будет наблюдаться множество максимумов Т-волны со значительными энергетическими уровнями, что определенным образом служить индикатором возбуждения волн-цунами.

Предлагается дополнение прогностических параметров, предложенных в работе [9], а именно: проводить анализ отношений уровней Т-волн в полосе частот 100-500 Гц относительно уровня Т-волны в полосе частот 100-2000 Гц; анализ отношений уровней Т-волн в полосе частот 10-100 Гц к уровню Т-волны в полосе частот 0,5-100 Гц; анализ отношений длительности Т-волны в полосе частот 10-100 Гц к длительности Т-волны в полосе частот 0,5-100 Гц.

Таким образом, вопросы прогнозирования сильных землетрясений заметным образом связаны с вопросами прогнозирования волн-цунами, поэтому эти вопросы можно и нужно увязать в единый технологический комплекс.

Интересен вариант установки буйковой гидроакустической станции в середине Охотского моря, где круглогодично практически отсутствуют ледяные поля. С появлением в РФ в настоящее время спутниковой навигационной системы (СНС) «ГЛОНАСС» дрейфующие буйковые гидроакустические устройства (ДБГАС) находят широкое применение. В этом случае имеется возможность наблюдения за сейсмической обстановкой Камчатки, Курильских островов и о.Сахалин.

Предлагается установить дрейфующие буйковые гидроакустические станции (ДБГАС), оснащенные вертикальной 8-элементной эквидистантной гирляндой гидрофонов (расстояние между гидрофонами 25 м), установленной в подводном звуковом канале (регистрируется суммарный сигнал, т.е. формируем линейную антенну с диаграммой направленности, ориентированной вдоль горизонта) на приповерхностном слое Охотского моря. Частотный диапазон 0,5-2000 Гц, хотя как антенну-гирлянду можно рассматривать в частотном диапазоне 30-2000 Гц.

Дрейфующая буйковая гидроакустическая станция (БГАС) предназначена для проведения долговременных наблюдений в океане. Такие буи могут устанавливаться в морях и в океанах. Оснащенные гирляндой гидрофонов ДБГАС регулярно измеряют и передают результаты обработки на центр обработки данных (ЦОД) по радиоканалу, в том числе по спутниковой системе связи ССС «Гонец». Для ДБГАС предусмотрена спутниковая навигационная система «ГЛОНАСС».

ДБГАС состоит (фиг.2) из герметичного цилиндрического аппаратурного модуля ДБГАС 1 в составе блока управления 3, источника питания 4. Наружу под радиопрозрачным колпаком 5 вынесены антенна спутниковой системы связи «Гонец» и навигации «Глонасс» 6 с абонентским пунктом 7, проблесковый световой маяк 8 и радиоантенна 9, которые установлены на поплавке 10, изготовленном из синтактического материала. Сигнальный кабель 11 заведен в аппаратурный модуль 1 с помощью гермоввода 2-1; для страховки сигнального кабеля от рывков применяются страховочные фалы 13, которые крепятся к сигнальному кабелю 11 с помощью специальных зажимов 14. Последовательно, на сигнальном кабеле подключаются все восемь элементов «гирлянды» гидрофонных модулей 2 (фиг.3).

Источник питания 4 собран из литиевых батарей МРЛ-200, которые обеспечивают непрерывную работу ДБГАС не менее 100 суток.

Поплавок 10, изготовленный из синтактических материалов, обеспечивает ДБГАС необходимую плавучесть.

Абонентский пункт спутниковой системы связи «Гонец» 7 с помощью антенны 6 осуществляет передачу гидрофизической и служебной информации в центр обработки данных (ЦОД), а навигационная система «Глонасс» производит определение места ДБГАС. Световой маяк (СМ) включается в темное время суток (включение осуществляется с помощью светодиода) и работает в цикличном режиме, с периодичностью 30 с.

С помощью радиоантенны 9 осуществляется радиообмен между ДБГАС и обеспечивающим судном. Одновременно радиоантенна играет роль активного радиолокационного ответчика.

Блок управления 3 представляет собой микроконтроллер, который управляет всеми устройствами ДБГАС по заданной программе или по команде, полученной по радиоканалу.

БУ 3 (фиг.2. поз.17) включает (выключает) по программе световой маяк (СМ) 8, абонентский блок спутниковой системы связи и навигации (СССН) 7. БУ 3 через антенну 9 готов отразить локационный сигнал со стандартного радиолокатора, позволяющий четко отметить местоположение станции на поверхности моря.

На фиг.3 поз.2 соответствует гидрофонному модулю гирлянды гидрофонов 2. Гидрофонный модуль 2 представляет собой гидрофон с предварительным усилителем. Станция оснащена вертикальной эквидистантной 8-элементной гирляндой гидрофонов (регистрируется суммарный сигнал, т.е. формируется линейная антенна с диаграммой направленности, ориентированной вдоль горизонта), установленной в подводном звуковом канале (ПЗК). Для выравнивания гирлянды гидрофонов в линию используется груз (поз.12). Частотный диапазон 0.5-2000 Гц, как антенна-гирлянда гидрофонов 2 используется в частотном диапазоне 30-2000 Гц.

На фиг.4 приведена структурная схема гидроакустической станции. Блок анализа 17 состоит из двух составных частей: поз.17-1 соответствуют блоку преобразования сигналов, где производится усиление и ограничение сигнала в полосе частот 0.5-2000 Гц 18, оцифровывание с помощью 8-канального аналого-цифрового преобразователя 19 частотой квантования 4800 Гц, далее производится суммирование сигналов 20 для формирования антенны с диаграммой, ориентированной горизонтально, и поз. 17-2 соответствуют блоку анализа и принятия решений. Здесь позиции 21 и 22 соответствуют фильтрам нижних (ФНЧ) и верхних частот (ФВЧ) с частотой среза 100 Гц, т.е. частотный диапазон 0,5-2000 Гц делится на два частотных поддиапазона 0,5-100 Гц и 100-2000 Гц.

Прореживание выборок 23 в 16 раз производится посредством суммирования по 16 последовательных временных отсчетов, сумма которых будет соответствовать текущему временному отсчету. На выходе с поз.23 имеем временной ряд с частотой выборки, равной 300 Гц.

Поз.24-25, 28-31 соответствуют цифровым полосовым фильтрам соответственно в полосе частот: 0,5-10 Гц (инфранизкочастотный гидроакустический канал); 10-100 Гц (низкочастотный гидроакустический канал); 100-500 Гц; 500-1000 Гц; 1000-1500 Гц; 1500-2000 Гц.

Дальнейшее прореживание временных выборок, соответствующее частоте выборок 300 Гц в 10 раз, производится посредством суммирования 10 последовательных временных отсчетов, сумма которых будет соответствовать текущему временному отсчету. На выходе с поз.33 имеем временной ряд с частотой выборки, равной 30 Гц.

Поз.34 представляет собой пороговое устройство, запускающее блок анализа 26, реализующее алгоритм по поиску статистических параметров слабых землетрясений, предваряющих сильные землетрясения, рассмотренные в аналогах [3-6]. Пороговое устройство 34 запускает блок анализа 26 при превышении текущего значения сигнала на величину 6 дБ, усредненный заданный фоновый уровень, после чего само пороговое устройство отключается. При обнаружении прогностических статистических параметров вырабатывается определенный код в формирователе 27.

Блок анализа 26, реализующий алгоритм прогнозирования землетрясений, рассмотренный в аналогах [3-6] с момента включения, в течение 1 мин анализирует статистические параметры слабых землетрясений. По истечении 1 мин блок 26 отключается и выдает команду на включение порогового устройства 34.

Блок анализа 32, реализующий алгоритм прогнозирования землетрясений, рассмотренный в налогах [7-8], работает непрерывно и производит поиск амплитудных модуляций, с периодами модуляции от 1000-10000 с. Из рассмотрения исключаются периоды, соответствующие периодам приливно отливных течений 6, 12 и 24 часов. При обнаружении амплитудной модуляции с определенным периодом вырабатывается определенный код в формирователе 27.

Блок анализа 37, реализующий анализ параметров Т-волн сильных землетрясений по алгоритмам прогнозирования цунами, рассмотренным в [9-10] и предложенным авторами на предмет обнаружения прогностических параметров волн-цунами, работает в циклическом режиме запускаемый пороговым устройством 38. Пороговое устройство 38 запускает блок анализа 37 при превышении текущего уровня по модулю сигнала сильного землетрясения на величину 10 дБ заданного усредненного фонового уровня. При этом блок 38 отключается. Блок 44 анализирует отношения 10 lg x12/x22, 10 lg t1/t2, 10 lg х32/x42, 10 lg t32/t42, где x12, x22, x32, x42 есть сумма энергии соответственно в полосе частот 0.5-100, 0.5-10, 100-2000, 100-500 Гц в течение времени, при котором уровень сигнала по модулю превышает усредненный заданный фоновый уровень на 6 дБ. При этом если временной отрезок окажется меньше 1 мин, результат обнуляется и процесс анализа прекращается. Выдается команда на запуск порогового устройства 45. Временные отрезки t1, t2, t3, t4, в течение которых соответствующие уровни сигналов в полосе частот 0.5-100, 0.5-10, 100-2000, 100-500 Гц превышают заданные фоновые уровни на величину 6 дБ. При достижении определенных величин отношений вырабатывается определенный код в формирователе (поз.27. фиг.4) и передается в абонентный пункт ССС «Гонец» (поз.7. фиг.2). Кроме того, код содержит следующую служебную информацию: текущее время, параметры местоположения определяемой спутниковой системы навигации «Глонасс».

Информация передается в центр обработки с помощью абонентского пункта 7 и антенны 6 спутниковой системы связи «Гонец».

В системе прогнозирования землетрясения и цунами предполагается использовать одновременно не менее 4 пространственно разнесенных и синхронно работающих ДБГАС. Замена источников питания ДБГАС производится не реже 100 суток. При замене источников могут производиться профилактические работы ДБГАС, после чего производится повторная постановка. Повторная постановка ДБГАС может производиться в других географических координатных точках.

Источники информации

1. Малашенко А.Е., Малашенко А.А., Деревнин В.А., Леоненкоа Р.В., Сохатюк М.Ю. Аппаратура передачи данных гидрофизической информации с помощью спутниковой системы связи. Патент РФ на ПМ №75117, Н04В 1/00, 15.03.2005 г.

2. Малашенко А.Е. Перунов В.В., Филимонов В.И., Рожков B.C. Автономная буйковая гидрофизическая станция. Патент РФ на ПМ №61245, G01S 1/00, 01.11.2005 г.

3. Моргунов В.А. Способ оперативного прогнозирования землетрясений, тектонических и техногенных подвижек. Патент РФ №2106001, G01V 9/00, 1996 г.

4. Хамидулин Я.Н. Способ контроля землетрясений. Патент РФ №2102780, G01V 9/00, 1996 г.

5. Трофимов Р.С., Шахраманьян М.А., Махутов Н.А., Нигметов Г.М., Петров В.П. Способ определения среднесрочных предвестников землетрясения. Патент РФ №2233461, G01V 9/00, 2002 г.

6. Каррыев Б.С., Косарев В.Г., Курбанов М.К., Аширов Т.А. Способ прогнозирования землетрясений. Патент №1389473, G01V 1/00, 1995 г.

7. Давыдов В.Ф., Щербаков А.С., Комаров Е.Г., Малков Я.В. Бурков В.Д. Способ предсказания землетрясений. Патент РФ №2130195, G01V 1/00, 1998 г.

8. Давыдов В.Ф., Шахраманьян М.А., Нигметов Г.М., Шалаев B.C., Шипов А.В. Способ краткосрочного предсказания землетрясений. Патент РФ №2181205, G01V 9/00, 2000 г.

9. Ставров К.Г., Парамонов А.А., Аносов B.C. Способ определения предвестника цунами. Патент РФ №2292569, G01V 1/38, 2005 г.

10. Иванов В.В., Лопатников С.Л., Рок В.Е. Способ установления цунамигенности происшедшего подводного землетрясения. Патент РФ №1584585, G01V 1/00, 1995 г.

Дрейфующая буйковая гидроакустическая станция для определения предвестников сильных землетрясений и цунами, оснащенная вертикальной гирляндой гидрофонов, включающая в себя аппаратурный модуль, блок спутниковой системы связи и навигации, блок анализа, блок управления и источники питания, блок анализа выполнен с возможностью обнаружения сверхнизкочастотных амплитудных модуляций гидроакустических сигналов - предвестников сильных землетрясений, а также с возможностью отбора импульсных сигналов по амплитуде, частоте повторений, длительности и скорости нарастания фронта сейсмических волн и Т-волн сильных землетрясений - предвестников цунами.