Способ оценки корреляций искажений в приемнике беспроводной связи и устройство для его осуществления
Иллюстрации
Показать всеИзобретение относится к технике связи. Технический результат состоит в повышении качества оценки корреляций искажений в системах MIMO/MISO. Для этого приемник реализован в соответствии с множеством различных архитектур, в том числе согласно обобщенной архитектуре RAKE (G-RAKE) с последовательным подавлением помех (SIC), архитектуре с совместным детектированием (JD) G-RAKE и архитектуре G-RAKE с использованием минимальной среднеквадратической ошибки (MMSE). Независимо от принятой конкретной архитектуры приемника уточненные корреляции искажений можно использовать для вычисления уточненных весов объединения сигналов (RAKE) и/или уточненных оценок качества каналов для передачи сведений об этих оценках приемниками, работающими в системах стандарта широкополосного CDMA (W-CDMA), где передача выполняется через каналы HSDPA приемниками MIMO или MISO. Передатчик сконфигурирован с возможностью обеспечения приемникам, работающим в средах MIMO/MISO, определения корреляций искажений путем сигнализации об одном или нескольких значениях, например значениях отношений мощности передачи сигналов данных к мощности передачи пилот-сигналов и/или результатов распределения мощности передающих антенн для сигналов данных и пилот-сигналов. 3 н. и 33 з.п. ф-лы, 10 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к сетям беспроводной связи и, в частности, касается оценки корреляций искажений в приемном сигнале в системах многоантенной передачи, таких как системы с множеством входов и множеством выходов (MIMO) и системы с множеством входов и одним выходом (MISO).
Уровень техники
Определение искажений в приемном сигнале играет важную роль при обработке сигналов связи. Например, в некоторых типах приемников с подавлением помех для улучшения подавления используется корреляция искажений сигналов между многолучевыми компонентами приемного сигнала. Такие операции выполняются, например, приемниками типа G-RAKE (универсальная гребенка приемников) путем создания объединенного сигнала для демодуляции на основе объединения поступающих с задержкой многолучевых компонент интересующего приемного сигнала с использованием объединенных весов W, которые содержат оценки корреляции искажений.
Если более подробно, то объединенные веса W можно выразить в виде W=R-1h, где R-1 - матрица, обратная ковариационной матрице R искажений, а h - вектор канальных характеристик. (Ковариационную матрицу можно использовать для представления корреляций искажений с нулевым средним.) Таким образом, объединение G-RAKE зависит от вычисления оценки корреляции искажений, причем аналогичные зависимости существуют в приемниках других типов с подавлением помех, например в архитектурах с корректорами элементарных посылок, которые вычисляют (фильтруют с коррекцией) веса W на основе корреляций искажений.
Кроме того, качество ρ принятого сигнала может быть выражено как функция весов (ρ=h∗W=h∗R-1h). Оценка качества сигнала, например оценка качества канала, играет важную роль в системах беспроводной связи многих типов. Например, в некоторых системах используются каналы с регулируемой скоростью, которые передают данные отдельным пользователям с максимальными скоростями, разрешенными исходя из доступной мощности передачи и преобладающих условий радиосвязи, специфичных для конкретного пользователя. Скорость передачи данных, выбранная для данного пользователя, зависит от сигнала обратной связи по качеству канала, поступающего от этого пользователя. Один тип канала с регулируемой скоростью, зависящей от сигнала обратной связи по качеству канала, представляют высокоскоростные каналы пакетного доступа по нисходящей линии связи в стандартах широкополосного множественного доступа с кодовым разделением каналов (W-CDMA), в то время как другой тип канала с регулируемой скоростью представляют совместно используемые прямые каналы пакетных данных (F-PDCH) в стандартах cdma2000.
Независимо от задействованных конкретных стандартов занижение сведений о качестве канала обычно приводит к снижению эффективности системы, поскольку отдельные пользователи обслуживаются при скоростях, меньших тех, которые могли бы поддерживаться в действующих условиях. Завышение сведений о качестве каналов также приводит к снижению эффективности, и в действительности это может оказаться хуже, чем занижение сведений, поскольку протоколы IRQ (автоматический запрос на повторную пересылку), часто используемые в указанных системах, порождают избыточные повторные передачи данных, когда скорости передачи данных установлены слишком высокими для действующих условий.
При применении сигналов HSDPA (высокоскоростной пакетный доступ по нисходящей линии связи) и сигналов аналогичных типов в других типах сетей связи несколько пользователей совместно используют канал пакетных данных с временным мультиплексированием. Например, планировщик базовой станции может осуществлять временное мультиплексирование информационных потоков для множества пользователей по совместно используемому каналу пакетных данных, так чтобы в любой данный момент времени обслуживался только один пользователь. Скорости передачи данных для конкретного пользователя, достигаемые в совместно используемом канале, определяются конкретными условиями радиосвязи для каждого пользователя и доступной в данный момент мощностью передачи, а также ресурсами расширяющих кодов на передающей базовой станции.
Планировщики услуг часто обосновывают текущие планировочные решения в зависимости от скоростей передачи данных, на которых может обслуживаться каждый пользователь; иными словами, планировщики часто отдают предпочтение пользователям, находящимся в лучших условиях радиосвязи, поскольку указанные пользователи могут обслуживаться на более высоких скоростях, что увеличивает суммарную пропускную способность при передаче данных по совместно используемому каналу. Таким образом, отдельные пользователи, поддерживая динамическое планирование, посылают по обратной связи оценки качества канала для сигнала совместно используемого канала на текущей основе. На практике этот факт означает, что пользователи оценивают качество канала для совместно используемого канала всегда, независимо от того, действительно ли они принимают данные по совместно используемому каналу.
Передача точных сведений о качестве канала в вышеупомянутом контексте представляет проблему в системах с одним входом и одним выходом (SISO) и тем более в системах с множеством входов и множеством выходов (MIMO), а также в системах с множеством входов и одним выходом (MISO). Действительно, в системах, имеющих множество передающих антенн, таких как системы MIMO и MISO, сигналы данных могут передаваться от более чем одной антенны, и антенны могут повторно использовать расширяющие коды для сигнала данных, то есть возможно применение мультикодирования. Кроме того, от одной или нескольких антенн могут передаваться другие сигналы, например сигналы речи, выделенных пакетов, вещания, управления и служебные сигналы.
Сущность изобретения
Приемник беспроводной связи улучшает оценку корреляции искажений сигнала в системах MIMO/MISO путем учета различных результатов выделения мощности передачи и различных результатов распределения мощности передающих антенн при расчетах корреляции искажений. Приемник может быть реализован согласно множеству различных архитектур, в том числе, но не только, согласно архитектуре приемников типа RAKE, использующих методы последовательного подавления помех, методы совместного детектирования или методы на основе минимальной среднеквадратической ошибки. Независимо от принятой конкретной архитектуры приемника уточненные корреляции искажений можно использовать для вычисления уточненных объединенных весов (RAKE) сигнала и/или улучшения оценок качества канала для сообщения о них приемниками, работающими в системах с широкополосным доступом CDMA (W-CDMA), где передача ведется по каналам HSDPA посредством передатчиков MIMO или MISO.
Однако специалисты в данной области техники должны иметь в виду, что настоящее изобретение не ограничивается вышеуказанными признаками и преимуществами. В действительности специалисты в данной области техники могут выявить дополнительные признаки и преимущества настоящего изобретения, ознакомившись с нижеследующим подробным описанием выбранных вариантов изобретения и просмотрев соответствующие чертежи.
Краткое описание чертежей
Фиг.1 - частичная блок-схема беспроводной связи, включающая передатчик с множеством антенн, который осуществляет передачу на один или несколько приемников беспроводной связи;
фиг.2 - диаграмма, иллюстрирующая результаты выделения мощности передачи в передатчике по фиг.1 для различных типов передаваемых им сигналов;
фиг.3 - диаграмма, иллюстрирующая распределение мощности передающих антенн в передатчике по фиг.1 для различных типов передаваемых им сигналов;
фиг.4 - логическая блок-схема оценки качества канала в приемнике беспроводной связи по фиг.1 согласно одному варианту обсуждаемой здесь оценки качества канала;
фиг.5 - блок-схема варианта передатчика по фиг.1 с избирательным для каждой антенны управлением скоростью (S-PARC), где приемник беспроводной связи адаптирован для обеспечения обратной связи с данными о выборе антенн для операций S-PARC в передатчике;
фиг.6 - блок-схема приемника беспроводной связи c последовательным подавлением помех (SIC) типа «универсальный RAKE (G-RAKE)» по фиг.1;
фиг.7 - блок-схема одного варианта ступени SIC G-RAKE для приемника типа SIC G-RAKE по фиг.6;
фиг.8 - блок-схема приемника беспроводной связи типа G-RAKE по фиг.1, сконфигурированного для детектирования символов на основе минимальной среднеквадратической ошибки или совместного детектирования символов;
фиг.9 - логическая блок-схема одного варианта обрабатывающей логики для определения общей или суммарной оценки корреляций искажений в функции оценки корреляций искажений из-за сигналов данных, оценки корреляций искажений из-за других сигналов и оценки корреляций искажений от других сот плюс шум в соответствии с методом полнопараметрической обработки;
фиг.10 - логическая блок-схема одного варианта обрабатывающей логики для определения общей или суммарной оценки корреляций искажений в функции оценки корреляций искажений из-за сигналов данных, оценки корреляций искажений из-за других сигналов и оценки корреляции искажений от других сот плюс шум в соответствии с методом частично-параметрической обработки.
Подробное описание изобретения
На фиг.1 частично показана сеть 10 беспроводной связи, включающая в себя передатчик 12 с множеством антенн, сконфигурированный для передачи сигналов прямой линии связи через множество передающих антенн с 14-1 по 14-М, обозначенных вместе как «передающие антенны 14». Приемник 16 беспроводной связи, например сотовый радиотелефон или устройство беспроводной связи другого типа, принимает один или несколько сигналов прямой линии связи, передаваемых передатчиком 12, на приемных антеннах с 18-1 по 18-R, обозначенных вместе как «приемные антенны 18». Таким образом, при наличии множества передающих и приемных антенн фиг.1 является иллюстрацией антенной системы с множеством входов и множеством выходов (MIMO).
В настоящее время большой интерес представляют антенные системы MIMO для повышения скоростей передачи данных с целью обеспечения высокоскоростного пакетного доступа по нисходящей линии связи (HSDPA) в стандарте W-CDMA. Эти совместно используемые высокоскоростные каналы известны также как высокоскоростные совместно используемые каналы нисходящей линии связи (HS-DSCH), а прямой канал пакетных данных (F-PDCH), определенный стандартами cdma2000, обеспечивает отчасти аналогичные функциональные возможности. В любом случае, двумя способами, которые привлекают значительное внимание, являются пространственное мультиплексирование, например «пространственно-временная» система с многоуровневой архитектурой компании Bell Labs с повторным использованием кодов (CR-BLAST), которая является вариантом вертикальной системы (V-BLAST), а также способ PARC (регулирование скорости отдельно по каждой антенне).
Эти и другие подходы MIMO обычно включают передачу пилот-сигналов для каждой антенны с целью облегчения оценки канала для каждой антенны в приемнике 16, передачу субпотоков сигналов данных от всех или выбранных антенн из числа передающих антенн 14 и передачу других (дополнительных) сигналов от одной или нескольких передающих антенн 14. Примеры «других» сигналов включают в себя служебные каналы, каналы вещания и управления и различные выделенные каналы (например, речевой и выделенный канал пакетных данных). Используемый здесь термин «сигнал данных» и «сигналы данных» в общем случае относятся к высокоскоростным совместно используемым каналам данных, таким как HS-DSCH, если не указано иное.
На фиг.2 и 3 представлена графическая иллюстрация результатов выделения мощности передачи и распределения мощности передающих антенн для сигнала (сигналов) данных, пилот-сигналов и других сигналов. В частности, на фиг.2 показано, что передатчик 12 имеет конечную величину мощности передачи, доступной для выделения по различным типам сигналов, подлежащих передаче, причем он выделяет из общей мощности передачи конкретную мощность для сигналов данных, пилот-сигналов и других сигналов. Кроме того, передатчик 12 должен разделить мощность, выделенную для данного типа сигнала, между имеющимися передающими антеннами 14. То есть каждой из антенн 14 распределяется определенная величина мощности, выделенной для пилот-сигналов, а также между антеннами 14 распределяются конкретные значения мощности, выделенной для сигналов данных и других сигналов.
Например, от каждой из антенн 14 обычно передается определенная величина мощности пилот-сигнала для облегчения оценки канала для каждой антенны в приемнике 16. Однако от одной из передающих антенн 14 или от фиксированного поднабора этих антенн могут передаваться все другие сигналы, поэтому, как правило, мощность, выделенная для других сигналов, по всем антеннам 14 не разделяется. Аналогичным образом, хотя сигнал (сигналы) данных может передаваться от всех антенн 14, эффективность передачи может быть повышена путем передачи этих сигналов от поднабора антенн 14, в частности, когда этот поднабор выбирается динамически в соответствии с сигналом обратной связи от приемника 16.
В вышеуказанном контексте обеспечение точной оценки корреляции искажений представляет значительную проблему для приемника 16. Поскольку точная оценка корреляции искажений предшествует другим операциям обработки принятого сигнала, таким как объединение или создание скорректированных отфильтрованных весов или оценка качества канала, приемник 16 должен удовлетворительным образом решить указанные проблемы. С этой целью приемник 16 включает в себя одну или несколько схем 20 обработки, сконфигурированных для создания оценок корреляции искажений из-за одного или нескольких сигналов данных, передаваемых вместе с пилот-сигналами от передающих антенн 14 передатчика 12.
В частности, по меньшей мере в одном варианте одна или несколько схем обработки сконфигурированы для вычисления корреляций искажений на основе определения отношения мощности передачи данных к мощности передачи пилот-сигнала и распределений мощности передающих антенн для сигналов данных и пилот-сигналов, а также вычисления корреляций искажений в функции отношения мощности передачи данных к мощности передачи пилот-сигнала и результатов распределения мощности передающих антенн для сигналов данных и пилот-сигналов. Кроме того, в одном или нескольких вариантах в указанных вычислениях учитывается текущий режим MIMO, который может влиять, например, на распределение мощности передающих антенн для сигналов данных. Таким образом, наряду с другими параметрами или значениями распределение мощности передающих антенн для сигналов данных может быть определено на основе текущей конфигурации MIMO.
В одном варианте по меньшей мере одно из отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов и распределений мощности передающих антенн для сигналов данных и пилот-сигналов содержит сигнальные значения, принятые приемником 16. В целом в данном описании излагается способ поддержки оценок корреляций искажений приемниками беспроводной связи, работающими в системе связи MIMO или MISO, которая включает в себя передатчик, имеющий множество передающих антенн, и передает один или несколько сигналов данных и пилот-сигналов. В одном варианте указанный способ содержит сигнализацию по меньшей мере об одном из отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов и распределений мощности передающих антенн для сигналов данных и пилот-сигналов, передаваемых передатчиком беспроводной связи. Кроме того, указанная сигнализация может динамически обновляться в зависимости от текущего режима MIMO (множество входов и множество выходов). Таким путем приемники могут получать сигналы об изменении отношений мощности и/или изменении распределений мощности передающих антенн, чтобы использовать их при вычислении корреляций искажений.
В другом варианте по меньшей мере одно из отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов и распределений мощности передающих антенн для сигналов данных и пилот-сигналов содержит номинальные значения, запомненные в приемнике 16. Кроме того, в другом варианте от передающих антенн 14 в соответствии с отношением мощности передачи других сигналов к мощности передачи пилот-сигналов и распределением мощности передающих антенн для других сигналов передаются другие сигналы, в том числе речевые сигналы. В этом случае дополнительно сконфигурирована одна или несколько схем 20 обработки для определения отношения мощности передачи других сигналов к мощности передачи пилот-сигналов и распределения мощности передающих антенн для других сигналов и вычисления корреляций искажений дополнительно в зависимости от отношения мощности передачи других сигналов к мощности передачи пилот-сигналов и распределения мощности передающих антенн для других сигналов. В частности, одна или несколько схем обработки могут быть сконфигурированы для выражения вычислений искажений в виде суммы первого члена корреляции искажений, представляющего искажения, возникающие из передачи одного или нескольких сигналов данных, и масштабированного в соответствии с отношением мощности передачи сигналов данных к мощности передачи пилот-сигналов, второго члена корреляции искажений, представляющего искажения, возникающие из передачи других сигналов, и масштабированного в соответствии с отношением мощности передачи других сигналов к мощности передачи пилот-сигналов, и третьего члена корреляции искажений, представляющего искажения, возникающие из-за шума и помех от других сот.
При использовании этого способа определение отношения мощности передачи других сигналов к мощности передачи пилот-сигналов может быть основано на определении ковариационной матрицы отсчетов элементарных посылок до сжатия одного или нескольких принятых сигналов данных и выражения ковариационной матрицы отсчетов элементарных посылок в функции известного отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов, известных распределений мощности передающих антенн для пилот-сигналов и других сигналов, известной оценки шума, представляющей шум плюс помехи от других сот, неизвестного или известного текущего выбранного поднабора передающих антенн, используемых для передачи одного или нескольких сигналов данных, и неизвестного отношения мощности передачи других сигналов к мощности передачи пилот-сигналов. Способ продолжается нахождением решения выражения для неизвестного отношения мощности передачи других сигналов к мощности передачи пилот-сигналов и текущего выбранного поднабора передающих антенн (если он неизвестен), используемого для передачи одного или нескольких сигналов данных в соответствии с формулой максимального правдоподобия.
В аналогичном варианте текущий выбранный поднабор предающих антенн известен, и тогда указанное выражение содержит функцию известного отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов, известных распределений мощности передающих антенн для пилот-сигналов и других сигналов, неизвестной оценки шума, представляющей шум плюс помехи от других сот, известного текущего выбранного поднабора передающих антенн, используемых для передачи одного или нескольких сигналов данных, и неизвестного отношения мощности передачи других сигналов к мощности передачи пилот-сигналов. В этом варианте способа находят выражение для неизвестного отношения мощности передачи других сигналов к мощности передачи пилот-сигналов и неизвестной оценки шума в соответствии с формулой максимального правдоподобия. В общем случае следует понимать, что это выражение может иметь различное количество неизвестных, а формула максимального правдоподобия может быть адаптирована соответствующим образом. Естественно, что пространство поиска решения увеличивается с увеличением количества неизвестных.
В другом варианте для моделирования помех от других сот в виде белого шума и нахождения решения для шума и помех от других сот путем представления ковариационной матрицы отсчетов элементарных посылок в функции шума и помех от других сот, а также отношений мощности передачи трафика к мощности передачи пилот-сигналов для каждой антенны, обозначенных как и определенных как отношение совокупной мощности данных, других сигналов и пилот-сигналов для m-й передающей антенны 14 к мощности пилот-сигнала для m-й передающей антенны 14, может быть сконфигурирована одна или несколько обрабатывающих схем 20. При таком подходе одна или несколько обрабатывающих схем 20 решают соответствующую систему уравнений для шума и помех от других сот в соответствии с формулой наименьших квадратов.
В еще одном варианте способа для создания оценок качества каналов для сообщения о них приемником 16 используют корреляции искажений. Для этого способа конфигурируется одна или несколько обрабатывающих схем 20 для вычисления корреляций искажений, кроме прочего, в функции отношения мощности передачи других сигналов к мощности передачи пилот-сигналов и распределения мощности передающих антенн для других сигналов путем вычисления члена корреляции искажений для других сигналов, масштабированного отношением мощности передачи других сигналов к мощности передачи пилот-сигналов. В этом случае одна или несколько обрабатывающих схем 20 выражают корреляции искажений, возникающих от других сигналов, в функции матрицы отсчетов элементарных посылок, полученной из принятых отсчетов сигнала, из которых устраняется влияние текущего выбранного набора передающих антенн, используемых для передачи сигналов данных. Затем способ определяет корреляции искажений для одного или нескольких желаемых вариантов выбора передающих антенн, используемых для передачи сигналов данных на приемник 16, с учетом влияния этих вариантов выбора на ковариационную матрицу искажений элементарных посылок. Таким образом, приемник 16 может быть сконфигурирован для обеспечения улучшенных оценок качества каналов для желаемых вариантов выбора передающих антенн. В общем случае приемник 16 может быть сконфигурирован для создания одной или нескольких оценок качества каналов для одной или нескольких выбранных передающих антенн в функции корреляций искажений, отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов и распределений мощности передающих антенн для сигналов данных и пилот-сигналов.
Кроме того, приемник 16 может быть сконфигурирован как приемник типа RAKE, где одна или несколько обрабатывающих схем 20 сконфигурированы для создания сигнала, комбинирующего веса из корреляций искажений. Приемник 16 по одному варианту RAKE сконфигурирован для определения минимальной среднеквадратической ошибки (MMSE). Каждый из одного или нескольких сигналов данных несет кодовые символы, а приемник 16 сконфигурирован для детектирования кодовых символов, переданных в течение одного и того же символьного интервала, на индивидуальной основе, трактуя все другие кодовые символы как (окрашенный) шум. В другом варианте RAKE приемник 16 сконфигурирован для совместного детектирования, где он детектирует кодовые символы одного и того же кода, переданные в течение одного и того же символьного интервала, на основе совместного детектирования, трактуя все другие кодовые символы как шум.
Все указанные варианты можно с успехом использовать для реализации широкополосного доступа CDMA (W-CDMA). В частности, предлагаемые здесь для определения корреляции искажений способы и устройство (с последующим созданием объединенных весов и/или оценкой качества каналов) могут оказаться выгодными, когда передатчик 12 передает один или несколько сигналов по каналам высокоскоростного пакетного доступа по нисходящей линии связи (HSDPA) от множества антенн 14.
При использовании вышеуказанного подхода более подробное обсуждение начнем с варианта, где обрабатывающая схема (схемы) 20 содержит: вычислитель 20-1 чистого отклика, который сконфигурирован для вычисления векторов чистого отклика из канальных оценок по каждой антенне; вычислитель 20-2 корреляций искажений, который сконфигурирован для вычисления корреляций искажений; и, но не обязательно, генератор 20-3 оценки качества каналов, который сконфигурирован для создания оценок качества каналов в функции векторов чистого отклика и корреляций искажений. Специалистам в данной области техники очевидно, что обрабатывающая схема (схемы) 20 может быть реализована аппаратными средствами, программными средствами или с использованием их комбинаций. По меньшей мере в одном варианте одна или несколько обрабатывающих схем 20 включены в состав цифрового процессора сигналов основной полосы частот или т.п., включенного в приемник 16.
На фиг.4 показан один вариант обрабатывающей логики, которая может быть реализована в одной или нескольких обрабатывающих схемах 20, где обрабатывающая схема (схемы) 20 вычисляет векторы чистого отклика для заданного набора местоположений отводов приемника (шаг 100); то есть приемник 16 включает в себя один или несколько наборов корреляторов, которые совмещены с данными многолучевыми компонентами сигналов, передаваемых передатчиком 12, а дополнительные корреляционные отводы могут быть смещены, как это сделано в приложениях G-RAKE. Например, является вектором чистого отклика, соответствующим m-й передающей антенне, где запись с тильдой для подчеркивает тот факт, что коэффициенты усиления канальных ответвлений (от которых зависит чистый отклик) масштабированы в соответствии с энергией пилот-сигнала на символ (по меньшей мере в тех вариантах, где чистый отклик формируется параметрически с использованием оценок каналов, полученных из сжатых пилот-символов, которые содержат это масштабирование в неявном виде).
q-й элемент вектора чистого отклика задается как
Уравнение (1) |
где q указывает индекс конкретного отвода на l-й приемной антенне 18. Местоположение этого отвода задается задержкой τq. P - это количество канальных ответвлений, а τlmp и - задержка и масштабированный коэффициент усиления канала (пилот-сигнала) соответственно для p-го ответвления канала между m-й передающей антенной и l-й приемной антенной. x(τ) - автокорреляция формы импульса элементарной посылки. Как только что упоминалось, коэффициенты усиления канальных ответвлений включают в себя масштабирование с учетом энергии пилот-сигнала и выражаются в виде
Уравнение (2) |
где Ep - общая энергия на элементарную посылку, выделенная всем пилот-сигналам по всем передающим антеннам, Np - коэффициент расширения, используемый для каналов пилот-сигналов, например, в стандарте WCDMA Np=256, αps(m) - результат распределения мощности передачи пилот-сигнала для m-й антенны, а glmp -коэффициент усиления канала (не масштабированный), соответствующий . Величина подкоренного выражения точно соответствует энергии пилот-сигнала на символ для m-й передающей антенны.
Обработка продолжается с вычисления корреляций искажений в функции чистых откликов и дополнительно в функции отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов, распределения мощности сигналов данных по передающим антеннам и распределения мощности пилот-сигналов по передающим антеннам 14 (шаг 2). Заметим, что при вычислении корреляций искажений можно дополнительно учесть отношение мощности передачи других сигналов к мощности передачи пилот-сигналов и распределение мощности других сигналов по передающим антеннам 14 (шаг 102А). Таким образом, (суммарные) корреляции искажений могут быть выражены в виде суммы корреляций искажений из-за сигналов данных, корреляций искажений из-за других сигналов, корреляций искажений от других сот и, но не обязательно, корреляций искажений из-за пилот-сигналов (шаг 102В).
При вычисленных таким образом корреляциях искажений обрабатывающая схема (схемы) 20 создает одну или несколько оценок качества каналов для одной или нескольких выбранных передающих антенн 14 в функции корреляций искажений, отношения мощности передачи сигналов данных к мощности передачи пилот-сигналов и распределений мощности передающих антенн для пилот-сигналов (см. фиг.2 и 3) (шаг 104). Например, приемник 16 может вычислить оценку качества канала как отношение сигнала к помехам на одну элементарную посылку (SINR) на покодовой основе для произвольного выбора передающих антенн, что может быть выражено в виде
Уравнение (3) |
где βds/ps - отношение мощности передачи сигналов данных к мощности передачи пилот-сигналов (отношения из распределения общей мощности передачи), K - количество мультикодов, выделенных для сигнала данных (повторно используемых активными антеннами), и αds(m) - распределение мощности передачи сигналов данных для m-й антенны. Кроме того - вектор чистого отклика, соответствующий m-й передающей антенне ( - эрмитова транспозиция вектора чистого отклика), а - ковариационная матрица искажений, основанная на результатах определения корреляций искажений, выполненных на шаге 102.
Как отмечено на шаге 102, общие корреляции искажений включают в себя несколько членов, представляющих различные источники искажения. Таким образом, в одном варианте корреляции искажений выражаются в виде
Уравнение (4) |
где - член корреляции искажений из-за сигналов данных, который фиксирует помехи из-за сигнала (сигналов) каналов данных, - член корреляции искажений из-за других сигналов, который фиксирует помехи из-за сигналов других каналов (например, речь, вещание, служебные сигналы и т.д.), и - член корреляции искажений из-за помех от других сот и шума, который фиксирует комбинацию помех от других сот и шума. Если помехи от других сот можно аппроксимировать как белый шум, то тогда является диагональной матрицей, заданной выражением = N0Rpulse, где N0 - спектральная плотность мощности шума плюс помехи от других сот, а Rpulse - автокорреляция формы импульса. (Заметим, что тильда-нотация связана с неявным масштабированием, обсужденным для вектора чистого отклика, показанного в уравнении (1).)
Ковариационная матрица искажений разделяется на несколько членов для отражения того обстоятельства, что каналы данных и речи проходят по каналам с различными замираниями. Также заметим, что выражение в уравнении (4) неявно предполагает, что вычитание пилот-сигнала выполняется в приемнике 16, так что компонента помех из-за пилот-сигналов отсутствует. Если приемник 16 не выполняет вычитание пилот-сигнала, то в корреляциях искажений, , будет содержаться член искажений из-за пилот-сигнала.
Вышеуказанный подход может быть конкретно реализован в соответствии с множеством различных архитектур передатчиков и приемников. Например, на фиг.5 показана структура передачи S-PARC для передатчика 12, иллюстрирующая передачу N субпотоков сигнала данных от M передающих антенн 14 (N≤M). Показанный вариант S-PARC для передатчика 12 содержит 1:N демультиплексор 22, множество кодеров/модуляторов/расширителей 24, селектор 26 антенн, первый сумматор 28 и дополнительные сумматоры с 30-1 по 30-М, соответствующие передающим антеннам с 14-1 по 14-М.
При работе демультиплексор 22 разделяет информационный поток, например битовый поток HS-DSCH, на N субпотоков, которые поступают в соответствующие кодеры/модуляторы/расширители 24. Селектор 26 антенн выбирает поднабор антенн 14 для передачи результирующих субпотоков, выходящих из кодеров/модуляторов/расширителей 24. Сумматор 28 объединяет первый из этих субпотоков с другими сигналами (речь, служебные сигналы, сигналы управления и т.д.) для передачи от первой из антенн 14, а сумматоры с 30-1 по 30-М привязывают каждый из М пилот-сигналов к соответствующей антенне из М передающих антенн 14.
В структуре S-PARTS демультиплексор 22, кодеры/модуляторы/расширители 24 и селектор 26 антенн функционируют, реагируя на данные обратной связи о качестве каналов (например, обратная связь с индикатором качества каналов (CQI)) приемника 16. Таким образом, передатчик 12 в общем случае пытается обеспечить максимум пропускной способности (или какого-либо другого показателя обслуживания) путем выбора количества субпотоков, скорости кодирования и формата модуляции, а также конкретного поднабора передающих антенн в зависимости от данных обратной связи о качестве каналов, получаемых от приемника.
В системе S-PARС (также как в других системах MIMO) операции оценки качества каналов приемником усложняются благодаря тому обстоятельству, что сигналы данных, пилот-сигналы и другие сигналы проходят по каналам с различными замираниями. Например, на фиг.5 показано, что сигналы данных передаются от выбранного поднабора антенн 14, другие сигналы передаются только от первой из антенн 14, а пилот-сигналы передаются от всех антенн 14. Последнее необходимо, чтобы иметь возможность оценить в приемнике 16 все каналы.
Оценка CQI дополнительно усложнена тем фактом, что множество расширяющих кодов, используемых для HSDPA, повторно используются на различных передающих антеннах во избежание проблемы ограничения по кодам. В результате отношение SINR, измеренное приемником 16 для каждого из каналов пилот-сигналов (для которых повторное использование кодов не применяется), не связано простым соотношением с отношениями SINR, которые наблюдались бы в канале данных, если бы приемник принимал запланированные передачи сигналов данных. Кроме того, в некоторых архитектурах приемников используется подавление помех для сигналов данных, что автоматически не учитывается в оценке качества канала на основе пилот-сигнала. Еще более важная проблема состоит в том, что приемник 16 обычно должен сообщать сведения о CQI для одного или нескольких вариантов выбора передающих антенн, которые, как правило, отличаются от текущего выбранного поднабора передающих антенн. Это обстоятельство возникает в связи с тем, что всем приемникам, обслуживаемым в рамках совместно используемого сигнала данных, возможно, потребуется передать сведения о CQI, даже если они не запланированы для работы, и результат текущего выбора антенн является действительным только для запланированного приемника.
Первый детальный подход к обеспечению улучшенной оценки качества каналов, предложенный здесь для систем MIMO (и систем с множеством входов и одним выходом (MISO)), можно считать полнопараметрическим способом, при котором для формирования ковариационной матрицы искажений, представляющей корреляции искажений, учитываемые приемником 16 при оценке им качества каналов, используют параметрические формы для всех помех своей соты (сигналы данных, речевые сигналы, пилот-сигналы), а также помех от других сот.
Поскольку ковариационная матрица искажений формируется «с нуля» необходимо исключить влияние текущего выбранного поднабора передающих антенн 14 передатчика. Вместо эт