Способ и устройство для обеспечения эффективной обратной связи с предварительным кодированием в системе беспроводной связи mimo
Иллюстрации
Показать всеИзобретение относится к технике связи. Технический результат состоит в повышении надежности связи. Для этого в системе (MIMO) используются предварительное кодирование и обратная связь в системе беспроводной связи, включающей в себя передатчик и приемник. Система может использовать либо единичное кодовое слово (SCW), либо двойное кодовое слово (DCW). Схема предварительного кодирования базируется на формировании диаграммы направленности передачи (T×BF). Рассматривается комбинированная дифференциальная и недифференциальная обратная связь с периодической переустановкой. 3 н. и 7 з.п. ф-лы, 12 ил., 2 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится, в общем, к системам беспроводной связи. Более конкретно, настоящее изобретение относится к способу и устройству для выполнения эффективного предварительного кодирования множественного входа и множественного выхода (MIMO) с использованием дифференциальной обратной связи, скомбинированной с групповой обратной связью, что вызывает значительно уменьшенную служебную информацию обратной связи в системе с множественным доступом с разделением частот с единичной несущей (SC-FDMA).
УРОВЕНЬ ТЕХНИКИ
MIMO считается существенным для усовершенствованного универсального наземного радиодоступа (E-UTRA) для обеспечения высокой скорости данных и увеличенной емкости системы для нисходящей линии связи (DL) множественного доступа с ортогональным разделением частот (OFDMA). Желательно использовать MIMO для восходящей линии связи (UL) SC-FDMA по тем же причинам. Было показано значительное улучшение в скоростях данных и пропускной способности с использованием предварительного кодирования MIMO для SC-FDMA для восходящей линии связи. E-UTRA поддерживает мгновенную пиковую скорость данных восходящей линии связи в 50 Мб/с внутри 20 МГц назначения спектра восходящей линии связи (2,5 битов в секунду/Гц), предполагая модуляцию 16-QAM.
Когда используются практические скорости кодирования (например, 1/2), мгновенная пиковая скорость данных восходящей линии связи намного меньше, чем 50 Мб/с. Для достижения этой скорости данных при использовании практических скоростей кодирования использование конфигурации MIMO является необходимым. Также было замечено, что для достижения наивысшей пропускной способности в передаче восходящей линии связи, использование предварительного кодирования является необходимым. Использование MIMO для восходящей линии связи (UL) SC-FDMA требует использования, по меньшей мере, двух передатчиков, одного для каждой антенны MIMO восходящей линии связи. Дополнительным преимуществом к наличию двух или более передатчиков в WTRU является возможность использовать формирование диаграммы направленности для усиления многопользовательского MIMO и также схем разнесения передачи, таких как пространства времени (ST)/частотного декодирования (FD).
Эффективная обратная связь может уменьшать служебную информацию обратной связи или улучшать производительность. Потенциальное уменьшение служебной информации обратной связи достижимо, когда используется преобразование Якоби для обратной связи собственного базиса. Дополнительное уменьшение служебной информации достижимо с использованием дифференциальной обратной связи посредством итеративного подхода для преобразования Якоби для отслеживания дельты собственного базиса и затем обеспечения обратной связи для нового собственного базиса.
Является желательным использовать дифференциальную обратную связь и итеративное преобразование Якоби для потенциального уменьшения служебной информации обратной связи и улучшения производительности. Базирующаяся на итеративном преобразовании Якоби обратная связь является потенциальным решением для предложения MIMO с двумя или более антеннами передачи.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение оценивает производительность схемы предварительного кодирования MIMO и рассматривает эффекты квантизации, групповой обратной связи и задержки обратной связи для предварительного кодирования MIMO в системе беспроводной связи, включающей в себя передатчик и приемник. Система может использовать либо конфигурацию единичного кодового слова (SCW), либо конфигурацию двойного кодового слова (DCW). Разложение по сингулярным значениям (SVD) может использоваться для генерирования матрицы предварительного кодирования. Квантизация для предварительного кодирования MIMO или собственное формирование диаграммы направленности передачи (T×BF) может быть базирующейся на кодовой книге. Групповая обратная связь рассматривает одну обратную связь в расчете на группу поднесущих или ресурсных блоков (RB). Также обеспечивается базирующаяся на кодовой книге схема предварительного кодирования MIMO с использованием комбинированной дифференциальной и недифференциальной обратной связи. Схема предварительного кодирования только может использовать недифференциальную обратную связь.
Настоящее изобретение оценивает производительность схемы предварительного кодирования MIMO и рассматривает эффекты квантизации, групповой обратной связи и задержки обратной связи для предварительного кодирования MIMO. SVD может использоваться для генерирования матрицы предварительного кодирования. Квантизация для MIMO предварительного кодирования или TxBF может быть базирующейся на кодовой книге. Групповая обратная связь рассматривает одну обратную связь в расчете на группу поднесущих или ресурсных блоков (RB). Мы рассматриваем базирующуюся на кодовой книге схему предварительного кодирования MIMO с использованием комбинированной дифференциальной и недифференциальной обратной связи.
Настоящее изобретение обеспечивает схему обратной связи с предварительным кодированием на основе преобразований Якоби для MIMO восходящей линии связи. Настоящее изобретение также может применяться к MIMO нисходящей линии связи, где используется OFDM(A). Рассматривается комбинированная дифференциальная и недифференциальная обратная связь с периодической переустановкой. Показано, что дифференциальная обратная связь с должной переустановкой улучшает производительность. Дифференциальная обратная связь требует значительно меньше, около 33%, служебной информации обратной связи, чем недифференциальная обратная связь при сохранении производительности.
Изучается деградация производительности для предварительного кодирования MIMO вследствие квантизации, групповой обратной связи и задержки обратной связи. Показано, что деградация производительности вследствие квантизации для предварительного кодирования MIMO находится внутри дробного значения децибел. Деградация производительности предварительного кодирования MIMO вследствие групповой обратной связи зависит от канальной когерентной полосы пропускания и размера группы обратной связи. Потеря находится в пределах 1 дБ для обратной связи каждые 25 RB (ресурсных блоков). Также показано, что деградация производительности вследствие задержки обратной связи находится внутри дробного дБ для низкой скорости или более короткой задержки обратной связи, такой как 3 км/ч, или задержки обратной связи из 2 интервалов времени передачи (TTI). Производительность деградирует более по мере того, как скорость или задержка обратной связи увеличивается.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Более детальное понимание этого изобретения может быть видно из последующего описания предпочтительного варианта осуществления, данного в качестве примера, и должно пониматься в соединении с сопровождающими чертежами, где:
Фиг. 1 - это график, иллюстрирующий частоту ошибок кадра (FER) по отношению к отношению сигнала к шуму (SNR) с использованием Обычной Городской 6 (TU-6) канальной модели. Дано сравнение идеальной и квантованной обратной связи;
Фиг. 2 - это график, иллюстрирующий частоту ошибок кадра (FER) по отношению к отношению сигнала к шуму (SNR) с использованием канальной модели Пространственной Канальной Модели Расширенной C (SCME-C). Дано сравнение идеальной и квантованной обратной связи. Как наблюдается, имеется меньшая потеря от квантованной обратной связи для канальной модели SCME-C, чем канальной модели TU-6. Это вследствие свойств корреляции канальной модели SCME-C;
Фиг. 3 - это график, сравнивающий дифференциальную обратную связь и недифференциальную обратную связь;
Фиг. 4 - это график обратной связи с использованием разных интервалов переустановки;
Фиг. 5 - это график, сравнивающий дифференциальную обратную связь с задержкой обратной связи для SCME-C при более низкой скорости;
Фиг. 6 - это график дифференциальной обратной связи и задержки обратной связи для SCME-C при высокой скорости; и
Фиг. 7 - это график недифференциальной обратной связи и задержки обратной связи для SCME-C при высокой скорости.
Фиг. 8A - это блок-схема передатчика, включающего в себя генератор матрицы предварительного кодирования для обработки битов дифференциальной или недифференциальной обратной связи в соответствии с настоящим изобретением;
Фиг. 8B и 8C иллюстрируют детали генератора матрицы предварительного кодирования из Фиг. 8A;
Фиг. 9A - это блок-схема приемника, включающего в себя генератор обратной связи, который генерирует биты обратной связи, обработанные генератором матрицы предварительного кодирования передатчика из Фиг. 8A в соответствии с настоящим изобретением;
Фиг. 9B и 9C показывают детали генератора обратной связи приемника из Фиг. 9A;
Фиг. 10A и 10B показывают разные варианты осуществления генератора матрицы предварительного кодирования, используемого в генераторе обратной связи из Фиг. 9B;
Фиг. 10C и 10D показывают разные варианты осуществления генератора матрицы предварительного кодирования, используемого в генераторе обратной связи из Фиг. 9C;
Фиг. 11 показывает сравнение производительности двойного кодового слова для единичного пользовательского MIMO (SU-MIMO) с единичным входом, множественным выходом (SIMO) для областей SNR высокой пропускной способности данных; и
Фиг. 12 показывает сравнение производительности для единичного и двойного кодовых слов с использованием MIMO предварительного кодирования восходящей линии связи для двух или более антенн в WTRU и усовершенствованном Узле-B (eNodeB) с каналом SCME-C.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
При указании в дальнейшем термин "блок беспроводной передачи/приема (WTRU)" включает в себя, но не ограничен этим, пользовательское оборудование (UE), мобильную станцию, фиксированный или мобильный блок абонента, пейджер, сотовый телефон, персональный цифровой ассистент (PDA), компьютер или любой другой тип пользовательского устройства, способного работать в беспроводной среде. При указании в дальнейшем терминология "базовая станция" включает в себя, но не ограничена этим, Узел-B, контроллер сайта, точку доступа (AP) или любой другой тип интерфейсного устройства, способного работать в беспроводной среде.
Недифференциальная обратная связь
Преобразование Якоби используется для выполнения диагонализации матрицы. Матрица H отклика канала (или оценка матрицы отклика канала) может быть разложена в:
Η=UDVH,Уравнение (1)
где U и V - это унитарные матрицы, т.е. UHU=I и VHV=I. D - это диагональная матрица, которая имеет сингулярные значения на диагонали, V - это собственная матрица (состоящая из собственных векторов) и может использоваться как матрица предварительного кодирования в передатчике, и VH - это Эрмитово преобразование матрицы предварительного кодирования (собственной матрицы) V. Матрица R канальной корреляции определяется как:
R≡HHH,Уравнение (2)
что является произведением Эрмитового транспонирования матрицы H отклика канала и матрицы H отклика канала самой. Матрица R канальной корреляции может быть разложена в:
R=VD2VH Уравнение (3)
Преобразование Якоби используется для выполнения диагонализации матрицы над матрицей R канальной корреляции, так что:
D2=JHRJ Уравнение (4)
Диагонализация является процессом преобразования любой произвольной матрицы в диагональную матрицу. Диагонализация обычно используется в приложениях беспроводной связи и обработки сигналов для отделения множественных сигналов и/или для отделения требуемого сигнала и помехи. Уравнение (4) описывает процесс диагонализации матрицы R канальной корреляции в диагональную матрицу D2. В Уравнении (4) матрица J преобразования Якоби умножается с матрицей R канальной корреляции с правой стороны, и Эрмитово транспонирование матрицы J преобразования Якоби умножается с матрицей R канальной корреляции с левой стороны. Результирующая матрица - это D2, которая является диагональной матрицей. При сравнении уравнений (1) и (3) наблюдается, что диагонализация матрицы H отклика канала для нахождения собственной матрицы V эквивалентна диагонализации матрицы R канальной корреляции для нахождения собственной матрицы V. Уравнение (3) может быть переписано как:
VHRV=D2 Уравнение (5)
При сравнении уравнений (4) и (5) наблюдается, что матрица J Якоби становится собственной матрицей V, когда матрица R канальной корреляции диагонализируется с использованием разложения по собственным значениям (или SVD) и преобразования Якоби для преобразования диагонализации. Преобразование преобразования Якоби или матрица предварительного кодирования (или оценка преобразования Якоби или матрицы предварительного кодирования) для 2×2 конфигурации представляется как:
где и - это оценки параметров для преобразования Якоби.
Параметры и могут быть получены посредством уравнений 9 и 10. Параметры и могут также быть получены посредством решения уравнения 6b ниже.
Матрица предварительного кодирования (собственная матрица) V представляется как:
Матрица R канальной корреляции представляется как:
Для недифференциальной обратной связи выполняется обратная связь матрицы предварительного кодирования V. Так как матрица предварительного кодирования V эквивалентна матрице преобразования Якоби J, посредством сравнения уравнений (4) и (5), как описано в предыдущих разделах, матрица предварительного кодирования V может быть преобразована в матрицу преобразования Якоби J. Подача назад матрицы предварительного кодирования V эквивалентна подаче назад матрицы J преобразования Якоби или подаче назад параметров и матрицы преобразования Якоби. Обратная связь матрицы предварительного кодирования V может быть представлена посредством двух элементов: и , вместо v11, v12, v21 и v22 (элементы или собственные векторы матрицы предварительного кодирования V) или r11, r12, r21 и r22 (элементы матрицы R канальной корреляции). Обратная связь параметров матричного преобразования (такого как обратная связь и ) является более эффективной, чем обратная связь целой матрицы предварительного кодирования или векторов предварительного кодирования самих (как например, обратная связь матрицы предварительного кодирования V или эквивалентно ее элементов v11, v12, v21 и v22 или обратная связь матрицы R канальной корреляции или эквивалентно ее элементов r11, r12, r21 и r22).
Параметры преобразования Якоби и могут быть вычислены с использованием следующих двух уравнений:
где rij - это элемент матрицы R канальной корреляции, который соответствует i-й строке и j-му столбцу.
Чтобы дополнительно уменьшить служебную информацию обратной связи, вводится дифференциальная обработка, на которой только изменения или различия параметров матричного преобразования (Δ и Δ) между обновлениями вычисляются и подаются назад.
Чтобы избежать накопления и распространения ошибок, введенных дифференциальной обработкой, рассматривается подход, который комбинирует дифференциальную и недифференциальную обратную связь, в котором предлагается дифференциальная обратная связь с периодической переустановкой ошибок.
Дифференциальная обратная связь
Предлагается дифференциальная обратная связь с использованием итеративного преобразования Якоби. Для примера обратной связи n преобразование Якоби J(n) применяется над матрицей R канальной корреляции и выражается посредством:
Для следующего экземпляра обратной связи n+1, если матрица преобразования Якоби не обновляется, диагонализация матрицы R с использованием преобразования Якоби экземпляра обратной связи n может быть выражена посредством:
недиагональная. Однако когда канал изменяется медленно, является близкой к диагональной. Когда канал не изменяется, является диагональной. Когда MIMO каналы изменяются, больше не является диагональной. Матрица предварительного кодирования, и поэтому, матрица преобразования Якоби, должна быть обновлена для корректной диагонализации. Назовем ΔJ (или ΔJ(n)) дифференциальной матрицей предварительного кодирования (дельта матрицей предварительного кодирования), которая представляет дельту обновления матрицы обратной связи в экземпляре обратной связи n. Параметры Δ и Δ для преобразования Якоби дельта матрицы предварительного кодирования посылаются назад в передатчик от приемника. Это в отличие от недифференциальной обратной связи, в которой полная матрица предварительного кодирования вместо дельта матрицы предварительного кодирования подается назад. Параметры и для преобразования Якоби полной матрицы предварительного кодирования подаются назад в передатчик. Когда канал изменяется, преобразование Якоби или преобразование должно быть обновлено для корректной диагонализации:
где ΔJ(n) - это дельта обновления обратной связи в экземпляре обратной связи n. Дифференциальная обратная связь или дельта обратная связь ΔJ(n) оценивается и вычисляется в приемнике и посылается назад в передатчик от приемника для обновления матрицы предварительного кодирования J(n) для следующей обработки предварительного кодирования J(n+1) в передатчике (и/или в приемнике, если необходимо).
Дифференциальная обратная связь или дельта обратная связь ΔJ может быть получена из , где:
Последующие уравнения (15) и (16) могут использоваться для получения дифференциальной матрицы предварительного кодирования ΔJ (т.е. для получения Δ и Δ):
Альтернативно, дифференциальная обратная связь ΔJ может быть вычислена в приемнике посредством умножения Эрмитового транспонирования предыдущей матрицы предварительного кодирования J(n) с матрицей предварительного кодирования J(n+1) посредством:
где J(n+1) может быть вычислено из матрицы корреляции R(n+1) в приемнике, как описано в уравнениях (2) и (4) для экземпляра обратной связи n+1. Передатчик принимает обратную связь ΔJ(n) и использует ее для обновления матрицы предварительного кодирования для J(n+1). Отметим, что матрица предварительного кодирования обозначается как J (что равно V, так как J и V эквивалентны, как описано в предыдущих разделах). Предыдущая матрица предварительного кодирования J(n) в передатчике обновляется для получения следующей матрицы предварительного кодирования J(n+1). Передатчик сначала принимает и декодирует биты обратной связи, и транслирует эти биты обратной связи в дельта матрицу предварительного кодирования ΔJ. Это может быть выполнено в передатчике посредством умножения предыдущей матрицы предварительного кодирования J(n), которая используется в передатчике, с дифференциальной матрицей предварительного кодирования ΔJ(n), которая принимается, декодируется и транслируется посредством передатчика из приемника, посредством:
J(n+1) может быть вычислена из R(n+1), и R(n+1) вычисляется из H(n+1).
Диагонализация достигается с использованием обновленной дифференциальной матрицы предварительного кодирования ΔJ, как описано посредством уравнения (13), и результирующее уравнение может быть переписано как:
где J(n+1) и ΔJ связаны посредством уравнения (18).
Комбинированная дифференциальная и недифференциальная обратная связь
Отметим, что как комбинированная дифференциальная, так и недифференциальная обратная связь может использоваться с групповой обратной связью. Групповая обратная связь предполагает, что смежные поднесущие или ресурсный блок (KB) будут демонстрировать аналогичное поведение замирания, и как таковые эти технологии могут применяться к ним совместно.
В общем, дифференциальная обратная связь может быть более подходящей для низкоскоростных каналов и недифференциальная обратная связь может быть подходящей для высокоскоростных каналов. Комбинированная дифференциальная и недифференциальная обратная связь может рассматриваться для уменьшения служебной информации обратной связи и улучшения производительности.
Дифференциальная обратная связь может переустанавливаться каждые N TTI, каждые N интервалов обратной связи, каждый некоторый период времени или апериодически для избегания накопления или распространения ошибок вследствие дифференциальной обработки. N является предопределенным целым числом. В каждой переустановке используется недифференциальная обратная связь. Недифференциальная обратная связь происходит каждые N TTI или каждые N интервалов обратной связи и дифференциальная обратная связь используется для оставшихся TTI или интервалов обратной связи. В период переустановки полная матрица предварительного кодирования подается назад, в то время как между переустановками или между недифференциальными обратными связями только дельта матрица предварительного кодирования подается назад.
Служебная информация обратной связи может быть уменьшена. Для дифференциальной обратной связи меньше битов (например, 2 бита) требуется для квантизации. Для недифференциальной обратной связи больше битов (например, 3 бита) требуются для квантизации.
Например, кодовая книга, состоящая из восьми кодовых слов, которая требует три (3) бита обратной связи для квантизации, используется для недифференциальной обратной связи, в то время как четыре кодовых слова используются для дифференциальной обратной связи, что требует меньше битов обратной связи (2 бита). Обратная связь может базироваться на средних по множественным ресурсным блоках (RB) (например, 2, 5, 6, 10 RB), где RB определяется как блок с множественными поднесущими (например, 12 или 25 поднесущих).
Используются две кодовые книги. Кодовая книга (дифференциальная кодовая книга), используемая для квантизации, концентрируется на начале плоскости (θ, ) для дифференциальной обратной связи, в то время как кодовая книга (недифференциальная кодовая книга) для недифференциальной обратной связи является единообразной с кодовыми словами распределенными равномерно. Для одного варианта осуществления дифференциальная кодовая книга состоит из четырех кодовых слов. Недифференциальная кодовая книга состоит из восьми кодовых слов. Комбинированная дифференциальная и недифференциальная обратная связь может уменьшать служебную информацию обратной связи и улучшать производительность для предварительного кодирования MIMO.
Предположения моделирования
Предположение моделирования и параметры, которые используются, даны в таблице 1 ниже.
Таблица 1 | |
Параметр | Предположение |
Несущая частота | 2,0 ГГц |
Символьная скорость | 4,096 миллионов символов/сек |
Полоса пропускания передачи | 5 МГц |
Длина TTI | 0,5 мс (2048 символов) |
Количество блоков данных в расчете на TTI | 6 |
Количество символов данных в расчете на TTI | 1536 |
Размер блока быстрого преобразования Фурье (FFT) | 512 |
Количество занятых поднесущих | 256 |
Длина циклического префикса (CP) | 7,8125 мкс (32 выборки) |
Канальная модель | Обычная Городская (TU6), SCME-C |
Антенные конфигурации | 2×2 (MIMO) |
Корреляция замирания между антеннами передачи/приема | ρ=0 для TU6 и SCME-C |
Скорость перемещения | 3 км/ч, 30 км/ч, 120 км/ч |
Модуляция данных | QPSK и 16QAM |
Канальное кодирование | Турбокод с декодированием мягкого решения |
Скорость кодирования | 1/2 и 1/3 |
Эквалайзер | LMMSE |
Групповая обратная связь | Одна обратная связь в расчете на 1, 12 и 25 поднесущих |
Ошибка обратной связи | Отсутствует (предполагается идеальной) |
Задержка обратной связи | 2 и 6 TTI |
Канальное оценивание | Идеальное канальное оценивание |
Результаты моделирования и описания
Фиг. 1 иллюстрирует производительность предварительного кодирования MIMO для канальной модели TU6 и скорости транспортного средства при 3 км/ч. Сравнивается производительность предварительного кодирования MIMO с групповой обратной связью разных групповых размеров. Никакая групповая обратная связь не является обратной связью в расчете на поднесущую, которая требует наивысшей служебной информации обратной связи. Групповая обратная связь использует одну обратную связь для каждых L поднесущих. Около 0,3 дБ деградация наблюдается для групповой обратной связи с использованием одной обратной связи в расчете на 12 поднесущих по отношению к производительности не групповой обратной связи, т.е. L=1. Около 0,8 дБ деградация в производительности наблюдается для групповой обратной связи с использованием одной обратной связи в расчете на 25 поднесущих по отношению к негрупповой обратной связи.
В дополнение производительность предварительного кодирования MIMO с и без квантизации сравнивается на Фиг. 1. С дифференциальной обратной связью, которая использует 2 бита в расчете на группу обратной связи, около 0,3 дБ деградация является результатом квантизации для всех размеров групповой обратной связи, L=1, 12 и 25 поднесущих наблюдается. Обратная связь обновлялась каждый TTI и переустанавливалась каждые 10 TTI.
Фиг. 2 иллюстрирует производительность предварительного кодирования MIMO с использованием групповой обратной связи и квантизации кодовой книги для канала SCME-C и скорости транспортного средства при 3 км/ч. Около 0,1 дБ деградация наблюдается для групповой обратной связи с использованием одной обратной связи в расчете на 12 поднесущих по отношению к производительности негрупповой обратной связи, т.е. L=1. Около 0,2 дБ деградация наблюдается для групповой обратной связи с использованием одной обратной связи в расчете на 25 поднесущих по отношению к негрупповой обратной связи. В дополнение наблюдается около 0,3 дБ деградация вследствие квантизации, которая использует 2 бита в расчете на группу обратной связи.
Фиг. 3 иллюстрирует сравнение производительности для предварительного кодирования MIMO c использованием дифференциальной и недифференциальной обратной связи. Производительность комбинированной дифференциальной и недифференциальной обратной связи, которая использует смешанную схему 2 бита/3 бита, сравнивается с недифференциальной обратной связью с использованием 3 бит. Комбинированная дифференциальная и недифференциальная обратная связь использует 2-битовую квантизацию с 3-битовой квантизацией в каждом периоде переустановки.
Наблюдается, что производительность дифференциальной обратной связи с использованием меньшего количества бит (2 бита) с должным интервалом переустановки для дифференциальной обработки аналогична производительности недифференциальной обратной связи с использованием полной обратной связи и большего количества бит (3 бита). Комбинированная дифференциальная и недифференциальная обратная связь может уменьшать служебную информацию обратной связи на столько много, как 33%, по сравнению со служебной информацией обратной связи недифференциальной обратной связи, в зависимости от интервала итерации и периода переустановки. Около 0,3-0,4 дБ деградация в производительности для предварительного кодирования с использованием квантизации по отношению к идеальному предварительному кодированию/T×BF с отсутствующей квантизацией.
Фиг. 4 показывает производительность предварительного кодирования MIMO с использованием дифференциальной обратной связи с переустановкой. Показано, что производительность дифференциальной обратной связи каждый TTI с должной переустановкой может улучшать производительность на 2 дБ. Это из-за того, что ошибка предварительного кодирования вследствие квантизации может накапливаться или распространяться для дифференциальной обратной связи. Процесс переустановки корректирует ошибку, таким образом, улучшая производительность.
Сравниваются производительность дифференциальной обратной связи с разными интервалами переустановки N=10, 20, 30 и 50 TTI. Деградация производительности является незначительной; около 0,1 дБ деградация в производительности наблюдается с самым длинным интервалом переустановки из 50 TTI. Отметим, что это не учитывает эффекты возможных ошибок битов обратной связи; однако предполагается, что такие ошибки будут редкими из-за защиты от ошибок.
Фиг. 5 иллюстрирует производительность предварительного кодирования MIMO с использованием дифференциальной обратной связи с задержкой обратной связи для канала SCME-C и скорости транспортного средства 3 км/ч. Комбинированная деградация производительности для 2-битной квантизации и задержки обратной связи - это около 0,3 дБ для задержки обратной связи из 2 TTI и около 0,4 дБ для задержки обратной связи из 6 TTI по отношению к отсутствующей квантизации и отсутствующей задержке обратной связи.
Фиг. 6 иллюстрирует производительность предварительного кодирования MIMO с использованием дифференциальной обратной связи с задержкой обратной связи для канала SCME-C и скорости транспортного средства 120 км/ч. Показано, что около 0,6 дБ деградация является результатом 2 TTI задержки обратной связи и около 1,5 дБ деградация является результатом 6 TTI задержки обратной связи по отношению к производительности отсутствующей задержки обратной связи. При сравнении с производительностью идеального предварительного кодирования с отсутствующей квантизацией и отсутствующей обратной связью производительность дифференциальной обратной связи имеет около 1,7 дБ и 2,7 дБ деградацию для комбинированной квантизации и задержки обратной связи из 2 TTI и 6 TTI соответственно.
Фиг. 7 иллюстрирует производительность предварительного кодирования MIMO с использованием недифференциальной обратной связи для канала SCME-C и 120 км/ч. Показано, что производительность деградирует около 0,5 дБ для 2 TTI задержки обратной связи и около 2 дБ для 6 TTI задержки обратной связи по сравнению с производительностью незадержки обратной связи. При сравнении с производительностью идеального предварительного кодирования с отсутствующей квантизацией и отсутствующей обратной связью производительность дифференциальной обратной связи имеет около 0,7 дБ и 2,2 дБ деградацию для комбинированной квантизации и задержки обратной связи из 2 TTI и 6 TTI соответственно. Более короткая задержка обратной связи является очевидно предпочтительной для таких высокоскоростных каналов для уменьшения потери производительности вследствие скорости.
Предварительное кодирование MIMO с использованием дифференциальной обратной связи, недифференциальной и групповой обратной связи может применяться к MIMO восходящей линии связи или нисходящей линии связи для SC-FDMA или OFDMA эфирных интерфейсов. Последующее показывает работу дифференциальной обратной связи для MIMO восходящей линии связи с эфирным интерфейсом SC-FDMA.
Эти техники могут быть расширены до любого количества антенн больше, чем одна.
Архитектура
Фиг. 8A - это блок-схема передатчика 800 для конфигурации DCW MIMO восходящей линии связи с использованием предварительного кодирования с дуальными передающими цепями в соответствии с настоящим изобретением. В случае SCW кодированные данные разбивают в параллельные потоки, каждый с разной модуляцией. Передатчик 800 может быть eNodeB или базовой станцией (т.е. eNodeB в терминологии LTE).
Ссылаясь на Фиг. 8A, передатчик 800 включает в себя демультиплексор 810, множество канальных кодировщиков 8151-815n, множество блоков 8201-820n сопоставления скорости, множество частотных модулей 8251-825n перемежения, множество блоков 8301-830n преобразования совокупности, множество блоков 8351-835n быстрого преобразования Фурье (FFT), предварительный кодировщик 840, блок 845 преобразования поднесущей, множество мультиплексоров 8501-850n, множество блоков 8551-855n обратного FFT (IFFT), множество блоков 8601-860n вставки циклического префикса (CP), множество антенн 8651-865n и генератор 875 матрицы предварительного кодирования. Следует отметить, что конфигурация передатчика 800 предоставляется в качестве примера, не как ограничение, и обработка может выполняться посредством большего количества или меньшего количества компонентов и порядок обработки может изменяться.
Данные 805 передачи сначала демультиплексируются во множество потоков 8121-812n данных посредством демультиплексора 810. Адаптивная модуляция и кодирование (AMC) могут использоваться для каждого из потоков 8121-812n данных. Биты на каждом из потоков 8121-812n данных затем кодируются посредством каждого из канальных кодировщиков 8151-815n для генерирования кодированных битов 8181-818n, которые затем прокалываются для сопоставления скорости посредством каждого из блоков 8201-820n сопоставления скорости. Альтернативно, множественные входные потоки данных могут кодироваться и прокалываться канальными кодировщиками и блоками сопоставления скорости, нежели осуществлять синтаксический разбор одних данных передачи во множественные потоки данных.
Кодированные данные после сопоставления 8221-822n скорости предпочтительно перемежаются посредством модулей 8251-825n перемежения. Биты данных после перемежения 8281-828n затем преобразуются в символы 8321-832n посредством блоков 8301-830n преобразования совокупности в соответствии с выбранной схемой модуляции. Схема модуляции может быть двоичной фазовой манипуляцией (БИТ/CK), четвертичной фазовой манипуляцией (QPSK), 8PSK, 16 квадратурной амплитудной модуляцией (QAM), 64 QAM или аналогичными схемами модуляции. Символы 8321-832n на каждом потоке данных обрабатываются посредством блоков 8351-835n FFT, что выводит данные 8381-838n частотной обл