Передача пилот-сигналов по линии обратной связи для системы беспроводной связи

Иллюстрации

Показать все

Изобретение относится к технике связи и может использоваться для передачи пилот-сигнала в сегменте CDMA по линии обратной связи в системе беспроводной связи. Технический результат состоит в повышении эффективности передачи пилот-сигналов. Для этого терминал генерирует последовательность скремблирования на основании его информации пилот-сигнала. Информация пилот-сигнала может использоваться терминалом в течение всей продолжительности телефонного вызова и для всех секторов, с которыми терминал поддерживает связь во время телефонного вызова. Терминал генерирует символы пилот-сигнала на основании последовательности скремблирования, преобразовывает символы пилот-сигнала в сегмент CDMA, генерирует символы OFDM с преобразованными символами пилот-сигнала и передает символы OFDM в один или в большее количество секторов. Базовая станция выполняет обработку принятых символов OFDM для получения принятых символов для сегмента CDMA. Базовая станция генерирует последовательность скремблирования на основании информации пилот-сигнала для терминала и выполняет обработку принятых символов с использованием последовательности скремблирования для получения, по меньшей мере, одного параметра (например, уровня принятого сигнала) для терминала. 12 н. и 38 з.п. ф-лы, 20 ил.

Реферат

Настоящая заявка на изобретение испрашивает на приоритет предварительной заявки на патент США №60/813,535 от 13 июня 2006 г., имеющей название "REVERSE LINK PILOT TRANSMISSION FOR WIRELESS COMMUNICATION SYSTEMS", права на которую переданы патентообладателю этого изобретения и которая включена в данный документ посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение, сущность которого здесь раскрыта, относится в целом к области связи и в частности к передаче пилот-сигналов в системе беспроводной связи.

УРОВЕНЬ ТЕХНИКИ

Системы беспроводной связи широко используются для обеспечения различных услуг связи, таких как, например, услуги речевой связи, видеосвязи, пакетной передачи данных, обмена сообщениями, широковещательной передачи и т.д. Этими системами могут являться системы множественного доступа, способные обеспечивать поддержку связи для множества абонентов путем совместного использования имеющихся системных ресурсов. Примерами таких систем множественного доступа являются в том числе системы множественного доступа с кодовым разделением (CDMA), системы множественного доступа с временным разделением (TDMA), системы множественного доступа с частотным разделением (FDMA), системы множественного доступа с ортогональным частотным разделением (OFDMA) и системы FDMA на одной несущей (SC-FDMA).

Система беспроводной связи может включать в себя множество базовых станций, которые обеспечивают поддержку связи для множества терминалов по линиям прямой и обратной связи. Термин "линия прямой связи" (или "нисходящая линия связи") относится к линии связи из базовых станций в терминалы, и термин "линия обратной связи" (или "восходящая линия связи") относится к линии связи из терминалов в базовые станции. Терминалы могут быть расположены в любом месте в пределах системы, и каждый терминал может находиться в любой конкретный момент времени в пределах зоны обслуживания одной или множества базовых станций или вне зоны обслуживания каких-либо базовых станций. Каждый терминал может производить передачу пилот-сигнала по линии обратной связи для того, чтобы базовые станции могли обнаруживать терминал и назначать для терминала надлежащую базовую станцию, которая может эффективно обслуживать терминал, и/или для иных целей. Пилот-сигналы, переданные терминалами, несмотря на то что они являются полезными, представляют собой непроизводительные издержки.

Следовательно, в данной области техники существует потребность в способах эффективной передачи пилот-сигналов по линии обратной связи.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Здесь описаны способы эффективной передачи пилот-сигналов по линии обратной связи в системе беспроводной связи. Для поддержки передачи пилот-сигналов и служебных сигналов терминалами с использованием CDMA по линии обратной связи может быть использован сегмент CDMA. Сегмент CDMA может занимать частотно-временной блок, представляющий собой часть доступных временных и частотных ресурсов для передачи по линии обратной связи.

В одном из вариантов терминал может осуществлять генерацию последовательности скремблирования на основании информации пилот-сигнала для терминала. Информация пилот-сигнала может использоваться в течение всей продолжительности телефонного вызова, выполняемого терминалом, и для всех секторов, с которыми терминал поддерживает связь во время телефонного вызова. Информация пилот-сигнала может содержать идентификатор терминала, идентификатор сектора, с которым терминал поддерживает связь для доступа к системе, время доступа к системе для терминала и т.д. Терминал может осуществлять генерацию символов пилот-сигнала на основании последовательности скремблирования, например, путем скремблирования данных пилот-сигнала с использованием последовательности скремблирования и путем преобразования скремблированных данных в символы пилот-сигнала. Затем терминал может преобразовывать символы пилот-сигнала в частотно-временной блок для сегмента CDMA. Если в системе используют мультиплексирование с ортогональным частотным разделением (OFDM) в линии обратной связи, то терминал может осуществлять генерацию символов OFDM с поставленными им в соответствие символами пилот-сигнала и производить передачу символов OFDM по линии обратной связи в один или большее количество секторов.

В одном из вариантов для получения принятых символов для сегмента CDMA базовая станция может выполнять обработку принятых символов OFDM для сектора. Базовая станция может осуществлять генерацию последовательности скремблирования для терминала на основании информации пилот-сигнала и может выполнять обработку принятых символов на основании последовательности скремблирования для получения, по меньшей мере, одного параметра для терминала. Базовая станция может преобразовывать принятые символы для сегмента CDMA во временную область для получения последовательности входных выборок, производить дескремблирование последовательности входных выборок с использованием последовательности скремблирования для получения дескремблированной последовательности и выполнять корреляцию дескремблированной последовательности с данными пилот-сигнала для получения результата корреляции для ветви канала. Базовая станция может повторять обработку для множества ветвей канала и определять уровень принятого сигнала и/или другие параметры для терминала на основании результатов корреляции для множества ветвей канала.

Как описано ниже, пилот-сигнал, переданный в сегменте CDMA, может быть использован для различных целей. Ниже в разделе осуществления изобретения также приведено более подробное описание различных аспектов и признаков изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг. 1 показана система беспроводной связи.

На Фиг. 2 показана передача сегмента CDMA по линии обратной связи.

На Фиг. 3A и Фиг. 3B показаны два варианта структуры сегмента CDMA.

На Фиг. 4 показаны синхронные сегменты CDMA в трех секторах.

На Фиг. 5 показана передача пилот-сигнала в сегменте CDMA.

На Фиг. 6 показана блок-схема терминала и базовой станции.

На Фиг. 7 показана блок-схема устройства обработки и модулятора для передачи пилот-сигналов.

На Фиг. 8 показана блок-схема демодулятора и устройства обработки для приема пилот-сигналов.

На Фиг. 9 и Фиг. 11 показаны способы передачи пилот-сигналов по линии обратной связи.

На Фиг. 10 и Фиг. 12 показаны устройства для передачи пилот-сигналов по линии обратной связи.

На Фиг. 13 и Фиг. 15 показаны способы приема пилот-сигналов из терминала.

На Фиг. 14 и Фиг. 16 показаны устройства для приема пилот-сигналов из терминала.

На Фиг. 17 и Фиг. 19 показаны способы передачи пилот-сигналов по линии обратной связи.

На Фиг. 18 и Фиг. 20 показаны устройства для передачи пилот-сигналов по линии обратной связи.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На Фиг. 1 показана система 100 беспроводной связи с множеством базовых станций. Для простоты на Фиг. 1 показаны только три базовые станции 110a, 110b и 110c. Базовая станция представляет собой станцию, которая поддерживает связь с терминалами. Базовая станция также может именоваться точкой доступа, узлом B, развитым узлом B и т.д. и может содержать некоторые или все их функциональные возможности. Каждая базовая станция обеспечивает зону обслуживания связи для конкретной географической области. Термин "ячейка сотовой связи" может относиться к базовой станции и/или к ее зоне обслуживания в зависимости от контекста, в котором используется этот термин. Для повышения пропускной способности системы зона обслуживания базовой станции может быть разделена на множество (например, на три) меньших областей. Обслуживание каждой меньшей области может обеспечиваться соответствующей базовой приемо-передающей станцией (BTS). Термин "сектор" может относиться к BTS и/или ее зоне обслуживания в зависимости от контекста, в котором используется этот термин. Для ячейки сотовой связи, разделенной на сектора, базовые приемо-передающие станции (BTS) для всех секторов этой ячейки сотовой связи обычно локализованы в базовой станции для ячейки сотовой связи.

Описанные здесь способы могут использоваться для систем с ячейками сотовой связи, разделенными на сектора, а также для систем с ячейками сотовой связи, не разделенными на сектора. Для ясности ниже способы описаны для системы с ячейками сотовой связи, разделенными на сектора. Термины "базовая станция" и "сектор" используются здесь как взаимозаменяемые. Базовые станции 110a, 110b и 110c также именуют соответственно секторами A, В и C.

Множество терминалов может быть рассредоточено по всей системе 100, и каждый терминал может быть стационарным или мобильным. Для простоты на Фиг. 1 показан только один терминал 120. Терминал 120 также может именоваться терминалом доступа, подвижной станцией, абонентской аппаратурой, абонентским устройством, станцией и т.д. и может содержать некоторых или все их функциональные возможности. Терминал 120 может представлять собой сотовый телефон, персональное цифровое информационное устройство (PDA), беспроводное устройство, беспроводной модем, карманное устройство, портативный компьютер и т.д. Терминал 120 может поддерживать связь с одной или с множеством базовых станций либо ни с одной из базовых станций по линии прямой связи (FL) и/или по линии обратной связи (RL) в любой конкретный момент времени. На Фиг. 1 показан терминал 120, передающий пилот-сигналы по линии обратной связи в базовые станции 110a, 110b и 110c и принимающий передачи по линии прямой связи из этих базовых станций.

В случае централизованной архитектуры контроллер 130 системы может устанавливать соединение с базовыми станциями 110 и обеспечивать координацию и управление для этих базовых станций. Контроллер 130 системы может представлять собой одиночный сетевой объект или сбор сетевых объектов. В случае распределенной архитектуры базовые станции могут поддерживать связь друг с другом по мере необходимости.

Описанные здесь способы могут использоваться для различных систем беспроводной связи, таких как, например, системы CDMA, TDMA, FDMA, OFDMA и SC-FDMA. В системе CDMA используют мультиплексирование с кодовым разделением (CDM) и передачу передаваемых данных производят с различными ортогональными кодами, псевдослучайными последовательностями и т.д. В системе TDMA используют мультиплексирование с временным разделением (TDM) и передачу передаваемых данных производят в различных временных интервалах. В системе FDMA используют мультиплексирование с частотным разделением (FDM) (далее - FDM) и передачу передаваемых данных производят на различных поднесущих. В системе OFDMA используют мультиплексирование с ортогональным частотным разделением (OFDM), а в системе SC-FDMA используют мультиплексирование с частотным разделением на одной несущей (SC-FDM). При OFDM и SC-FDM ширину полосы частот системы разделяют на множество ортогональных поднесущих, которые также именуют тональными сигналами, элементами кодированного сигнала и т.д. Каждая поднесущая может быть промодулирована данными. Передачу модуляционные символов обычно производят в частотной области при OFDM и во временной области при SC-FDM. Для систем беспроводной связи также могут использоваться способы, в которых используют комбинацию схем мультиплексирования, например CDM и OFDM, OFDM и SC-FDM и т.д. Для ясности некоторые аспекты способов описаны ниже для системы, в которой используют CDM и OFDM в линии обратной связи.

На Фиг. 2 показана схема структуры 200 кадра, которая может быть использована для линии обратной связи. Временная шкала передачи может быть разделена на кадры, которые также могут именоваться кадрами физического уровня (PHY), временными интервалами и т.д. Кадрам могут быть присвоены последовательные индексы, как показано на Фиг. 2. Каждый кадр может иметь конкретную длительность по времени, которая может быть постоянной или перестраиваемой. В одном варианте каждый кадр охватывает N периодов символа, где обычно N≥1, а в одном из примеров N=8.

На Фиг. 2 также показана структура поднесущих. Ширина полосы частот системы может быть разделена на множество (K) ортогональных поднесущих, которым могут быть присвоены индексы с 1 по K. В системе с формированием спектра для передачи может использоваться только лишь подмножество поднесущих, общее количество которых равно K, и остальные поднесущие могут служить в качестве защитных поднесущих для того, чтобы система могла удовлетворять требованиям спектральной маски. Для простоты в приведенном ниже описании предполагают, что все K поднесущих в целом являются пригодными для использования.

На Фиг. 2 также показана схема сегмента CDMA, который может обеспечивать поддержку передачи пилот-сигнала и служебных сигналов по линии обратной связи. Сегмент CDMA также может именоваться сегментом управления CDM, сегментом управления, управляющим блоком и т.д. Сегмент CDMA может занимать блок временных и частотных ресурсов и может обеспечивать поддержку каналов передачи пилот-сигналов и служебных сигналов, таких как, например, канал пилот-сигналов (PICH), канал индикатора качества канала (CQICH), канал запроса (REQCH), канал обратной связи для формирования диаграммы направленности антенны (BFCH), канал обратной связи для поддиапазона (SFCH), канал доступа (ACH) и т.д. В варианте, показанном на Фиг. 2, сегмент CDMA передают в каждых Q кадрах, где обычно Q≥1, и в некоторых примерах Q=4, 6, 8 и т.д. Может производиться скачкообразная перестройка частоты сегмента CDMA по ширине полосы частот системы от одного кадра CDMA до другого кадра CDMA (как показано на Фиг. 2), или же его передача может производиться на фиксированном наборе поднесущих (на Фиг. 2 не показано). Кадр CDMA представляет собой кадр, в котором передают сегмент CDMA. Обычно сегмент CDMA может быть передан с любой скоростью передачи в частотно-временном блоке любого размера. Терминалы могут совместно использовать сегмент CDMA для передачи пилот-сигналов, служебных сигналов и т.д. Это может быть более эффективным, чем предоставление выделенных частотно-временных ресурсов каждому терминалу для передачи пилот-сигналов и служебных сигналов по линии обратной связи, в особенности в том случае, когда передача пилот-сигналов и/или служебных сигналов может производиться нерегулярно.

Как правило, сегмент CDMA может охватывать любое количество поднесущих и иметь протяженность, равную любому количеству кадров. Сегмент CDMA может иметь фиксированный или конфигурируемый размер, который может быть выбран на основании различных факторов, например на основании объема пилот и служебных сигналов, передаваемых по линии обратной связи, на основании объема ресурсов, который следует выделить для сегмента CDMA, и т.д.

На Фиг. 3A показан вариант структуры сегмента CDMA. В этом варианте сегмент CDMA включает в себя S подсегментов CDMA с 1 по S, где обычно S ≥ 1. В этой схеме размер сегмента CDMA может быть изменен путем грубых приращений, равных одному подсегменту CDMA, например, на основании объема передачи пилот- и служебных сигналов по линии обратной связи. Каждый подсегмент CDMA может охватывать М смежных поднесущие в одном кадре длительностью N периодов символа и может иметь размер, равный М×N.

S подсегментов CDMA могут занимать последовательные поднесущие, как показано на Фиг. 3A. В альтернативном варианте S подсегментов CDMA могут быть разнесены по ширине полосы частот системы. Например, ширина полосы частот системы может быть разделена на множество поддиапазонов. Передача каждого подсегмента CDMA может производиться в различном поддиапазоне, и подсегмент CDMA может охватывать весь поддиапазон или его часть.

На Фиг. 3B показан другой вариант структуры сегмента CDMA. На этой структуре сегмент CDMA включает в себя S подсегментов CDMA с 1 по S, причем каждый подсегмент CDMA охватывает М смежных поднесущих в различном кадре.

В вариантах, показанных на Фиг. 3A и Фиг. 3B, подсегмент CDMA охватывает М смежных поднесущих. В другом варианте подсегмент CDMA включает в себя множество кластеров поднесущих, которые могут быть рассредоточены по ширине полосы частот системы. Каждый кластер может включать в себя набор смежных поднесущих. Например, подсегмент CDMA может включать в себя два кластера, где каждый кластер содержит М/2 смежных поднесущих. Поднесущие в подсегменте CDMA также могут быть рассредоточены по частоте другими способами.

В общем случае сегмент CDMA для конкретного сектора может включать в себя любое количество подсегментов CDMA, которые могут быть разнесены по частоте, как показано на Фиг. 3A, или по времени, как показано на Фиг. 3B, или как по частоте, так и по времени. Кроме того, для различных кадров могут использоваться одинаковые или различные количества подсегментов CDMA. Подсегментам CDMA могут быть присвоены индексы, и они могут быть идентифицированы на основании их индексов. Различные сектора могут иметь сегменты CDMA одинакового размера или различных размеров.

Терминалу 120 может быть назначен один или большее количество подсегментов CDMA одним или большим количеством секторов в любой конкретный момент времени. Например, подсегмент CDMA может быть назначен терминалу каждым сектором, поддерживающим связь с терминалом 120, каждым сектором, обнаружившим терминал 120 с достаточным уровнем сигнала, каждым сектором, которому может быть передано управление связью терминала 120, и т.д. Каждый сектор может выделять терминалу 120 один или большее количество подсегментов CDMA в сегменте CDMA для этого сектора.

В одном варианте подсегмент CDMA может быть назначен терминалу 120 сектором, с которым терминал 120 поддерживает связь для доступа к системе. Этим сектором может являться первый обслуживающий сектор для терминала 120. После этого подсегмент CDMA может быть назначен терминалу 120 каждым сектором, который добавлен к набору активных станций терминала 120, и подсегмент CDMA, назначенный терминалу 120, может быть отменен каждым сектором, удаленным из набора активных станций. Набор активных станций для терминала 120 может содержать все сектора, с которыми поддерживает связь терминал 120. Таким образом, подсегменты CDMA могут быть назначены терминалу 120 любым количеством секторов в любой конкретный момент времени.

В общем случае сектора в системе 100 могут быть синхронными или асинхронными. Для синхронной системы сектора имеют одинаковую синхронизацию, и кадры секторов могут быть совмещенными по времени. Для асинхронной системы синхронизация одного сектора может быть псевдослучайной относительно синхронизации других секторов, и кадры различных секторов могут не быть совмещенными по времени.

На Фиг. 4 показаны синхронные сегменты CDMA в трех секторах A, B и C. Сегменты CDMA для секторов A, B и C могут перекрываться по времени и частоте и могут быть скачкообразно перестраиваемыми по частоте на основании общей последовательности скачкообразной перестройки частоты. Терминалу 120 может быть выделен один и тот же подсегмент CDMA всеми тремя секторами A, B и C, которые могут содержаться в наборе активных станций терминала 120. В этом случае терминал 120 может производить передачу пилот-сигналов и служебных сигналов в одном и том же подсегменте CDMA во все три сектора A, B и C, что может уменьшать помехи в линии обратной связи.

В общем случае терминал 120 может производить передачу пилот-сигналов и служебных сигналов в каждом подсегменте CDMA, назначенном терминалу. Если терминалу 120 множеством секторов назначены неперекрывающиеся подсегменты CDMA (либо в синхронной, либо в асинхронной системе), то терминал 120 может посылать одинаковые пилот-сигналы и служебные сигналы в каждом из назначенных подсегментов CDMA. Если терминалу 120 назначены неперекрывающиеся подсегменты CDMA в синхронной системе, то каждый сектор может получать большее количество измерений пилот-сигнала для терминала 120.

На Фиг. 5 показан вариант передачи пилот-сигнала в подсегменте CDMA терминалом 120. В этом варианте подсегмент CDMA охватывает М=128 смежных поднесущих и имеет протяженность одного кадра, равную N=8 периодам символа. Таким образом, подсегмент CDMA охватывает L=М×N=1024 блока передачи данных. Каждый блок передачи данных представляет собой одну поднесущую в одном периоде символа и может использоваться для передачи одного символа пилот-сигнала, который может являться вещественной или комплексной величиной. Последовательность из 1024 символов пилот-сигнала может быть сгенерирована описанным ниже способом и обозначена как . Первые 128 символов пилот-сигнала в последовательности могут соответствовать 128 поднесущим в первом периоде символа подсегмента CDMA, следующие 128 символов пилот-сигнала в последовательности могут соответствовать 128 поднесущим во втором периоде символа подсегмента CDMA и так далее, а последние 128 символов пилот-сигнала в последовательности могут соответствовать 128 поднесущим в последнем периоде символа подсегмента CDMA. Как описано ниже, сигнал, передаваемый по линии обратной связи, может быть сгенерирован с символами пилот-сигнала, поставленными в соответствие подсегменту CDMA.

Одиночный сектор Y, например обслуживающий сектор, может выделять терминалу 120 множество подсегментов CDMA. Эти подсегменты CDMA могут быть разнесены по частоте для того, чтобы сектор Y мог получать результаты измерений пилот-сигнала для различных мест по частоте. Терминал 120 может производить передачу одной и той же последовательности пилот-сигнала в каждом из подсегментов CDMA, выделенных терминалу 120. В альтернативном варианте терминал 120 может осуществлять генерацию последовательности пилот-сигнала длиной, определяемой количеством выделенных подсегментов CDMA. В любом случае сектор Y может оценивать характеристики канала линии обратной связи для терминала 120 на основании пилот-сигнала, переданного во множестве подсегментов CDMA.

В дуплексной системе с временным разделением (TDD) один частотный канал используют как для линии прямой связи, так и для линии обратной связи, и характеристики канала линии прямой связи могут иметь хорошую корреляцию с характеристиками канала линии обратной связи. В дуплексной системе с частотным разделением (FDD) линии прямой и обратной связи используют различные частотные каналы, и характеристики канала линии прямой связи могут не иметь хорошей корреляции с характеристиками канала линии обратной связи. Для системы TDD сектор Y может получать оценку параметров прямого канала связи для терминала 120 на основании оценки параметров обратного канала связи, полученной по пилот-сигналу, переданному терминалом 120 во множестве подсегментов CDMA. Сектор Y может затем использовать оценку параметров прямого канала связи для формирования диаграммы направленности антенны при передаче в терминал 120 и/или для других целей. Для системы TDD или FDD сектор Y может использовать оценку параметров обратного канала связи для диспетчеризации поддиапазонов терминала 120. Для диспетчеризации поддиапазонов сектор Y может определить поддиапазон с наилучшим коэффициентом усиления обратного канала связи и может предоставить частотно-временные ресурсы в этом поддиапазоне терминалу 120.

Терминал 120 может осуществлять генерацию пилот-сигнала, передаваемого в сегменте CDMA, таким образом, что пилот-сигнал является уникальным для терминала 120 из всех терминалов, сигналы от которых приняты данным сектором. Это позволяет сектору обнаруживать пилот-сигнал из терминала 120. Кроме того, может быть желательным, чтобы терминал 120 осуществлял генерацию пилот-сигнала одинаковым образом как по пространству, так и по времени, для того, чтобы пилот-сигнал не являлся специфическим для конкретного сектора. Это позволило бы терминалу 120 производить передачу одинакового пилот-сигнала даже в том случае, когда терминал 120 перемещается по системе, и управление связью с ним передают из одного сектора другому сектору. Это также обеспечило бы возможность приема пилот-сигнала из терминала 120 различными секторами. В одном из вариантов терминал 120 осуществляет генерацию последовательности скремблирования на основании его информации пилот-сигнала и использует последовательность скремблирования для генерации пилот-сигнала. Сектор может получать эту информацию пилот-сигнала непосредственно из терминала 120 посредством передаваемых служебных сигналов или из другого сектора посредством обратного транзита. Сектор может быть способен обнаруживать пилот-сигнал, переданный терминалом 120 в сегменте CDMA, на основании известной информации пилот-сигнала для терминала 120.

В общем случае информация пилот-сигнала может содержать любую информацию, которая может однозначно идентифицировать терминал 120 в каждом секторе, который может принимать пилот-сигнал из терминала 120. Информация пилот-сигнала также может именоваться информацией начального числа и т.д. и может содержать различные типы информации. В одном из вариантов информация пилот-сигнала содержит идентификатор терминала 120, идентификатор сектора, с которым терминал 120 поддерживает связь для доступа к системе (именуемого сектором доступа), и время доступа к системе для терминала 120. Идентификатором терминала 120 может являться идентификатор управления доступом к среде передачи (MAC ID) (далее - идентификатор УДСП), присвоенный терминалу 120 (например, во время доступа к системе), адрес протокола сети Интернет (IP) для терминала 120 или идентификатор какого-либо иного типа для терминала 120. Идентификатором сектора доступа может являться код в виде псевдослучайного числа (AccessSectorPN) или идентификатор какого-либо иного типа для сектора доступа. В приведенном ниже описании идентификатор терминала 120 именуют идентификатором УДСП (MAC ID), а идентификатор сектора доступа именуют идентификатором сектора. Время доступа к системе представляет собой время, за которое терминал 120 осуществляет доступ к системе, и может быть задано посредством индекса кадра, индекса суперкадра и т.д. В другом варианте информация пилот-сигнала содержит идентификатор УДСП (MAC ID) и идентификатор сектора. В еще одном варианте информация пилот-сигнала содержит идентификатор УДСП (MAC ID) и время доступа к системе. Информация пилот-сигнала также может содержать информацию иных типов, которая может обеспечивать уникальную информацию пилот-сигнала для терминала 120.

На Фиг. 6 показана блок-схема конструкции терминала 120 и базовой станции 110, которой является одна из базовых станций, показанных на Фиг. 1. Для простоты на Фиг. 6 показаны только лишь устройства обработки для передачи по линии обратной связи. Также для простоты показано, что каждая базовая станция 110 и каждый терминал 120 оснащены одной антенной.

В терминале 120 устройство 610 обработки передаваемых данных получает данные информационного обмена и служебные данные, обрабатывает принятые данные и предоставляет символы данных. Устройство 620 обработки передаваемых пилот-сигналов осуществляет генерацию символов пилот-сигнала для сегмента CDMA. Используемый здесь термин "символ данных" означает символ для потока информационного обмена или для потока служебных данных, а термин "символ пилот-сигнала" означает символ для данных пилот-сигнала, термин "нулевой символ" означает символ со значением сигнала, равным нулю, и символ обычно является комплексной величиной. Символами данных могут являться модуляционные символы из схем модуляции, таких как, например, схема фазовой манипуляции (ФМн), схема квадратурной амплитудной модуляции (КвАМ) и т.д. Данные пилот-сигнала представляют собой данные, которые являются заранее известными как для передатчика, так и для приемника. Модулятор (МОД) 630 OFDM выполняет модуляцию данных и символов пилот-сигнала способом OFDM и создает ПШ элементы (псевдошумовой элемент, элемент псевдослучайной последовательности, модуляционный символ, чип) выходного сигнала. Модулятор 630 OFDM также может быть заменен модулятором иных типов для других схем мультиплексирования (например, SC-FDM), который может использоваться для линии обратной связи. Передатчик (ПРД) 632 выполняет обработку (например, преобразование в аналоговую форму, усиление, фильтрацию и преобразование с повышением частоты) ПШ элементов выходного сигнала и осуществляет генерацию сигнала, передаваемого по линии обратной связи, который передают через антенну 634.

В базовой станции 110 антенна 652 принимает сигналы, передаваемые по линии обратной связи, из терминала 120 и других терминалов и подает принятый сигнал в приемник (ПРМ) 654. Приемник 654 выполняет обработку (например, фильтрацию, усиление, преобразование с понижением частоты и преобразование в цифровую форму) принятого сигнала и создает принятые выборки. Демодулятор 660 OFDM (ДЕМОД) выполняет демодуляцию принятых выборок способом OFDM для получения принятых символов, подает принятые символы для сегмента CDMA в устройство 680 обработки принятых пилот-сигналов и подает остальные принятые символы в устройство 670 обработки принятых данных. Устройство 670 обработки принятых данных обрабатывает полученные им символы способом, взаимодополняющим обработку, выполненную устройством 610 обработки передаваемых данных, и создает декодированные данные. Устройство 680 обработки принятых пилот-сигналов выполняет обработку полученных им символов описанным ниже способом и может предоставлять информацию об уровне принятого сигнала, о привязке по времени, о погрешности частоты и/или о других параметрах для каждого терминала, поддерживающего связь с базовой станцией 110.

Контроллеры 640 и 690 управляют работой соответственно терминала 120 и базовой станции 110. Запоминающие устройства 642 и 692 обеспечивают запоминание программных кодов и данных соответственно для терминала 120 и для базовой станции 110. Планировщик 694 может устанавливать очередность передачи для терминала 120 и других терминалов по линии прямой связи и/или по линии обратной связи.

В общем случае конкретный сектор может предоставлять терминалу 120 один или большее количество подсегментов CDMA. Для простоты в приведенном ниже описании предполагают, что терминалу 120 выделено по одному подсегменту CDMA каждым сектором. В общем случае сектор может иметь один или большее количество подсегментов CDMA для его сегмента CDMA. Для простоты в приведенном ниже описании предполагают, что сегмент CDMA для каждого сектора содержит один подсегмент CDMA.

На Фиг. 7 показана блок-схема конструкции устройства 620 обработки передаваемых пилот-сигналов и модулятора 630 OFDM в терминале 120, изображенном на Фиг. 6. В устройстве 620 обработки передаваемых пилот-сигналов генератор 712 последовательности скремблирования получает информацию пилот-сигнала для терминала 120 и осуществляет генерацию последовательности скремблирования на основании этой информации пилот-сигнала. В одном из вариантов генератор 712 представляет собой генератор псевдошумовых (ПШ) сигналов, в который вводят информацию пилот-сигнала. В другом варианте генератор 712 преобразует информацию пилот-сигнала к одной последовательности скремблирования из всех возможных последовательностей скремблирования. В любом случае последовательность скремблирования может иметь длину, определяемую длиной последовательности пилот-сигнала, переданной в сегменте CDMA, например L=1024.

Устройство 714 скремблирования получает данные пилот-сигнала и выполняет их скремблирование с использованием последовательности скремблирования, создает скремблированную последовательность из L ПШ элементов сигнала. Каждый ПШ элемент сигнала может являться комплексной величиной во временной области. Данными пилот-сигнала может являться любая известная последовательность, например последовательность, состоящая из всех единиц, известная псевдошумовая (ПШ) последовательность и т.д. Скремблирование может быть выполнено путем поэлементного умножения данных пилот-сигнала на последовательность скремблирования. Блок 716 разделения разделяет скремблированную последовательность на N скремблированных подпоследовательностей, по одной подпоследовательности для каждого из N периодов символа в кадре, в котором передают сегмент CDMA. Каждая скремблированная подпоследовательность содержит М ПШ элементов сигнала. В каждом периоде символа сегмента CDMA блок 718 быстрого преобразования Фурье (БПФ) выполняет БПФ по М точкам для М ПШ элементов сигнала в скремблированной подпоследовательности для этого периода символа и создает М символов пилот-сигнала для периода символа.

В модуляторе 630 OFDM преобразователь 722 символов в поднесущие принимает символы, соответствующие данным, из устройства 610 обработки передаваемых данных и символы пилот-сигнала из устройства 620 обработки передаваемых пилот-сигналов. В каждом периоде символа в сегменте CDMA преобразователь 722 преобразовывает М символов пилот-сигнала для этого периода символа в М поднесущих, используемых для сегмента CDMA, и преобразовывает символы, соответствующие данным, и/или нулевые символы в K-М оставшихся поднесущих. В каждом периоде символа без сегмента CDMA преобразователь 722 преобразовывает символы, соответствующие данным, и/или нулевые символы в поднесущие, общее количество которых равно K. Преобразователь 722 создает K выходных символов в каждом периоде символа, где каждым выходным символом может являться символ пилот-сигнала, символ, соответствующий данным, или нулевой символ. В каждом периоде символа блок 724 быстрого обратного преобразования Фурье (БОПФ) выполняет БОПФ по K точкам для K выходных символов для поднесущих, общее количество которых равно K, для получения K ПШ элементов сигнала во временной области для полезной части символа OFDM. Блок 726 добавляет циклический префикс к полезной части путем копирования последних C ПШ элементов из полезной части и путем присоединения этих C ПШ элементов впереди полезной части для получения символа OFDM, где C - длина циклического префикса. Символ OFDM включает в себя K+C ПШ элементов сигнала и может быть передан в одном периоде символа из периодов длиной K+C ПШ элементов. Модулятор 630 OFDM также может выполнять обработку методом окна и/или иные операции обработки, которые на Фиг. 7 не показаны для простоты.

На Фиг. 7 показана конструкция, в которой пилот-сигнал передают с использованием CDMA во временной области. В другом варианте пилот-сигнал передают с использованием CDMA в частотной области. В этом варианте L ПШ элементов сигнала из скремблированной последовательности, полученной из устройства 714 скремблирования, может быть непосредственно преобразовано в L блоков передачи данных в сегменте CDMA, минуя блок БПФ 718. В качестве М символов пилот-сигнала для каждого периода символа непосредственно создают М скремблированных ПШ элементов сигнала для этого периода символа.

Конкретный сектор может принимать в сегменте CDMA для этого сектора пилот-сигналы из любого количества терминалов. Сектор может иметь информацию пилот-сигнала для каждого терминала, которому предоставлен сегмент CDMA, например, путем обмена служебными сигналами с терминалом или путем ее получения из другого сектора. Сектор может обнаруживать пилот-сигнал, переданный каждым терминалом, на основании информации пилот-сигнала для того терминала.

На Фиг. 8 показана блок-схема конструкции демодулятора 660 OFDM и устройства 680 обработки принятых пилот-сигналов в базовой станции 110, изображенной на Фиг. 6. Демодулятор 660 OFDM получает принятые выборки из приемника 654. В общем случае частота выборки может быть равной скорости следования ПШ элементов сигнала или может быть кратной (например, в 2, в 4 или в 8 раз большей) скорости следования ПШ элементов сигнала. Для простоты в приведенном ниже описании предполагают, что частота выборки равна скорости следования ПШ элементов сигнала.

В демодуляторе 660 OFDM блок 812 получает принятые выборки из приемника 654, удаляет циклический префикс в каждом принятом символе OFDM и создает K принятых выборок для каждого периода символа. В каждом периоде символа блок 814 БПФ выполняет БПФ K выборок по K точкам для этого периода символа и создает K принятых символов для поднесущих, общее количество которых равно K. Демодулятор 660 OFDM также может выполнять когерентное обнаружение принятых символов с оценкой параметров канала, что на Фиг. 8 не показано для упрощения. Блок 816 обращения преобразования символов в поднесущие получает K принятых символов для каждого периода символа, подает принятые символы из поднесущих, используемых для сегмента CDMA, в устройство 680 обработки принятых пилот-сигналов и пода