Выбор обслуживающей базовой станции в системе беспроводной связи
Иллюстрации
Показать всеИзобретение относится к технике связи. Технический результат заключается в улучшении коэффициента использования системных ресурсов. Технический результат достигается за счет выбора надлежащей базовой станции для обслуживания терминала по обратной линии связи. Терминал отправляет передачу по обратной линии связи на многочисленные базовые станции в системе беспроводной связи и принимает обратную связь (например, команды регулирования мощности (PC) и/или признаки разрушения информации) с многочисленных базовых станций. Каждая базовая станции может формировать обратную связь на основании канала управления и/или некоторой другой передачи, принятой с терминала. Терминал выполняет регулирование мощности обратной линии связи и, кроме того, выбирает обслуживающую базовую станцию RL на основании принятой обратной связи. Терминал может выбирать базовую станцию с самым низким уровнем мощности передачи, наибольшим процентом команд понижения мощности или самой низкой частотой разрушения информации в качестве обслуживающей базовой станции RL. 8 н. и 42 з.п. ф-лы, 16 ил.
Реферат
По настоящей заявке испрашивается приоритет по предварительной заявке на выдачу патента США, под № 60/691,435, озаглавленной «OFDMA RELATIVE CHANNEL SELECTION FOR HANDOFF» («ИМЕЮЩИЙ ОТНОШЕНИЕ К OFDMA ВЫБОР КАНАЛА ДЛЯ ЭСТАФЕТНОЙ ПЕРЕДАЧИ ОБСЛУЖИВАНИЯ»), зарегистрированной 16 июня 2005 года, и заявке под № 60/793,115, озаглавленной «SERVING BASE STATION SELECTION IN A WIRELESS COMMUNICATION SYSTEM» («ВЫБОР ОБСЛУЖИВАЮЩЕЙ БАЗОВОЙ СТАНЦИИ В СИСТЕМЕ БЕСПРОВОДНОЙ СВЯЗИ»), зарегистрированной 18 апреля 2006 года, обе переуступленные ее правопреемнику и включенные в материалы настоящей заявки посредством ссылки.
Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к связи, а более точно, к технологиям для выбора обслуживающей базовой станции.
Уровень техники
Системы беспроводной связи широко применяются для предоставления различных услуг связи, таких как речевые, видео, пакетные данные, широковещательные, обмена сообщениями и так далее. Эти системы могут быть системами множественного доступа, допускающими поддержку связи для многочисленных терминалов посредством совместного использования имеющихся в распоряжении системных ресурсов. Примеры таких систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (CDMA), системы множественного доступа с временным разделением каналов (TDMA), системы множественного доступа с частотным разделением каналов (FDMA) и системы множественного доступа с ортогональным частотным разделением каналов (OFDMA).
Система множественного доступа типично использует схему мультиплексирования, чтобы поддерживать передачи для многочисленных терминалов по каждой из прямой и обратной линий связи. Прямая линия связи (или нисходящая линия связи) указывает ссылкой на линию связи с базовых станций на терминалы, а обратная линия связи (или восходящая линия связи) указывает ссылкой на линию связи с терминалов на базовые станции. По обратной линии связи передача с терминала может приниматься одной или более базовыми станциями. Каждая базовая станция может наблюдать разные канальные условия для терминала и, таким образом, может принимать передачу с разным качеством принятого сигнала. Улучшенные эксплуатационные показатели, а также лучший коэффициент использования имеющихся в распоряжении системных ресурсов могут достигаться выбором надлежащей базовой станции для обслуживания терминала по обратной линии связи.
Поэтому в данной области техники есть потребность в технологиях для выбора обслуживающей базовой станции для терминала в системе беспроводной связи.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В материалах настоящей заявки описаны технологии для выбора обслуживающей базовой стации для терминала по обратной линии связи. В варианте осуществления терминал отправляет передачу по обратной линии связи на многочисленные базовые станции в системе беспроводной связи. Передача может быть предназначена для сигнализации, отправляемой по каналу управления. Терминал принимает обратную связь (например, команды регулирования мощности (PC) и/или признаки разрушения информации) с многочисленных базовых станций. Каждая базовая станции может формировать обратную связь на основании канала управления и/или некоторой другой передачи, принятой с терминала. Терминал выполняет регулирование мощности обратной линии связи канала управления на основании принятой обратной связи.
Терминал, кроме того, выбирает обслуживающую базовую станцию обратной линии связи (RL) на основании принятой обратной связи. В одном из вариантов осуществления терминал определяет уровень мощности передачи для каждой базовой станции на основании команд PC, принятых с базовой станции, и выбирает базовую станцию с самым низким уровнем мощности передачи в качестве обслуживающей базовой станции RL. В еще одном варианте осуществления терминал определяет процент команд понижения мощности для каждой базовой станции и выбирает базовую станцию с наибольшим процентом команд понижения мощности в качестве обслуживающей базовой станции RL. В еще одном другом варианте осуществления терминал выбирает обслуживающую базовую станцию RL на основании сочетания уровней мощности передачи и процентов команд понижения мощности для базовых станций. В еще одном другом варианте осуществления терминал определяет частоту разрушения информации для каждой базовой станции на основании признаков разрушения информации, принятых с такой базовой станции, и выбирает базовую станцию с самой низкой частотой разрушения информации в качестве обслуживающей базовой станции RL. Обслуживающая базовая станция RL предназначена для обслуживания терминала по обратной линии связи.
Терминал может иметь в распоряжении один набор кандидатов базовых станций, выбираемых для обслуживания его по обратной линии связи. Терминал может иметь в распоряжении еще один набор кандидатов базовых станций, выбираемых для обслуживания его по прямой линии связи. Два набора кандидатов могут быть независимыми или «непересекающимися», и базовые станции могут добавляться в и удаляться из каждого набора кандидатов независимо от другого набора кандидатов.
Различные аспекты и варианты осуществления изобретения ниже описаны более подробно.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки и основные свойства настоящего изобретения станут более очевидными из подробного описания, изложенного ниже, которое воспринимается в соединении с чертежами, на которых одинаковые ссылочные позиции соответственно совпадают.
Фиг.1 показывает систему беспроводной связи множественного доступа.
Фиг.2 показывает терминал, поддерживающий связь с многочисленными базовыми станциями.
Фиг.3 показывает устройство, которое независимо настраивает мощность передачи для разных базовых станций и оценивает качества каналов RL на основании команд PC.
Фиг.4 показывает устройство, которое совокупно настраивает мощность передачи для всех базовых станций и оценивает качества каналов RL на основании команд PC.
Фиг.5 показывает устройство, которое настраивает мощность передачи общего канала управления и оценивает качества каналов RL на основании команд PC.
Фиг.6 показывает другое устройство, которое независимо настраивает мощность передачи для разных базовых станций и оценивает качества каналов RL на основании команд PC.
Фиг.7 показывает устройство, которое независимо настраивает мощность передачи для обслуживающей базовой станции и совокупно настраивает мощность передачи для необслуживающих базовых станций.
Фиг.8 показывает селектор обслуживающей базовой станции RL.
Фиг.9 показывает выбор обслуживающей базовой станции RL на основании признаков разрушения информации.
Фиг.10 показывает устройство, которое настраивает мощность передачи канала CQI и оценивает качества каналов RL на основании признаков разрушения информации.
Фиг.11 показывает выбор обслуживающей базовой станции RL на основании известной передачи, отправляемой терминалом.
Фиг.12 и 13 соответственно показывают последовательность операций и устройство для выбора обслуживающей базовой станции для терминала на основании команд PC.
Фиг.14 и 15 соответственно показывают последовательность операций и устройство для выбора обслуживающей базовой станции для терминала на основании известной передачи по обратной линии связи.
Фиг.16 показывает структурную схему терминала и двух базовых станций.
ПОДРОБНОЕ ОПИСАНИЕ
Слово «примерный» используется в материалах настоящей заявки, чтобы означать «служащий в качестве примера, отдельного случая или иллюстрации». Любой вариант осуществления или конструкция, описанные в материалах настоящей заявки как «примерные», не обязательно должны истолковываться в качестве предпочтительных или преимущественных над другими вариантами осуществления или конструкциями.
Фиг.1 показывает систему 100 беспроводной связи множественного доступа с многочисленными базовыми станциями 110 и многочисленными терминалами 120. Базовая станция является станцией, которая поддерживает связь с терминалами. Базовая станция также может называться и может содержать некоторые или все из функциональных возможностей точки доступа, узла Б и/или некоторой другой сетевой сущности. Каждая базовая станция 110 предусматривает покрытие обслуживания связи для конкретной географической зоны 102. Термин «сота» может указывать ссылкой на базовую станцию и/или ее зону обслуживания в зависимости от контекста, в котором используется термин. Чтобы улучшить емкость системы, зона обслуживания базовой станции может быть разделена на многочисленные меньшие зоны, например меньшие зоны 104a, 104b и 104c. Каждая меньшая зона может обслуживаться соответственной приемопередающей подсистемой базовой станции (BTS). Термин «сектор» может указывать ссылкой на BTS и/или ее зону обслуживания в зависимости от контекста, в котором используется термин. Что касается секторизованной соты, BTS для всех секторов такой соты типично являются близкорасположенными в пределах базовой станции для соты.
Для централизованной архитектуры системный контроллер 130 присоединятся к базовым станциям 110 и обеспечивает координирование и управление для этих базовых станций. Системный контроллер 130 может быть одиночной сетевой сущностью или совокупностью сетевых сущностей. Для распределенной архитектуры базовые станции могут поддерживать связь одна с другой, по необходимости.
Терминалы 120 могут быть рассредоточены по всей системе, и каждый терминал может быть стационарным или мобильным. Терминал также может называться и может содержать некоторые или все из функциональных возможностей терминала доступа, мобильной станции, пользовательского оборудования, абонентской станции и/или некоторой другой сущности. Терминал может быть беспроводным устройством, сотовым телефоном, персональным цифровым секретарем (PDA), беспроводным модемом, карманным устройством и так далее.
Как показано на фиг.1, каждый терминал 120 может быть расположен где угодно в пределах соты или сектора и может быть на разных расстояниях по отношению к близлежащим базовым станциям. Каждый терминал 120, таким образом, может наблюдать разные канальные условия для разных базовых станций 110. Подобным образом, каждая базовая станция 110 может наблюдать разные канальные условия для разных терминалов в пределах своей зоны обслуживания. Вообще, канальные условия между терминалом и базовой станцией для каждой линии связи могут подвергаться воздействию различными факторами, такими как расстояние между терминалом и базовой станцией, условия окружающей среды и так далее.
В системе дуплекса с временным разделением каналов (TDD), например, системе стандарта глобальной системы мобильной связи (GSM), прямая и обратная линии связи совместно используют общую полосу частот, а канальные условия для прямой линии связи могут хорошо коррелировать с канальными условиями для обратной линии связи. В этом случае качество канала для одной линии связи (например, обратной линии связи) может оцениваться на основании измерений качества канала для другой линии связи (например, прямой линии связи). Каждый терминал, в таком случае, может обслуживаться единственной базовой станцией как для прямой, так и для обратной линий связи в системе TDD.
В системе дуплекса с частотным разделением каналов (FDD) прямая и обратная линии связи наделены разными полосами частот, и канальные условия для прямой линии связи могут не сильно коррелировать с канальными условиями для обратной линии связи. В этом случае качество канала для каждой линии связи может оцениваться на основании измерений качества канала для такой линии связи. Для достижения хороших эксплуатационных показателей каждый терминал может обслуживаться (1) по обратной линии связи, базовой станцией, которая наблюдает наилучшее качество для терминала, и (2) по прямой линии связи, базовой станцией, от которой терминал наблюдает наилучшее качество канала. Наилучшая обслуживающая базовая станция для обратной линии связи может быть той же самой или отличной от наилучшей обслуживающей базовой станции для прямой линии связи в системе FDD.
Каждая базовая станция типично передает контрольный сигнал по прямой линии связи. Контрольный сигнал является известной передачей, которая может использоваться терминалами для различных назначений, таких как детектирование сигнала, оценка канала, временная синхронизация, частотная коррекция и так далее. Терминал может оценивать качество канала FL для каждой базовой станции на основании контрольного сигнала, принятого от такой базовой станции. Терминал затем может выбирать обслуживающую базовую станцию для прямой линии связи на основании оценок качества канала FL для всех базовых станций, принимаемых терминалом.
Для сокращения служебных данных каждый терминал типично не передает контрольный сигнал по обратной линии связи, если терминал не является также передающим данные и/или сигнализацию. Отсюда базовые станции могут не быть способными оценивать качество канала RL для каждого терминала на основании контрольного сигнала с такого терминала. Другие механизмы, в таком случае, могут использоваться для оценки качества канала RL для терминала, как описано ниже.
В варианте осуществления терминал может принимать передачу данных с базовой станции по прямой линии связи, которая названа обслуживающей базовой станцией FL, и может отправлять передачу данных на базовую станцию по обратной линии связи, которая названа обслуживающей базовой станцией RL. Обслуживающая базовая станция FL может быть или может не быть обслуживающей базовой станцией RL. В варианте осуществления отдельные наборы кандидатов поддерживаются для терминала для прямой и обратной линий связи. Наборы кандидатов также могут указываться ссылкой как наборы активных или некоторой другой терминологией. Набор кандидатов для каждой линии связи содержит обслуживающую базовую станцию для такой линии связи, а также базовые станции-кандидаты, которым терминал может быть передан на обслуживание по эстафете. Базовые станции могут добавляться или удаляться из каждого набора кандидатов на основании измерений качества сигналов, которые могут производиться терминалом и/или базовыми станциями. Большая часть последующего описания предназначена для выбора обслуживающей базовой станции RL из набора кандидатов RL.
В варианте осуществления терминалу назначается выделенный канал управления в обратной линии связи каждой базовой станцией в наборе кандидатов RL. Выделенный канал управления может использоваться для отправки различных типов сигнализации, например, такой как отчеты об индикаторе качества канала (CQI), команды регулирования мощности (PC), подтверждения (ACK) и/или отрицательные подтверждения (NAK) для пакетов, принятых по прямой линии связи, запросы ресурсов по обратной линии связи и так далее. В еще одном варианте осуществления терминалу назначается общий канал управления в обратной линии связи для всех базовых станций в наборе кандидатов RL. В этом варианте осуществления, терминал может мультиплексировать сигнализацию для всех базовых станций в общий канал управления, который может приниматься всеми базовыми станциями в наборе кандидатов RL. Канал(ы) управления может отправляться различными способами в зависимости от конструкции системы, например, с помощью OFDMA, CDMA, TDMA и/или FDMA. Канал(ы) управления может отправляться с использованием схемы множественного доступа (например, OFDMA) в качестве канала(ов) потока обмена или может отправляться с использованием иных схем множественного доступа, чем канал(ы) потока обмена. Например, канал(ы) управления может отправляться с использованием CDMA, а канал(ы) потока обмена может отправляться с использованием OFDMA. Выделенный канал управления для каждой базовой станции может отправляться с использованием разных последовательностей псевдослучайных чисел (PN), разных шаблонов скачкообразной перестройки частоты, разных наборов поднесущих или временных интервалов и так далее. В любом случае, каждая базовая станция в наборе кандидатов RL может быть способна оценивать качество канала RL для терминала на основании канала управления, принятого с терминала.
Фиг.2 показывает вариант осуществления терминала 120x, поддерживающего связь с многочисленными базовыми станциями со 110a по 110ℓ. Терминал 120x может передавать (1) выделенный канал управления на каждую из базовых станций со 110a по 110ℓ в наборе кандидатов RL, (2) общий канал управления на все из базовых станций или (3) сочетание выделенного и общего каналов управления, например, выделенный канал управления на обслуживающую базовую станцию 110ℓ и общий канал управления на необслуживающие базовые станции со 110a по 110k. Каждая базовая станция 110 может оценивать качество канала RL для терминала 120x на основании канала управления, принятого с терминала 120x. В варианте осуществления для канала(ов) управления выполняется регулирование мощности по замкнутому контуру. Что касается регулирования мощности по замкнутому контуру, каждая базовая станция 110 оценивает качество сигнала канала управления, принятого с терминала 120x, и формирует команды PC, чтобы приказать терминалу 120x настроить мощность передачи канала управления. Каждая команда PC может быть либо (1) командой повышения мощности (или UP) для указания увеличения мощности передачи, либо (2) командой понижения мощности (или DOWN) для указания уменьшения мощности передачи. Каждая базовая станция 110 отправляет команды PC на терминал 120x. Терминал 120x настраивает мощность передачи канала(ов) управления на основании принятых команд PC, как описано ниже. Терминал 120x также может выяснять качество канала RL, наблюдаемое каждой базовой станцией 110 для терминала 120x, на основании принятых команд PC, как также описано ниже.
Фиг.3 показывает вариант осуществления устройства 300 для независимой настройки мощности передачи выделенных каналов управления и выяснения качеств каналов RL, наблюдаемых разными базовыми станциями для терминала 120x, на основании команд PC, принятых с базовых станций. В этом варианте осуществления, терминал 120x отправляет отдельные каналы управления на базовые станции в наборе кандидатов RL и независимо настраивает мощность передачи канала управления, отправляемого на каждую базовую станцию, на основании команд PC, принятых с такой базовой станции. Базовые станции могут формировать команды PC, из условия чтобы каналы управления достигали сходных эксплуатационных показателей на базовых станциях. Эксплуатационные показатели могут количественно определяться целевым отношением сигнал/шум (SNR), целевым отношением уровня сигнала к совокупному уровню взаимных помех и шумов (SINR), целевым отношением несущей к перекрестным помехам, целевым отношением энергии символа к шуму, целевой частотой разрушения информации, целевой частотой появления ошибочных блоков и/или некоторой другой мерой. Для ясности последующее описание предполагает, что эксплуатационные показатели определяются количественно целевым C/I.
В варианте осуществления, показанном на фиг.3, сигнализация для базовых станций со 110a по 110ℓ поставляется процессорами с 310a по 310ℓ каналов управления соответственно. Каждый процессор 310 канала управления обрабатывает (например, кодирует, отображает в символы) свою сигнализацию и выдает символы сигнализации. Команды PC, принятые с базовых станций со 110a по 110ℓ, поставляются процессорам с 312a по 312ℓ регулирования мощности соответственно. Каждый процессор 312 регулирования мощности принимает решение по каждой принятой команде PC. Решение PC может быть либо решением UP, если принятая команда PC считается командой UP, или решением DOWN, если принятая команда PC считается командой DOWN. Каждый процессор 312 регулирования мощности может настраивать мощность передачи ассоциативно связанного канала управления на основании решений PC, как изложено ниже:
для i∈{a, …, ℓ} Рав. (1) |
где ΔPUP - длина шага UP для мощности передачи канала управления,
ΔPDN - длина шага DOWN для мощности передачи канала управления, и
Pi(n) - мощность передачи канала управления для базовой станции i в интервале n обновления.
Мощность Pi(n) передачи и длины ΔPUP и ΔPDN шагов заданы в единицах децибел (dB).
Каждый процессор 312 регулирования мощности может вычислять коэффициент усиления по мощности передачи для ассоциативно связанного канала управления, как изложено ниже:
Рав. (2) |
Gi(n) - коэффициент усиления по мощности передачи канала управления для базовой станции i в интервале n обновления. Коэффициент Gi(n) усиления по мощности передачи дан в линейных единицах.
Умножители с 314a по 314ℓ принимают и перемножают символы сигнализации из процессоров с 310a по 310ℓ каналов управления соответственно с коэффициентами с Ga(n) по Gℓ(n) усиления по мощности передачи из процессоров с 312a по 312ℓ регулирования мощности соответственно и выдают масштабированные символы сигнализации для базовых станций со 110a по 110ℓ соответственно. Комбинатор 316 комбинирует (например, суммирует или мультиплексирует) масштабированные символы сигнализации из умножителей с 314a по 314ℓ и выдает выходные символы сигнализации для всех базовых станций в наборе кандидатов RL.
В варианте осуществления, показанном на фиг.3, селектор 320 обслуживающей базовой станции RL включает в себя фильтры с 322a по 322ℓ для базовых станций со 110a по 110ℓ соответственно и селектор 324. Фильтры с 322a по 322ℓ принимают и фильтруют уровни с Pa(n) по Pℓ(n) мощности передачи соответственно и выдают фильтрованные уровни мощности передачи для базовых станций со 110a по 110ℓ соответственно. Каждый фильтр 322 может выполнять скользящее/переходящее среднее в течение конкретного временного окна (например, с помощью КИХ-фильтра (с конечной импульсной характеристикой, FIR)), фильтрацию некоторым другим образом (например, с помощью БИХ-фильтра (с бесконечной импульсной характеристикой, IIR)) некоторую другую линейную или нелинейную сигнальную обработку, или совсем никакой обработки (в каковом случае фильтрованные уровни мощности передачи идентичны нефильтрованным уровням мощности передачи). Селектор 324 принимает фильтрованные уровни мощности передачи для каналов управления для базовых станций со 110a по 110ℓ и выбирает базовую станцию с наименьшим фильтрованным уровнем мощности передачи в качестве обслуживающей базовой станции RL.
В качестве примера терминал 120x может иметь в распоряжении набор кандидатов RL с двумя базовыми станциями 1 и 2. Терминал 120x может отправлять канал 1 управления на базовую станцию 1 и канал 2 управления на базовую станцию 2. Команды PC с базовой станции 1 могут настраивать мощность передачи канала 1 управления для достижения целевого C/I. Подобным образом, команды PC с базовой станции 2 могут настраивать мощность передачи канала 2 управления для достижения такого же целевого C/I. Терминал 120x сравнивает фильтрованный уровень мощности передачи для канала 1 управления с фильтрованным уровнем передачи для канала 2 управления, чтобы определять относительные эксплуатационные показатели каналов управления. Если фильтрованный уровень мощности передачи для канала 1 управления является меньшим, чем фильтрованный уровень мощности передачи для канала 2 управления, то канал 1 управления наблюдает лучшие канальные условия, чем канал 2 управления, и поэтому требует меньшей мощности передачи для достижения целевого C/I. Терминал 120x, в таком случае, может выбирать базовую станцию 1 в качестве обслуживающей базовой станции RL и может передавать этот выбор на текущую обслуживающую базовую станцию RL, новую обслуживающую базовую станцию RL или все базовые станции в наборе кандидатов RL.
Фиг.4 показывает вариант осуществления устройства 400 для совокупной настройки мощности передачи всех выделенных каналов управления и выяснения качества канала RL, наблюдаемого разными базовыми станциями для терминала 120x, на основании команд PC, принятых с базовых станций. В этом варианте осуществления терминал 120x отправляет отдельные каналы управления на базовые станции в наборе кандидатов RL, но использует один и тот же уровень мощности передачи для всех из каналов управления. Терминал 120x настраивает этот уровень мощности передачи на основании команд PC, принятых со всех базовых станций в наборе кандидатов RL, из условия чтобы целевое C/I достигалось на наилучшей базовой станции в наборе кандидатов RL.
В варианте осуществления, показанном на фиг.4, процессоры с 410a по 410ℓ каналов управления обрабатывают сигнализацию для базовых станций со 110a по 110ℓ соответственно и выдают символы сигнализации. Процессор 412 регулирования мощности принимает команды PC с базовых станций со 110a по 110ℓ, принимает решение по каждой принятой команде PC и настраивает общий уровень P(n) мощности передачи для всех каналов управления на основании решений PC всех базовых станций. Процессор 412 регулирования мощности может накладывать правило ИЛИ по DOWN на решения PC в каждом интервале обновления, как изложено ниже:
Рав. (3) |
Процессор 412 регулирования мощности может вычислять коэффициент G(n) усиления по мощности передачи для каналов управления в качестве G(n) = 10P(n)/20. Поскольку каналы управления отправляются на базовые станции, которые потенциально могли бы обслуживать терминал 120x по обратной линии связи, правило ИЛИ по DOWN может предоставлять терминалу 120x возможность осуществлять передачу при более низком уровне мощности, определяемом наилучшей базовой станцией в наборе кандидатов RL. Это может обеспечивать выигрыш энергетического потенциала линии связи и допускать большую мощность передачи, которая должна использоваться для передачи данных.
Умножители с 414a по 414ℓ принимают и перемножают символы сигнализации из процессоров с 410a по 410ℓ каналов управления, соответственно, с коэффициентом G(n) усиления по мощности передачи из процессора 412 регулирования мощности и выдают масштабированные символы сигнализации для базовых станций со 110a по 110ℓ соответственно. Комбинатор 416 комбинирует масштабированные символы сигнализации из умножителей с 414a по 414ℓ и выдает выходные символы сигнализации для всех базовых станций в наборе кандидатов RL.
В варианте осуществления, показанном на фиг.4, селектор 420 обслуживающей базовой станции RL включает в себя детекторы с 422a по 424ℓ понижения мощности и фильтры с 424a по 424ℓ для базовых станций со 110a по 110ℓ соответственно и селектор 426. Детекторы с 422a по 422ℓ принимают решения с Da(n) по Dℓ(n) PC для базовых станций со 110a по 110ℓ соответственно из процессора 412 регулирования мощности. Каждый детектор 422 пересылает решения DOWN в ассоциативно связанный фильтр 424 и отбрасывает решения UP. Каждый фильтр 424 фильтрует решения DOWN и выдает процент понижения мощности для ассоциативно связанной базовой станции 110. Каждый фильтр 424 может выполнять скользящее/переходящее среднее в течение конкретного временного окна (например, с помощью КИХ-фильтра) или может выполнять фильтрацию некоторым другим образом (например, с помощью БИХ-фильтра). Селектор 426 принимает проценты понижения мощности для базовых станций со 110a по 110ℓ и выбирает базовую станцию с наибольшим процентом понижения мощности в качестве обслуживающей базовой станции RL. Эта базовая станция имеет наибольший процент команд понижения мощности и отсюда наилучшее качество канала RL для терминала 120x.
В качестве примера терминал 120x может иметь в распоряжении набор кандидатов RL с двумя базовыми станциями 1 и 2 и может отправлять каналы 1 и 2 управления на эти базовые станции, как описано выше. Терминал 120x уменьшает мощность передачи обоих каналов управления до одного и того же уровня, если команда DOWN принята с любой из базовых станций. Если проценты понижения мощности показывают, что базовая станция 1 была отправившей 50% команд DOWN наряду с тем, что базовая станция 2 была отправившей 0% команд DOWN, то базовая станция 1 наблюдает лучшее качество канала RL для терминала 120x, чем базовая станция 2. Терминал 120x, в таком случае, может выбирать базовую станцию 1 в качестве обслуживающей базовой станции RL и может передавать этот выбор на текущую обслуживающую базовую станцию RL, новую обслуживающую базовую станцию RL или все базовые станции в наборе кандидатов RL.
Обслуживающая базовая станция RL также может выбираться на основании решений UP вместо решений DOWN. В этом случае базовая станция с наименьшим процентом решений UP может считаться в качестве базовой станции с наилучшим качеством канала RL для терминала 120x. Вообще, обслуживающая базовая станция RL может выбираться на основании решений DOWN, решений UP или комбинации решений UP и DOWN.
Фиг.5 показывает вариант осуществления устройства 500 для настройки мощности передачи общего канала управления и выяснения качеств каналов RL для терминала 120x на основании команд PC. В этом варианте осуществления терминал 120x отправляет общий канал управления на все базовые станции в наборе кандидатов RL и настраивает мощность передачи этого канала управления на основании команд PC, принятых со всех базовых станций.
В варианте осуществления, показанном на фиг.5, мультиплексор 508 (Mux) принимает и мультиплексирует сигнализацию для базовых станций со 110a по 110ℓ. Процессор 510 канала управления обрабатывает мультиплексированную сигнализацию и выдает символы сигнализации. Процессор 512 регулирования мощности принимает команды PC с базовых станций со 110a по 110ℓ и настраивает мощность P(n) передачи канала управления на основании принятых команд PC, например, с использованием правила ИЛИ по DOWN, как показано в равенстве (3). Умножитель 514 перемножает символы сигнализации из процессора 510 канала управления с коэффициентом G(n) усиления по мощности передачи из процессора 512 регулирования мощности и выдает масштабированные символы сигнализации. Селектор 420 обслуживающей базовой станции RL выбирает базовую станцию с наивысшим процентом понижения мощности в качестве обслуживающей базовой станции, как описано выше для фиг.4.
Фиг.6 показывает вариант осуществления устройства 600 для независимой настройки мощности передачи выделенных каналов управления и выяснения качеств каналов RL для терминала 120x на основании команд PC. В этом варианте осуществления терминал 120x отправляет отдельные каналы управления на базовые станции в наборе кандидатов RL, настраивает мощность передачи канала управления для обслуживающей базовой станции, чтобы достичь целевого C/I, и настраивает мощность передачи канала управления для каждой необслуживающей базовой станции на основании разных критериев. В варианте осуществления уровень мощности передачи для каждой необслуживающей станции устанавливается в более низкий из (1) уровня мощности передачи, необходимого для достижения целевого C/I для канала управления на такой базовой станции, и (2) уровня мощности передачи для обслуживающей базовой станции. Этот вариант осуществления гарантирует, что для необслуживающих базовых станций не используется избыточная мощность передачи. Качество каналов RL, наблюдаемые разными базовыми станциями для терминала 120x, могут выясняться на основании комбинации фильтрованных уровней мощности передачи и процентов команд понижения мощности для базовых станций.
В варианте осуществления, показанном на фиг.6, процессоры с 610a по 610ℓ каналов управления обрабатывают сигнализацию для базовых станций со 110a по 110ℓ соответственно и выдают символы сигнализации. Процессоры с 612a по 612ℓ регулирования мощности принимают команды PC с базовых станций со 110a по 110ℓ соответственно. Каждый процессор 612 команд PC принимает решение по каждой принятой команде PC и настраивает мощность передачи канала управления для ассоциативно связанной базовой станции 110 на основании решений PC, например, как показано в равенстве (1). Процессоры с 612a по 612k регулирования мощности также принимают уровень Pℓ(n) мощности передачи для обслуживающей базовой станции 110ℓ и ограничивают уровни мощности передачи для необслуживающих базовых станций, как изложено ниже:
для i∈{a, …, k} | Рав. (4) |
где - конечный уровень мощности передачи для необслуживающей базовой станции i.
Процессоры с 612a по 612k регулирования мощности также вычисляют коэффициенты с по усиления по мощности передачи для каналов управления для базовых станций со 110a по 110k соответственно на основании конечных уровней с по мощности передачи для базовых станций со 110a по 110k соответственно, например, как показано в равенстве (2). Процессор 612ℓ регулирования мощности вычисляет коэффициент Gℓ(n) усиления по мощности передачи для канала управления для обслуживающей станции 110ℓ на основании уровня Pℓ(n) мощности передачи для обслуживающей базовой станции.
Умножители с 614a по 614ℓ принимают и перемножают символы сигнализации из процессоров с 610a по 610ℓ каналов управления соответственно с коэффициентами с по и Gℓ(n) усиления по мощности передачи из процессоров с 612a по 612ℓ регулирования мощности соответственно и выдают масштабированные символы сигнализации для базовых станций со 110a по 110ℓ соответственно. Комбинатор 616 комбинирует масштабированные символы сигнализации из умножителей с 614a по 614ℓ и выдает выходные символы сигнализации для всех базовых станций в наборе кандидатов RL.
Селектор 620 обслуживающей базовой станции RL принимает конечные уровни с по и Pℓ(n) мощности передачи, а также решения с Da(n) по Dℓ(n) PC для базовых станций в наборе кандидатов RL. Селектор 620 выбирает обслуживающую базовую станцию RL для терминала 120x на основании этих входных данных, как описано ниже по фиг.8.
Фиг.7 показывает вариант осуществления устройства 700 для независимой настройки мощности передачи выделенного канала управления для обслуживающей базовой станции, совокупной настройки мощности передачи выделенных каналов управления для необслуживающих базовых станций и выяснения качеств каналов RL для терминала 120x на основании команд PC. В этом варианте осуществления терминал 120x отправляет отдельные каналы управления на базовые станции в наборе кандидатов RL, настраивает мощность передачи канала управления для обслуживающей базовой станции, чтобы достичь целевого C/I, и настраивает мощность передачи каналов управления для необслуживающих базовых станций на основании разных критериев. В варианте осуществления уровень мощности передачи для необслуживающих базовых станций настраивается совокупно на основании правила ИЛИ по DOWN и, кроме того, ограничивается уровнем мощности передачи для обслуживающей базовой станции.
В варианте осуществления, показанном на фиг.7, процессоры с 710a по 710ℓ каналов управления обрабатывают сигнализацию для базовых станций со 110a по 110ℓ соответственно и выдают символы сигнализации. Процессор 712ℓ регулирования мощности принимает команды PC с обслуживающей базовой станции 110ℓ, принимает решение по каждой принятой команде PC и настраивает мощность передачи канала управления для обслуживающей базовой станции на основании решений PC, например, как показано в равенстве (1). Процессор 712 регулирования мощности принимает команды PC с базовых станций со 110a по 110k, принимает решение по каждой принятой команде PC и настраивает общий уровень Pns(n) мощности передачи дл